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Introduction to more advanced topics

This book has covered many of the primary topics in perturbative QCD, with a focus
on certain inclusive processes for which particularly systematic treatments are available.
It should provide the reader with a sound conceptual framework for further study and
research. However, hadronic interactions form a vast subject, and there is an enormous
literature where perturbatively based methods have been applied.

This chapter gives a summary of a selection of important areas of further application of
perturbative QCD.

One common theme, a prerequisite for actual perturbative calculations, is that the reac-
tions have in some sense a controlling hard subprocess, occurring on a short distance scale,
i.e., a distance scale significantly less than 1 fm, or, more-or-less equivalently, a momentum
transfer significantly larger than the typical hadronic scale of a few hundred MeV.

Another recurring idea, perhaps the closest to a unifying motif, is the idea that one
should try to separate (factor) phenomena on different scales of distance and momentum.
This refers not just to scales of different virtuality, but also to a separation of phenomena at
widely different rapidities. A characteristic here is that almost scattering processes examined
in high-energy physics are ultra-relativistic. Thus time dilation and Lorentz contraction of
fast-moving hadrons by themselves provide a wide range of distance scales. For example
at the Tevatron collider we have proton and antiproton beams of energy almost 1 TeV. This
allows the measurement of hard processes with momentum scales of several hundred GeV.
Therefore distances as small as 10−3 fm can be probed. Now the intrinsic distance scale
of phenomena in a proton is about 1 fm in its rest frame. So time dilation of the beams
indicates that there are phenomena relevant to the collisions occurring on the much larger
scale of 103 fm. Thus relevant distance scales span 6 orders of magnitude (the square of
E/M). Such a big ratio allows for many simplifications and useful approximations, and not
just those that directly impinge on the applicability of perturbative methods.

This train of thought leads to one common (but not universal) theme, that of light-front
methods. Most systematically, one can represent the states of fast-moving hadronic systems
in terms of their light-front wave functions. As we have seen throughout this book, one
cannot take the elementary formulations of light-front quantization etc. literally; many of
the basic ideas must be considerably distorted to be applied correctly in QCD. Nevertheless
this area gives concepts and methodology that underlie much of the work.

The significance of light-front methods goes beyond that of perturbative applications
to relatively short-distance phenomena. There is a close relation to phenomena in soft
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hadronic physics (Gribov, 1973, 2009). This is an area often characterized as the domain
of Regge theory. Although Regge theory was extremely influential in the pre-QCD era,
and although one can still see its effects on current research, there is not yet a properly
established connection with QCD from first principles. This is an area that deserves more
investigation now that QCD is a very mature subject.

Many of the topics listed in this chapter concern some of the most difficult parts of
QCD. It is not surprising therefore that their justification from fundamental principles is
not always sufficient. It is generally difficult for an outsider, even for one experienced
in perturbative QCD, to acquire an full understanding of these areas from the published
literature. Whether or not scepticism in any particular case is justified, I will leave to the
future to decide.

15.1 Light-front wave functions and exclusive scattering at
large momentum transfer

One natural application of hard-scattering methods is to elastic scattering at large momen-
tum transfer. The classic early reference is Lepage and Brodsky (1980). Standard examples
include elastic hadron-hadron scattering HA +HB → HC +HD at wide angle, and elec-
tromagnetic form factors of hadrons at large momentum transfer.

The standard methods of region analysis apply: Sec. 5.9.3. An obvious kind of region
was shown in Fig. 5.34(a), where essentially the partonic content of each external hadron
collapses to a small configuration at a single hard scattering. The wide-angle hadronic
scattering is then controlled by a kinematically equivalent scattering of valence quarks from
each hadron. If we follow the same logic as for inclusive scattering, the non-perturbative
factors are light-front wave functions (with an integral over transverse momentum). They
are obtained from matrix elements of light-front annihilation operators between a single
hadron and the vacuum, e.g.,

〈0|bk1,λ1bk2,λ2bk3,λ3 |P 〉 , (15.1)

where the operators are as in Secs. 6.6 and 6.7. One expects the usual QCD complications,
of course.

But because the hard-scattering subgraph has more external partons than in inclusive
scattering, the cross sections fall with a higher power of the hard scale Q than corresponding
inclusive cross sections. So it is hard to probe very large Q experimentally. In addition, this
strong decrease allows the possibility of other regions contributing with either the same
power law or a less-suppressed power. See Sec. 5.9.3 for a brief discussion of one example,
the Landshoff process. See the citations to Lepage and Brodsky (1980) and Landshoff
(1974) for subsequent work.

15.2 Exclusive diffraction: generalized parton densities

A related topic concerns exclusive processes in large-Q inelastic lepton-hadron scattering.
We examined the leading regions for such processes in Sec. 5.3.6. Standard examples
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presented there were deeply virtual Compton scattering, double deeply virtual Compton
scattering, and exclusive production of mesons. The hadronic parts of these reactions are
γ ∗(q)+ P → γ + P , γ ∗(q)+ P → γ ∗(q ′)+ P , and γ ∗ + P → M + P , respectively.

Experimentally, these processes are often investigated at small Bjorken x (where the
cross section is largest), so they also take on the characteristics of diffractive scattering.

In the normal case that the momentum transfer from the target-hadron end is small,
the appropriate factorization property uses what are called “generalized parton densities”
(GPDs). These are defined exactly like parton densities, except that the hadronic matrix
element is off-diagonal, (6.90). See Sec. 11.8 for a further discussion. In exclusive produc-
tion of mesons, a light-front wave function of the meson is needed, the same quantity that
appears in elastic scattering of the meson. See Diehl (2003) for a good review.

15.3 Small-x, BFKL, perturbative Regge physics

In DIS much work deals with the region of small x. There is considerable experimental
data from the HERA collider, where the high center-of-mass energy allowed ep collisions
to go to small x while maintaining Q in a perturbative region, e.g., Q of a few GeV with x

as small as 10−5. The standard treatment of DIS involves the limit of large Q at fixed x, so
the small-x regime introduces another large ratio in addition to the ratio of the hard scale
to the hadron mass, Q/M .

In the small-x region, the ideas of Regge theory become relevant. Regge theory concerns
asymptotic behavior where s is large and momentum transfer is fixed. This includes the
total hadronic cross section at large s.

Now DIS structure functions correspond to a cross section for scattering of a virtual
photon on a hadron: γ ∗P → X. At small x, the mass of both the photon and the hadron
are much less than their center-of-mass energy, which is Q

√
(1− x)/x. When Q is in

a perturbative region, one can hope that Regge theory can be usefully approximated by
perturbative methods. Investigations of a Regge limit in perturbation theory for non-abelian
gauge theories led to the equation of Balitsky, Fadin, Kuraev, and Lipatov (BFKL) (Fadin,
Kuraev, and Lipatov, 1975; Balitsky and Lipatov, 1978). For a review, see Lipatov (1997).

This and a number of closely allied developments have had many applications, in
situations where a Regge limit is appropriate. If the DGLAP equation is regarded as
governing the Q dependence of DIS structure functions and parton densities, then the
BFKL equation governs the x dependence, at small x.

For partonic scattering at high energy and small angle, the BFKL equation gives a ladder
structure that is very similar to the multiperipheral model we mentioned in Sec. 14.3.
However, the actual Feynman graphs that give the leading behavior are gauge dependent
and need not be actual ladder graphs. Primarily the derivations use the leading-logarithm
method, and therefore concern the situation where the gluons are strongly ordered in
rapidity. But important work concerns NLO corrections.

There is interesting work by Balitsky (e.g., Balitsky, 1999), who relates the BFKL
equation to the evolution of Wilson-line matrix elements with respect to the rapidity of the
Wilson-line directions; thus his work is related to our treatment of TMD functions in Ch. 13.
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One characteristic of the BFKL equation is that it implies that its approximation to the
pomeron has an intercept well above unity. The pomeron was originally characterized as
the Regge exchange that gives the highest power of energy in elastic hadronic scattering.
Its intercept α(0) gives a total hadron-hadron cross section proportional to sα(0)−1. But the
Froissart bound requires that the cross section rise at most like ln2 s. Phenomenologically
hadronic total cross sections do rise slowly. Thus something with an intercept far above
unity cannot be the true pomeron. However, there does appear to be a transition in DIS
between soft pomeron behavior at low Q, with approximately constant γ ∗p cross sections,
and a “hard pomeron” behavior at higher Q, with a substantial rise with energy (e.g., H1
Collaboration, 2010)

Related issues concern the CCFM equation (Ciafaloni, 1988; Catani, Fiorani, and March-
esini, 1990a, b; Marchesini, 1995) for parton densities, etc. at small x.

15.4 Resummation, etc.

The basic method of using perturbation theory in QCD for a quantity with a large momentum
scale Q is to use the RG to set the renormalization mass μ of order Q. This removes large
logarithms of Q. But in many cases there are other parameters which can also give large
logarithms. One way of viewing the problem is to observe that the quantity being calculated
depends on multiple momentum scales rather than just Q.

One example is the hard-scattering coefficient in ordinary “collinear” factorization for
the Drell-Yan process when qT � Q. Among many other examples are processes at small
Bjorken x (Sec. 15.3), and at large x (Sec. 15.8 below).

The most fundamental method of dealing with such situations is to formulate an appro-
priately improved factorization theorem, such as we did using TMD factorization for the
Drell-Yan cross section in Ch. 14. After that the various perturbative coefficients are all
single-scale quantities.

Another very common method is that of resummation. There one analyzes the source
of the large logarithms. It is often not too hard to determine the leading logarithms to
all orders of perturbation theory, even without a more complete treatment. This avoids
exact Feynman-graph calculations at very high order. Then one sums the large higher-order
corrections.

The vast literature on this subject can be sampled by searching for papers with titles
containing “resummation” or “resummed”.

Resummation is at its most useful when the logarithms are not too large, since it can
provide an efficient way to improve the accuracy of perturbative calculations. One important
example is in the use of resummed calculations of jet shapes (Gehrmann, Luisoni, and
Stenzel, 2008) in e+e− annihilation to obtain accurate estimates of the strong coupling
(Bethke et al., 2009).

The method gets much harder to justify when the logarithms are large. For example,
in the Drell-Yan process at small transverse momentum, the errors in the approximations
giving collinear factorization include terms that are a power of M/qT. When the transverse
momentum is of order a hadronic mass, the derivation does not apply. TMD factorization
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solves this problem, with the outcome that more non-perturbative information is needed
in the transverse momentum distributions of partons and of soft-gluon emission. In the
intermediate region M � qT � Q, the full TMD factorization property can be used to
derive a resummation formula. In the version of TMD factorization given in (13.81), a
resummation result can be obtained by omitting the non-perturbative factors in the fourth
and fifth lines.

15.5 Methods for efficient high-order calculations

In many realistic applications of perturbative QCD, calculations of high-order graphs are
needed. For the LHC, calculations of parton-parton scattering with many partons in the
final state are used, preferably at one-loop order. Examples of the calculations are in Berger
et al. (2009).

It is readily evident that such calculations are very complex, particularly when performed
in the most direct way from the standard Feynman rules. A 3-gluon vertex has 6 terms,
so that a graph with n such vertices has 6n terms. Straightforward calculations by hand
become very lengthy or impractical. Of course, intensive use of computers helps. It also
helps if calculations are restricted to massless on-shell amplitudes as much as possible.

But it is also observed that the final results of a calculation are often much simpler than
intermediate results, and certainly much simpler than one expects from the complications in
individual graphs. This suggests that there are much better methods. See Bern, Dixon, and
Kosower (2007) for a review of much of the work in this direction, with further references.

15.6 Monte-Carlo event generators

The analysis of the regions for Feynman graphs for processes with a hard scattering
gives much more information on the detailed structure of the final state than we used in
factorization theorems for inclusive cross sections. A contrasting approach is provided by
Monte-Carlo event generators, e.g., PYTHIA (Sjostrand, Mrenna, and Skands, 2006, 2008)
and HERWIG (Bahr et al., 2008). These are computer programs which simulate actual
collisions. That is, they generate complete events with a distribution that is intended to be
a useful approximation to the distribution of events in actual collisions.

Modern collider experiments generate events with many final-state particles, and the
detectors are sensitive to most of the final state. The acceptance and efficiency of the detec-
tors is quite complicated, and the signatures of many interesting signals (e.g., the Higgs
particle) involve properties of whole groups of final-state particles. Therefore understand-
ing the nature of a physics signal is greatly assisted by having a realistic simulation of
the complete final state. Monte-Carlo event generators are therefore an essential tool in
the analysis of experimental data in high-energy physics, not to mention the planning of
future experiments.

Event generators also evade another problem. This is that the number of Feynman graphs
rises with the order N of the Feynman graph roughly like N !. The difficulty of comput-
ing each single graph also rises with the order. Although modern methods ameliorate this
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somewhat, there is a formidable computational problem in directly computing production
of final states with many particles. The situation is worse in QCD because straightfor-
ward perturbation theory is not useful without interesting reorganizations: factorization,
renormalization group, etc. A Monte-Carlo event generator provides an approximation to
the production of N particles that uses computational resources linear in N , instead of its
factorial, thereby giving a dramatic improvement over unassisted perturbation theory.

The price is, of course, the approximation and the difficulty of justifying it.
To understand how the methods used by the event generators arise, consider our treatment

in Sec. 8.9 of factorization in a non-gauge theory. There the dominant structures were
generalized ladder graphs. We can extend these ideas to analyze the structure of the jets in
the final state, obtaining a structure of ladders within ladders. If we take, as is appropriate, a
fixed order for each rung, we have a small number of graphs in each order, and the number
of rungs is proportional to N . The structure readily maps to the linear-in-N structure in an
event generator. The use of Monte-Carlo methods, i.e., probabilistic methods, is the most
sensible for numerical calculations of high-dimensional integrals and maps perfectly onto
how data appears in a scattering experiments.

In QCD, the ladder structure only arises after a sum implemented by Ward identities
from graphs with non-local attachments of gluons. The kinematics of final states, with soft
gluons filling in rapidity gaps, is also much more complicated than in a non-gauge theory.

The theory of the event generators (see Sjostrand, Mrenna, and Skands, 2006; Bahr
et al., 2008; Sjostrand, 2009) is based on the ideas used in ordinary factorization theorems
for inclusive processes. But a full justification, which I am not sure really exists, needs to
go much further. One symptom of this is in the kinematic approximations used in deriving
factorization for inclusive processes. At various points we change the kinematics of partons
going into the final state from their actual values, but in such a way that the inclusive cross
section is not affected (at leading power). But this is not adequate for an event generator
where a complete description of the final state is to be given. An event that does not obey
conservation of 4-momentum is not useful in this context. Prescriptions are needed to
correct this (Bengtsson and Sjöstrand, 1988), and these do not fully match how inclusive
factorization theorems are derived.

Furthermore, in hadron-hadron collisions, generating complete final states goes beyond
a situation in which factorization in its basic form is valid. Event generators incorporate
modelling of the soft final state and this can be regarded as a model of the spectator-spectator
interactions that we examined (in the context of another very simple and naive model) in
Sec. 14.3.

There has naturally been much work on Monte-Carlo event generators that I cannot
review here. They represent an interesting way of combining the results of perturbative
calculations with other elements including modelling of non-perturbative physics to give a
very useful approximation to real QCD.

15.7 Heavy quarks

At various points in this book, I have mentioned the issues that arise when heavy quark
masses are not small compared with the hard-scattering scale Q. Many situations can be
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dealt with by minor modifications of the standard factorization method; see for example
Krämer, Olness, and Soper (2000).

But there are other situations that require different techniques. One of the most important
is the analysis of the decays of hadrons containing heavy quark constituents, notably B

mesons. This is the domain of heavy-quark effective theory (HQET). An account of HQET
is found in Manohar and Wise (2000).

15.8 Large x

Limitations on the validity of a basic factorization theorem often arise near kinematic limits.
An important case is DIS at x → 1. There the spectator part of a typical leading region
becomes soft instead of collinear, and therefore indicates that a change in the analysis
is needed. Essentially the same considerations apply to any other inclusive process in a
kinematic region where the initiating partons of a conventional hard scattering must have
x → 1. Similar issues arise in fragmentation as z→ 1. Because of the restricted kinematics
of the spectator system, more accurate treatment of the kinematics is needed than in the
conventional factorization.

Cross sections decrease quite rapidly as x → 1 because parton densities decrease roughly
as (1− x)3 or a higher power. This decrease affects the accuracy of conventional factor-
ization methods. One indication of this is in the NLO correction (9.54) for DIS, where
the plus distribution implements a cancellation between real and virtual gluon emission.
Where the parton densities decrease rapidly this cancellation becomes inaccurate, giving
large logarithms of 1− x.

Recent work can be traced from Almeida, Sterman, and Vogelsang (2009).

15.9 Soft-collinear effective theory (SCET)

In recent years a new approach to perturbative QCD has been developed under the name
soft-collinear effective theory (SCET) (Bauer et al., 2001; Bauer and Stewart, 2001). See
Fleming (2009) for a recent overview. Historically SCET arose as a generalization of
heavy-quark effective theory; see Sec. 15.7.

The overall philosophy of SCET is like that of the Wilsonian renormalization group.
This is to integrate out certain ranges of momentum modes for the fields of QCD and to
replace them with effective fields. In SCET momentum space is divided into many bins
in each of which the integrating-out is to be done. A problem that needs to be addressed
in any such method is how to deal with a momentum that lies just outside a boundary of
an integrated-out region.1 There is no small parameter to expand in, unlike the case of
momenta far from the boundary.

In the Wilsonian RG this problem is overcome by using an infinite set of operators.
But this rather obscures the underlying simplicity of the situation, where one has a simple
factorization of coefficients times a limited set of operators.

1 Compare the discussion in the first few paragraphs of Sec. 13.12.
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In reality, the integrating-out in SCET is performed by integrating over all momenta,
with subtractions to enforce the region conditions. This is similar to what was done in this
book in Ch. 10. However, I have not been able to penetrate the SCET literature to properly
understand its rationale. I just refer the reader to the literature cited above.

15.10 Higher twist: power corrections

In deriving factorization we made approximations that used the leading power of an expan-
sion in small variables like masses relative to a hard scale Q. It is natural to ask what can
be done with non-leading powers.

The basic techniques do apply to non-leading powers. In fact, the earliest of the fac-
torization theorems, the operator product expansion (OPE), does treat all powers, leading
and non-leading, in a uniform formalism. The OPE (Collins, 1984, ch. 10) expresses a
suitable matrix element in a limit of large Euclidean momentum q as a sum of q-dependent
coefficients times q-independent operator matrix elements, e.g.,∫

d4x eiq·x 〈P |j (x)j (0)|P 〉 =
∑

i

Ci(q) 〈P |Oi |P 〉 . (15.2)

The power law for the q dependence is controlled by the dimension of the operators.2

When the OPE is applied to moments of DIS structure functions, the normal leading
power corresponds to operators Oi that obey

dimension− spin = 2. (15.3)

This quantity is called twist, and non-leading powers have a higher value of twist. It has
therefore become a standard jargon to use “higher twist” to refer to any power-suppressed
correction. Leading-power factorization for inclusive processes is then labeled “twist-2”;
integer moments of integrated parton densities are exactly matrix elements of twist-2
operators.

For work on higher-twist corrections to factorization see Qiu and Sterman (1991b).
But the vast majority of applications avoid the use of higher-twist corrections, trying

to stay in kinematic regions where the leading-power formalism is sufficient. There are
several reasons.

One is that the relevant generalizations of parton densities use multiparton operators,
and these depend on more than one fractional momentum variable. The more non-leading
the power, the larger the number of variables that is needed. But it is hard to extract such
a multivariable function from data. This contrasts with the twist-2 case, where, in the
parton-model approximation, DIS structure functions are simple linear combinations of
quark densities.

One can only do better if one is in a special situation where the non-leading power terms
are particularly simple.

2 Here I ignore the effects of anomalous dimensions.
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A second reason for not using power corrections is a fundamental limitation on the
accuracy of perturbative calculations in QCD. Consider the perturbation series for an IR-
safe quantity

F =
∞∑

n=0

cnαs(Q)n, (15.4)

with purely numeric coefficients. Suppose, as is the general expectation, that this is an
asymptotic series with large-order behavior

cnα
n
s ∼ (anαs)

n as n→∞. (15.5)

We estimate the error in a truncated perturbative expansion by the first term omitted, as is
appropriate for an asymptotic series. Then the minimum error in a perturbative calculation
is the smallest term in the series. So, (15.5) implies that the minimum error is from the term
with

n ∝ 1

aαs(Q)
. (15.6)

Then the minimum error itself is roughly

exp

(
−constant

αs(Q)

)
∼ exp

(−constant ln Q2
) = O(Q−p), (15.7)

for some positive constant p. Any higher-twist correction with a more negative power of Q

is smaller than the minimum error in the perturbative calculation of the leading-twist term.
It is therefore phenomenologically useless.

Another severe complication arises for higher-twist corrections in hadron-hadron col-
lisions. Factorization has independent parton densities for each beam hadron. To obtain
this independence, we needed a cancellation of interactions between the two hadrons. The
proof of the cancellation, Sec. 14.4, relied on causality in the ultra-relativistic limit. In a
non-relativistic situation the active partons could get correlated before the hard scattering.
Such effects generally contribute to higher-twist corrections. Therefore initial-state interac-
tions require that the non-perturbative functions in corrections of sufficiently higher twist
are properties of the whole two-hadron state, rather than being multiparton correlation
functions in individual hadrons.

This issue does not affect terms suppressed by 1/Q and 1/Q2 relative to the leading-
power terms (Qiu and Sterman, 1991a, b). So twist-3 and twist-4 terms can be investigated
in a generalized factorization framework.
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