L. Baracco and G. Zampieri Nagoya Math. J. Vol. 161 (2001), 55–67

ANALYTIC DISCS IN SYMPLECTIC SPACES

LUCA BARACCO AND GIUSEPPE ZAMPIERI

Abstract. We develop some symplectic techniques to control the behavior under symplectic transformation of analytic discs A of $X = \mathbb{C}^n$ tangent to a real generic submanifold R and contained in a wedge with edge R.

We show that if A^* is a lift of A to T^*X and if χ is a symplectic transformation between neighborhoods of p_o and q_o , then A is orthogonal to p_o if and only if $\widetilde{A} := \pi \chi A^*$ is orthogonal to q_o . Also we give the (real) canonical form of the couples of hypersurfaces of $\mathbb{R}^{2n} \simeq \mathbb{C}^n$ whose conormal bundles have clean intersection. This generalizes [10] to general dimension of intersection.

Combining this result with the quantized action on sheaves of the "tuboidal" symplectic transformation, we show the following: If R, S are submanifolds of X with $R \subset S$ and $p_o \in T_S^*X|_R$ but $ip_o \notin T_R^*X$, then the conditions $\operatorname{cod}_{T^{\mathbb{C}}S}(T^{\mathbb{C}}R) = \operatorname{cod}_{TS}(TR)$ (resp. $\operatorname{cod}_{T^{\mathbb{C}}S}(T^{\mathbb{C}}R) = 0$) can be characterized as opposite inclusions for the couple of closed half-spaces with conormal bundles $\chi(T_R^*X)$ and $\chi(T_S^*X)$ at $\chi(p_o)$.

In §3 we give some partial applications of the above result to the analytic hypoellipticity of CR hyperfunctions on higher codimensional manifolds by the aid of discs (cf. [2], [3] as for the case of hypersurfaces).

$\S1$. Real symplectic manifolds

Let X be a real manifold and T^*X the cotangent bundle to X, (x,ξ) symplectic coordinates, $\alpha = \xi \, dx$ the canonical one form, σ the two form, H the Hamiltonian isomorphism, ν the Euler vector field, $\chi : T^*X \to T^*X$ a real symplectic transformation.

Let D be a C^1 manifold, D^* a C^1 section of T^*X over D. Suppose

$$D^* \xrightarrow{\chi} \chi(D^*)$$
$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$
$$D \qquad \qquad \widetilde{D},$$

and let $p_o = (x_o, \xi_o), q_o = \chi(p_o) = (\tilde{x}_o, \eta_o).$

Received October 12, 1998.

2000 Mathematics Subject Classification: 32A45, 35C15, 32F10.

Revised December 22, 1999.

PROPOSITION 1. ξ_o is orthogonal to $T_{x_o}D$ if and only if η_o is orthogonal to $T_{\tilde{x}_o}\tilde{D}$

Proof. We have

$$\begin{split} \langle \xi_o, T_{x_o} D \rangle &= \langle \xi_o, \pi' T_{p_o} D^* \rangle = \langle \pi^* \xi_o, T_{p_o} D^* \rangle \\ &= \sigma(H \pi^* \xi_o, T_{p_o} D^*) = \sigma(-\nu(p_o), T_{p_o} D^*) \\ &= \sigma(-\chi' \nu(p_o), \chi' T_{p_o} D^*) = \sigma(-\nu(q_o), T_{q_o}(\chi D^*)) \\ &= \sigma(H \pi^*(\eta_o), T_{q_o}(\chi D^*)) = \langle \pi^* \eta_o, T_{q_o}(\chi D^*) \rangle \\ &= \langle \eta_o, \pi' T_{q_o} \chi(D^*) \rangle = \langle \eta_o, T_{\tilde{x}_o} \widetilde{D} \rangle. \end{split}$$

A Lagrangian submanifolds Λ of T^*X is a C^1 submanifold whose tangent plane $\lambda(p) = T_p\Lambda$ verifies $\lambda(p)^{\perp} = \lambda(p), \forall p$ (with \perp denoting the σ -orthogonal). The intersection $\Lambda_1 \cap \Lambda_2$ is said to be clean when it is a manifold and when $T(\Lambda_1 \cap \Lambda_2) = T\Lambda_1 \cap T\Lambda_2$. All manifolds will be conic i.e. invariant under \mathbb{R}^+ .

Fix $p_o = (x_o, \xi_o) \in \dot{T}^* X$:

PROPOSITION 2. Let M_1 , M_2 hypersurfaces, p_o a point of $T^*_{M_1}X \cap T^*_{M_2}X$ and set

$$R = \pi(T_{M_1}^* X \cap T_{M_2}^* X).$$

Then $T_{M_1}^*X \cap T_{M_2}^*X$ is clean if and only if R is a manifold and there exist real coordinates $t = (t_1, t', t'')$ such that

$$\begin{cases} M_1 = \{t_1 = 0\}, \\ R = \{t_1 = t' = 0\}, \\ M_2 = \{t_1 = Q(t') + O(t')o(t', t'')\}, & Q \text{ non degenerate.} \end{cases}$$

Proof. Since $\pi|_{T^*_{M_1}X\cap T^*_{M_2}X}$ has fiber-dimension $\equiv 1$, then clearly $T^*_{M_1}X\cap T^*_{M_2}X$ is a manifold if and only if R is so. Take then real coordinates t = (t, t', t'') in $\mathbb{R}^N \simeq X$ such that

$$M_1 = \{t_1 = 0\}, \quad R = \{t_1 = 0, t' = 0\}, \quad M_2 = \{t_1 = g(t', t'')\},\$$

and $p_o = (0; dt_1), g(0, 0) = 0, dg(0, 0) = 0$. We have

$$T_{p_0}T^*_{M_1}X = \{(u;t\,dt_1); u \in TM_1, t \in \mathbb{R}\},\$$

$$T_{p_0}T^*_{M_2}X = \{(u;t\,dt_1 + \operatorname{Hess}(g)u; u \in TM_2, t \in \mathbb{R}\}.$$

Π

Since $g|_R \equiv 0$ and $dg|_R \equiv 0$, then $\operatorname{Hess}(g)u = 0$ if u'' = 0; therefore g = Q(t') + O(t')o(t', t''). Next cleanness is equivalent to the implication: " $\operatorname{Hess}(g)u' = 0$ implies u' = 0" which is in turn equivalent to non-degeneracy of Q.

Remark 3. When $\operatorname{cod}_{T_{M_1}^*X}(T_{M_1}^*X \cap T_{M_2}^*X) = 1$, then Q is necessarily definite (positive or negative). Hence $R = M_1 \cap M_2$ and M_1 , M_2 intersect to the order 2 along R. Let M_1^+ , M_2^+ denote the (closed) half-spaces with boundary M_1 , M_2 (and inward conormal p). By the above remarks we must then have either $M_2^+ \subset M_1^+$ or $M_1^+ \subset M_2^+$.

\S **2.** Complex symplectic manifolds

Let X be a complex manifold of dimension n, T^*X the cotangent bundle to X with symplectic coordinates $(z, \zeta), \sigma \ (= d\zeta \wedge dz)$ the canonical 2form on T^*X, R a real submanifold of X, T_R^*X the conormal bundle to R in X, $p_o = (z_o, \zeta_o)$ a point of T_R^*X with $ip_o \notin T_R^*X$. In this situation we can identify, by a choice of coordinates, $T_R^*X_{z_o}$ to a totally real plane $\mathbb{R}^l_{u'} \subset \mathbb{C}^n \simeq T_{z_o}^*X$.

For a vector $\zeta \in \mathbb{C}^n$ we shall denote by $|\zeta|$ the Euclidean norm $|\zeta| = (\sum_i |\zeta_i|^2)^{1/2}$. If $|\Im m \zeta| < |\Re e \zeta|$ we also define $||\zeta|| = (\sum_i \zeta_i^2)^{1/2}$ (for the determination of the square root which is positive over \mathbb{R}^+). If B is a neighborhood of z_o , and Γ_z for $z \in R \cap B$ is a continuous distribution of cones in $T_R^* X_z$ such that Γ_{z_o} is conic neighborhood of ζ_0 in $T_R^* X_{z_o}$, we consider the neighborhood $\Sigma = \{(z, \Gamma_z) ; z \in R \cap B\}$ of p_0 and denote by Σ_{ε} its ε -truncation.

We have an identification

(1)
$$\begin{array}{cccc} \Sigma_{\varepsilon} & \longrightarrow & W\\ (z';\zeta) & \longmapsto & z' + \frac{|\zeta|\zeta}{\|\zeta\|}. \end{array}$$

Here W is a wedge of X with edge R; for an identification $X \simeq \mathbb{C}^n$ (in coordinates)

$$W \supset ((R \cap B) + \Gamma) \cap B$$

with Γ a cone of $\mathbb{R}^l \subset X$. In fact we see that if ζ and ζ_1 belong to Γ_z with $\zeta \neq \zeta_1$, then $\zeta/\|\zeta\| \neq \zeta_1/\|\zeta_1\|$ because $\Gamma_z \cap i\Gamma_z = \emptyset$. On the other hand the normals issued from different points of the C^2 manifold R cannot have nontrivial intersection in a neighborhood of R; and this is still true if one replaces normal directions $\zeta/|\zeta|$ by $\zeta/\|\zeta\|$.

In the identification (1) we shall call z' the *R*-components of z and $|\zeta|$ the distance to *R*. Thus $X \setminus R$ is foliated by the surfaces of fixed distance:

(2)
$$\widetilde{R}_t = \left\{ z = z' + t \frac{\zeta}{\|\zeta\|} ; (z';\zeta) \in T_R^* X \times_X B \right\}, \quad t > 0 \text{ small}$$

We consider the symplectic transformation $\chi = \chi_t$ of T^*X into itself:

$$\chi: (z;\zeta) \longmapsto \left(z + t \frac{\zeta}{\|\zeta\|};\zeta\right).$$

Let $s_R^{\pm}(p)$ denote the number of respectively positive and negative eigenvalues for the Levi form $L_R(p)$ and also set

$$\gamma_R(z) = \dim(T_R^* X_z \cap i T_R^* X_z)$$

and

$$d_R(p) = \operatorname{cod}(R) + s_R^-(p) - \gamma_R.$$

Consider now a new manifold $S \supset R$, suppose $p \in R \times_S T_S^* X$ and note that

(3)
$$d_S \le d_R \le d_S + \operatorname{cod}_S R$$

Also notice that $T_S^*X \cap T_R^*X$ is clean. Let $\widetilde{R} = \widetilde{R}_t$, $\widetilde{S} = \widetilde{S}_t$ $(t \ll 1)$ be the subspaces defined by (2). Denote by \widetilde{S}^+ , \widetilde{R}^+ the closed half spaces with boundary \widetilde{S} , \widetilde{R} and inward conormal q_o .

THEOREM 4. Let $R \subset S \subset X$, and let $p_o \in R \times_S T_S^*X$, $ip_o \notin T_R^*X$. (i) Assume

(4)
$$\gamma_R = \gamma_S$$

Then \widetilde{R} , \widetilde{S} intersect at the order 2 along $\pi(T^*_{\widetilde{S}}X \cap T^*_{\widetilde{R}}X)$ with $\widetilde{S}^+ \subset \widetilde{R}^+$.

(5)
$$\gamma_R - \gamma_S = \operatorname{cod}_S R.$$

Then the same conclusion as in (i) holds but with $\widetilde{S}^+ \supset \widetilde{R}^+$ instead of $\widetilde{S}^+ \subset \widetilde{R}^+$.

Proof. Consider

$$R \subset S_1 \subset S_2 \subset \cdots \subset S_m = S, \quad \operatorname{cod}_{S_{i+1}}(S_i) = 1.$$

We have

(6)
$$\mathbb{Z} = \mu \hom(\mathbb{Z}_{S_{i+1}}, \mathbb{Z}_{S_i})_p$$
$$= \mu \hom(\mathbb{Z}_{\widetilde{S}_{i+1}}, \mathbb{Z}_{\widetilde{S}_i})_q [(d_{\widetilde{S}_{i+1}} - d_{S_{i+1}}) - (d_{\widetilde{S}_i} - d_{S_i})]$$
$$= R\Gamma_{\widetilde{S}_{i+1}^+}(\mathbb{Z}_{\widetilde{S}_i^+})_{\widetilde{z}} [(d_{\widetilde{S}_{i+1}} - d_{S_{i+1}}) - (d_{\widetilde{S}_i} - d_{S_i})].$$

Note now that

(7)
$$s^{-}_{\widetilde{S}_{i}}(q) = s^{-}_{S_{i}}(p) \quad \forall i$$

In fact we have

(8)
$$\begin{cases} \operatorname{Ker}(L_{S_i}) \stackrel{\sim}{\underset{\pi'}{\leftarrow}} T_p T^*_{S_i} X \cap i T_p T^*_{S_i} X \stackrel{\sim}{\underset{\chi'}{\rightarrow}} T_q T^*_{\widetilde{S}_i} X \cap i T_q T^*_{\widetilde{S}_i} X \stackrel{\sim}{\underset{\pi'}{\rightarrow}} \operatorname{Ker}(L_{\widetilde{S}_i}), \\ \dim T^{\mathbb{C}} \widetilde{S}_i - \dim T^{\mathbb{C}} S_i = \operatorname{cod}_X S_i - 1 - \gamma_{S_i}, \end{cases}$$

i.e.

(9)
$$\operatorname{rank}(L_{\widetilde{S}_i}) = \operatorname{rank}(L_{S_i}) + (\operatorname{cod}_{\mathbb{C}^n} T^{\mathbb{C}} S_i - 1).$$

On the other hand it is easily seen that

(10)
$$s_{\widetilde{S}_i}^+ \ge s_{S_i}^+ + (\operatorname{cod}_{\mathbb{C}^n} T^{\mathbb{C}} S_i - 1).$$

Thus (9), (10) give (7). It follows from (7):

(11)
$$(d_{\widetilde{S}_{i+1}} - d_{S_{i+1}}) - (d_{\widetilde{S}_i} - d_{S_i}) = \operatorname{cod}_{T^{\mathbb{C}}S_{i+1}}(T^{\mathbb{C}}S_i).$$

(i): Assume (4). Note that

(12)
$$\gamma_R = \gamma_S \iff \gamma_{S_{i+1}} = \gamma_{S_i} \quad \forall i$$
$$\iff \operatorname{cod}_{T_{S_{i+1}}^{\mathbb{C}}} T^{\mathbb{C}} S_i = 1 \quad \forall i.$$

Thus in this case (6) gives:

(13)
$$\mathbb{Z} \simeq R\Gamma_{\widetilde{S}_{i+1}^+}(\mathbb{Z}_{\widetilde{S}_i^+})_{\tilde{z}}[1].$$

We know on the other hand from Proposition 2 that \widetilde{S}_i and \widetilde{S}_{i+1} intersect at the order 2 along a 1-codimensional manifold (namely $\pi(T^*_{\widetilde{S}_{i+1}} X \cap T^*_{\widetilde{S}_i} X))$ with either $\widetilde{S}_{i+1}^+ \subset \widetilde{S}_i^+$ or $\widetilde{S}_{i+1}^+ \supset \widetilde{S}_i^+$. But (13) says that $\widetilde{S}_{i+1}^+ \subset \widetilde{S}_i^+ \forall i$. Iteration of this inclusion gives the conclusion. (ii): Assume (5). We have

(14)
$$\gamma_R - \gamma_S = \operatorname{cod}_S(R) \iff \gamma_{S_i} - \gamma_{S_{i+1}} = 1 \quad \forall i \iff \operatorname{cod}_{T^{\mathbb{C}}S_{i+1}}(T^{\mathbb{C}}S_i) = 0 \quad \forall i.$$

Thus we have in this case

$$\mathbb{Z} \simeq R\Gamma_{\widetilde{S}_{i+1}^+}(\mathbb{Z}_{\widetilde{S}_i^+})_{\tilde{z}}$$

which obviously implies $\widetilde{S}_{i+1}^+ \supset \widetilde{S}_i$.

§3. Application to analytic discs and symplectic transformations

Π

Let R be a real submanifold of codimension l of a complex manifold X of dimension n in a neighborhood of a point z_o . Let us choose complex coordinates such that $T_R^* X_{z_o}$ is the plane $\mathbb{C}_{z_1,\ldots,z_\gamma}^{\gamma} \times i \mathbb{R}_{y_{\gamma+1},\ldots,y_{l-\gamma}}^{l-2\gamma}$ and write $z = (z', z''), z' = z_1, \ldots, z_{l-\gamma}$. Let us introduce a new complex symplectic transformation, that we still call χ :

$$\chi: (z;\zeta) \longmapsto \left(z + \frac{\zeta'}{\|\zeta'\|};\zeta\right)$$

from a neighborhood of a conormal $p_o = (z_o, \zeta_o)$ with $\zeta_o \in (\mathbb{C}^l \times i\mathbb{R}^{l-2\gamma}) \setminus (\mathbb{C}^l \times \{0\})$ to a neighborhood of $p_o = \chi(p_o)$. For this transformation χ all conclusions of §2 hold without modifications. In particular

$$\widetilde{R} := \pi \chi(T_R^* X)$$
 is a hypersurface.

We shall deal with analytic discs in X and denote $A = \{A(\tau) ; \tau \in \Delta\}$ (where Δ is the unit disc in \mathbb{C}). We shall say that A is "attached" to R if $\partial A \subset R$. The transformation above defined has the great advantage of giving a rule to interchange analytic discs "attached" to R and \widetilde{R} respectively. Assume that R is defined by a system of equations r = 0 $(r = r_1, \ldots, r_{l-\gamma})$ with $\partial r_j|_{z_o} = dz_j, j = 1, \ldots, \gamma, \ \partial r_j|_{z_o} = -i dy_j, j = \gamma + 1, \ldots, l - \gamma$ and that $\zeta_o = (\ldots, 0, -i, 0, \ldots)$ where -i is in the $(l - \gamma)$ -th position. We write $z = (z', z''), \ z' = (z_1, \ldots, z_{l-\gamma})$; we similarly write $\zeta = (\zeta', \zeta''), \ \partial = (\partial', \partial'')$ and so on. Let A be a "small" analytic disc attached to R with $A(1) = z_o$. It is easy to prove existence of an $(l - \gamma) \times (l - \gamma)$ matrix G, real on $\partial \Delta$ with $G(z_o) = id$ such that

 $G\partial' r$ extends holomorphically from $\partial \Delta$ to Δ .

60

To this end it is enough to solve the Bishop equation

(15)
$$G \Im m \,\partial' r - T_1(G \Re e \,\partial' r) = i d_{l-\gamma \times l-\gamma} \quad \text{on } \partial \Delta$$

where T_1 is the Hilbert transform with $T_1(\cdot)|_1 = 0$. Note that (15) is solvable, in suitable Banach spaces, by the implicit function theorem, due to $|\Re e \partial' r| \ll 1$. Let $\lambda = (\ldots, 0, 1, 0, \ldots)G$ and define

$$A^* = (A(\tau); \lambda \partial' r|_{A(\tau)}), \quad \widetilde{A} = \left\{ A(\tau) + \lambda \frac{\partial' r(A(\tau))}{\|\lambda \partial' r(A(\tau))\|} \right\}.$$

It is clear that, if $\pi: T^*X \to X$ is the canonical projection, then

(16)
$$\widetilde{A} = \pi \chi A^*$$

It is also obvious that A^* , and hence \widetilde{A} are holomorphic discs and that

 $\partial \widetilde{A} \subset \widetilde{R}$

due to $\lambda \partial r|_{\partial A} \hookrightarrow T^*_R X|_{\partial A}$. If we apply Proposition 1 to $A^* \subset T^* X^{\mathbb{R}}$ we get $\Re e \langle \partial_{\tau} \widetilde{A}, \zeta_o \rangle = 0$; if we apply it to $iA^* \hookrightarrow T^* X^{\mathbb{R}}$ we get $\Im d_{\tau} \widetilde{A}, \zeta_o \rangle = 0$ which implies $\partial_{\tau} \widetilde{A} \in T^{\mathbb{C}} \widetilde{R}$.

Let W be a "wedge" with edge R (cf. [8]). For an open cone $\Gamma \subset (T_S X)_{z_o}$ the so called "profile" of W, in an identification by coordinates $X \simeq \mathbb{C}^n = T_{z_o} R \oplus (T_R X)_{z_o}$, and for a neighborhood B of z_o , W has the form

$$W = ((B \cap R) + \Gamma) \cap B.$$

Let \mathcal{O}_X be the sheaf of holomorphic functions on X. Let S be a submanifold of X which contains R and which has ζ_o among its conormals at z_o . Let $\mathcal{C}_{S|X}$, $\mathcal{B}_{S|X}$ be the complexes of CR microfunctions and CR hyperfunctions along S respectively. Let $sp : H^0(\pi^{-1}\mathcal{B}_{S|X}) \to H^0(\mathcal{C}_{S|X})$ be the spectral morphism, and define

$$SS(u) = \operatorname{supp} sp(u), \quad u \in \mathcal{B}_{S|X}.$$

Note that $SS(u)_{z_o} = \{0\}$ if and only if u is a holomorphic function in a neighborhood of z_o . Let $\zeta_o \in T^*_S X_{z_o}$, take $\Gamma \subset \{\Re e \langle z, \zeta_o \rangle > 0\}$, and set $W^{\pm} = ((B \cap R) \pm \Gamma) \cap B$.

THEOREM 5. Assume

- (i) $A \subset R \cup W^-$ (resp. $A \subset R \cup W^+$),
- (ii) $\gamma_S = \gamma_R \ (resp. \ \gamma_R \gamma_S = \operatorname{cod}_S R),$
- (iii) $T_{z_o}A \perp \zeta_o$,
- (iv) $A \not\subset R$ in any neighborhood of z_o .

Then for $f \in (\mathcal{B}_{S|X})_{z_o}$ we have $p_o \notin SS(b(f))$ (resp. $-p_o \notin SS(b(f))$).

Remark 6. It is not necessary to assume $A \not\subset R$ in order to get an analytic disc $\widetilde{A} \subset \widetilde{S}^{\mp} \setminus \widetilde{S}$ which is the only fact we really need in the proof. Here again \widetilde{S}^{\mp} are the closed half spaces with boundary \widetilde{S} and inward conormal $\mp \zeta_o$. Thus let S: r' = 0, R: r' = 0, r'' = 0. Assume for instance there is an analytic "lift" A^* i.e. a holomorphic section of T^*X over A such that:

$$A^*|_{\partial A} \subset T^*_R X \setminus T^*_S X$$

i.e. $A^* = (A; \theta \partial r)$ with $\theta \partial r$ extending holomorphically, θ real over ∂A , $\theta'' \neq 0$. Then

$$\partial \widetilde{A} \subset \widetilde{R} \subset \widetilde{S}^-$$
 but $\partial \widetilde{A} \not\subset \widetilde{S}$.

Proof. Let $\{B_r\}$ (resp. $\{\widetilde{B}_r\}$) be the family of spheres with center z_o (resp. \widetilde{z}_o) and radius r. We can find a sequence of subdiscs A_{ν} such that

$$A_{\nu} \subset A \cap B_{r_{\nu}}, \quad \partial A_{\nu} \not \subset R$$

(for a sequence $r_{\nu} \to 0$). Suppose we are proving the statement for p_o . By the discussion above, these are interchanged to analytic discs \widetilde{A}_{ν} such that

$$\partial \widetilde{A}_{\nu} \subset (\widetilde{R}^{-} \cap \widetilde{B}_{s_{\nu}}) \subset (\widetilde{S}^{-} \cap \widetilde{B}_{s_{\nu}}) \quad \text{but} \quad \partial \widetilde{A}_{\nu} \not\subset \widetilde{S}.$$

(since $\widetilde{R}^- \subset \widetilde{S}^-$ due to $\gamma_R = \gamma_S$) for a new sequence $s_\nu \to 0$). By Proposition 1 we also have

(17)
$$T_{\tilde{z}_o}\widetilde{A}_{\nu} \subset T_{\tilde{z}_o}^{\mathbb{C}}\widetilde{S}.$$

We then enter [3, Theorem 1] and conclude that holomorphic functions \tilde{f} in $\tilde{S}^{-} \cap \tilde{B}_{\nu}$ extend to a full neighborhood of \tilde{z}_{o} ; thus germs of holomorphic functions on $\overset{\circ}{\tilde{S}^{-}}$ extend to \mathbb{C}^{n} at \tilde{z}_{o} . Now we introduce a quantization ϕ_{K} of χ by a kernel K. This induces a "microlocal" transformation of \mathcal{O}_{X} . CR hyperfunctions u at z_{o} are transformed into sums of boundary values $b(\tilde{f}^{+})+b(\tilde{f}^{-})$ on \tilde{S} of germs $\tilde{f}^{\pm} \in \mathcal{O}_{X}(\overset{\circ}{\tilde{S}^{\pm}})_{\tilde{z}_{o}}$ in such a way that $p_{o} \notin SSb(f)$ if and only if \tilde{f}^{-} extends at \tilde{z}_{o} . The proof is complete.

62

If we take R = S in Theorem 5 and consider wedges W^{\pm} with edge S we regain [2, Proposition 7] by a new method of "reduction to a hypersurface". If moreover we assume that A is orthogonal to any conormal $\zeta \in T_S^* X_{z_o}$ (instead of the only ζ_o) we get:

COROLLARY 7. Assume

- (i) $A \subset W^{\mp} \cup S$ but $A \not\subset S$ in any neighborhood of z_o ,
- (ii) $T_{z_o}A \subset T_{z_o}^{\mathbb{C}}S$.

Then any $f \in \mathcal{O}_X(W^{\mp})_{z_o}$ extends holomorphically to a full neighborhood of z_o .

Proof. We apply Theorem 5 to all $p \in \pm \Gamma^*$ and conclude that $\pm \Gamma^* \cap SSb(f) = \{0\}$. On the other hand recall that there is an elementary estimate of microsupport; for $f \in \mathcal{O}_X(W^{\mp})_{z_o}$ we have $SSb(f)_{z_o} \subset \pm \Gamma^*$. Hence we can conclude $SSb(f)_{z_o} = \{0\}$.

EXAMPLE 8. In \mathbb{C}^4 let

$$S = \{y_3 = z_1 z_2 + \bar{z}_1 \bar{z}_2, y_4 = 0\}, \quad \mp p = \mp dy_3 + \lambda \, dy_4,$$
$$R = \{y_2 = 0, y_3 = z_1 z_2 + \bar{z}_1 \bar{z}_2, y_4 = 0\},$$
$$A = \mathbb{C}_{z_1} \times \{0\} \times \{0\} \times \{0\}.$$

We can find a section $\lambda \partial r \in (T_R^*X \setminus T_S^*X)|_{\partial A}$ which extends holomorphically. For that just notice that the tangent direction u = (1, 0, ...) to A verifies $u \in \operatorname{Ker}(L_R)(\lambda \partial r)$. Hence Remark 6 applies and yields $\pm p \notin WF(f)$.

$\S4$. Appendix. Positivity of Lagrangians (cf. [4])

We shall further exploit here the techniques of $\S2$ to give an extension of the results of [4].

Let X be a complex manifold, R and S real submanifolds of X with $R \subset S$. Recall that $T_R^*X \cap T_S^*X$ is clean and that (3) of §2 holds. Let $p \in R \times_S T_S^*X$, $ip \notin T_R^*X$.

THEOREM 9. (i) Suppose

(18)
$$d_R - d_S = \operatorname{cod}_S R.$$

Then there exists a germ of a homogeneus complex symplectic transformation χ of T^*X from a neighborhood of p_o to a neighborhood of $q_o = \chi(p_o)$ which interchanges

$$T_R^*X \xrightarrow{\sim} T_{\widetilde{R}}^*X, \quad T_S^*X \xrightarrow{\sim} T_{\widetilde{S}}^*X,$$

for a pair of hypersurfaces \widetilde{R} , \widetilde{S} with $s_{\widetilde{R}}^{-}(q_{o}) = 0$, $s_{\widetilde{S}}^{-}(q_{o}) = 0$ and such that \widetilde{R} , \widetilde{S} intersect at the order 2 along $\pi(T_{\widetilde{R}}^{*}X \cap T_{\widetilde{S}}^{*}X)$ with $\widetilde{R}^{+} \supset \widetilde{S}^{+}$. (ii) Suppose

 $(19) d_R = d_S.$

Then there exists χ such that the same conclusion as in (i) holds but with $\widetilde{S}^+ \supset \widetilde{R}^+$ instead of $\widetilde{S}^+ \subset \widetilde{R}^+$.

Remark 10. Generally, the transformation χ of §2 does not suffice for the conclusion of Theorem 9.

Proof. Consider

$$R = S_1 \subset S_2 \subset \cdots \subset S_m = S, \quad \operatorname{cod}_{S_{i+1}} S_i = 1.$$

Put $\tilde{a}_i = d_{\widetilde{S}_i} - d_{\widetilde{S}_{i+1}}$, $a_i = d_{S_i} - d_{S_{i+1}}$. By the result of §2 we have

$$\mathbb{Z} \simeq R\Gamma_{\widetilde{S}_{i+1}^+}(\mathbb{Z}_{\widetilde{S}_i^+})_{\tilde{z}}[a_i - \tilde{a}_i]$$

Recall that $0 \le a_i \le 1$. Thus (18) and (19) are equivalent to $a_i = 1 \forall i$ and $a_i = 1 \forall i$ respectively.

We recall that if a submanifold $\Lambda \subset T^*X$ is \mathbb{R} Lagrangian (i.e. Lagrangian for $\sigma^{\mathbb{R}}$ the real part of σ) and verifies

(20)
$$\dim(T_{p_o}\Lambda \cap \mathbb{C}H(\zeta_o \, dz)) = 1,$$

then Λ is symplectically equivalent to the conormal bundle to a hypersurface. (Note here that if $\Lambda = T_R^* X$, then (20) is equivalent to $ip_o \notin T_R^* X$, hence this latter condition characterizes the higher codimensional manifolds R which are "symplectically equivalent" to a hypersurface.) In particular for any family of Lagrangian manifolds Λ_i , $i = 1, \ldots, m$ which satisfy (20) we can find χ such that

(21)
$$\Lambda_i \xrightarrow{\sim}_{\chi} T^*_{M_i} X, \quad \operatorname{cod}(M_i) = 1 \quad \forall i.$$

Also we can arrange (cf. [6]) that

(22)
$$s_{M_i}^-(q_o) = 0$$
 for at least one *i*.

We shall apply the above remarks for $\Lambda_i = T_{S_i}^* X$.

(i): We take in this case χ such that

$$T_{S_i}^* X \xrightarrow{\sim} T_{\widetilde{S}_i}^* X, \quad \operatorname{cod}(\widetilde{S}_i) = 1 \quad \forall i, \quad s_{\widetilde{R}}^-(q_o) = 0$$

Assume $s_{\widetilde{S}_i}^-(q_o) = 0$; we show that

(23)
$$\begin{cases} \widetilde{S}_{i+1}^+ \subset \widetilde{S}_i^+, \\ s_{\widetilde{S}_{i+1}}^-(q_o) = 0 \quad \forall i. \end{cases}$$

In fact we are in the situation

$$\begin{cases} \tilde{a}_i = -s_{\widetilde{S}_{i+1}}^-(q_o), \\ a_i = 1, \end{cases}$$

whence $a_i - \tilde{a}_i = s_{\widetilde{S}_{i+1}}^-(p_o) + 1$ and

(24)
$$\mathbb{Z} = R\Gamma_{\widetilde{S}_{i+1}}(\mathbb{Z}_{\widetilde{S}_i})_{\widetilde{z}} \left[1 + s_{\widetilde{S}_{i+1}}^{-}\right].$$

But since we know from Proposition 2 that \widetilde{S}_i , \widetilde{S}_{i+1} intersect at the order 2 along a 1-codimensional submanifold with either of the inclusions $\widetilde{S}_{i+1}^+ \subset \widetilde{S}_i^+$ or $\widetilde{S}_{i+1}^+ \supset \widetilde{S}_i^+$, then (24) implies (23).

Hence induction applies and gives the conclusion

$$\begin{cases} \widetilde{S}^+ \subset \widetilde{R}^+, \\ s^-_{\widetilde{S}}(q_o) = 0. \end{cases}$$

(ii): We take now χ :

$$\chi: T^*_{S_i}X \xrightarrow{\sim} T^*_{\widetilde{S}_i}X, \quad \operatorname{cod}(\widetilde{S}_i) = 1 \quad \forall \, i, \quad s^-_{\widetilde{S}}(q_o) = 0.$$

Assume $s_{\widetilde{S}_{i+1}}^{-}(q_o) = 0$; we show that

(25)
$$\begin{cases} s_{\widetilde{S}_i}^-(q_o) = 0, \\ \widetilde{S}_i^+ \subset \widetilde{S}_{i+1}^+. \end{cases}$$

In fact we have

$$\begin{cases} \tilde{a}_i = +s^-_{\widetilde{S}_i}(q_o) \\ a_i = 0 \end{cases}$$

Thus $a_i - \tilde{a}_i = -s_{\widetilde{S}_i}^-$ and therefore

$$\mathbb{Z} = R\Gamma_{\widetilde{S}_{i+1}^+} \big(\mathbb{Z}_{\widetilde{S}_i^+}\big)_{\widetilde{z}} \big[-s_{\widetilde{S}_i}^- \big],$$

which implies (25). The conclusion will follow again by induction.

Remark 11. Recall the semiorder relation of positivity " \geq " between Lagrangians in the sense of [5]. Thus we have in fact proved that $T_R^*X \geq T_S^*X$ in case (i) (resp. $T_S^*X \geq T_R^*X$ in case (ii)).

References

- M. S. Baouendi, L. P. Rothshild and J. M. Trepreau, On the geometry of analytic discs attached to real manifolds, J. Diff. Geometry, 39 (1994), 379–405.
- [2] L. Baracco and G. Zampieri, Analytic discs attached to half spaces of \mathbb{C}^n and extension of holomorphic functions, J. Fac. Sci. Univ. Tokyo, (2001), to appear.
- [3] _____, Analytic discs attached to manifolds with boundary, Publ. R.I.M.S. Kyoto Univ., 33 (4) (1997), 687–694.
- [4] A. Boggess, CR Manifolds and the tangential Cauchy-Riemann complex, Studies in Adv. Math. CRC Press, 1991.
- [5] A. D'Agnolo and G. Zampieri, Microlocal direct images of simple sheaves, Bull. Soc. Math. de France, 23 (1995), 101–133.
- [6] M. Kashiwara and P. Schapira, *Microlocal study of sheaves*, Astérisque Soc. Math. de France, **128** (1985).
- [7] J. M. Trepreau, Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe C^2 dans \mathbb{C}^n , Invent. Math., 83 (1986), 583–592.
- [8] A. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. Jour., 73 1 (1994), 1–24.
- [9] _____, Extending CR function from manifolds with boundaries, Math. Res. Letters, 2 (1995), 629–642.
- [10] G. Zampieri, Simple sheaves along dihedral Lagrangians, Journal d'An. Math. de Jérusalem, 66 (1995), 331–344.
- [11] _____, Analytic discs attached to the conormal bundles of CR-manifolds, Advances in Math., 128 (1) (1997), 180–185.

66

Luca Baracco Dipartimento di Matematica Università di Padova via Belzoni 7 35131 Padova Italy

Giuseppe Zampieri Dipartimento di Matematica Università di Padova via Belzoni 7 35131 Padova Italy