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1. Introduction. The General Selection Principle referred to
in the title is really Tychonoff's theorem on products of compact
spaces, but in a somewhat disguised form (c.f. Theorem 2.1, below).
It is believed that this form is one which lends itself very well to
many applications. More specifically, one of the immediate
corollaries of the main theorem is a theorem due to Rado (c.f. Cor 2.1.1.),
which has been used by Erdos and de Bruijn [2], Luxemburg [7], and
the author [9] to give simple proofs of a variety of results.

The purpose of this paper is to show how the theorem and its
corollaries can be used in a natural way to give simple proofs of a few
old and new results. In §2, we prove the main theorem and deduce
several corollaries; in §3, we discuss colorings of infinite graphs;
in §4, we give a proof of the Stone representation theorem for
Boolean algebras; in §5, we give a proof of the existence of Haar
measure in locally compact groups; in §6, we give a representation
of certain vector lattices as function spaces.

2. The Main Theorem

THEOREM 2.1. Suppose we are given a family {Ct tte T}

of compact sets and a net fL = {¢a t2e A} of choice functions

(i.e. ¢Q,:T—>1‘::)T Ct’ with ¢a (t) « Ct for each t). Then there exists

a choice function  : T— UCt with the following property: if any

finite subset FO C T is chosen, and for each te Fo a neighbourhood

of Y(t) in Ct is chosen, then for any a e A there exists

Ny (0

Be A, B Za’o’ such that ¢B(t) e N for each t ¢ FO.

W(t)

REMARK This theorem is exactly Tychonoff's theorem on the
compactness of the product of compact spaces, using the fact that a space
is compact if and only if every net has a limit point. For completeness,
however, we give below a paraphrase of Bourbaki's proof of Tychonoff's
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theorem, avoiding mention of the product topology.

Proof of Theorem 2.1. The net 1 in the product space Tl Ct
gives rise to a filter ? in 1T Ct in the usual way, i.e. 7 is
generated by sets of the form {(1)@1 B>a} . F is contained in some

ultrafilter W . Given any to ¢ T, we may define L]Jt :HCt - Ct by
[e) [o]
th (o) = q>(t0). Then q;t (#) is the base of an ultrafilter ut (in Ct ),
o o o o
which converges to some point in Ct since Ct is compact. We
o o
will call this point L]J(to), thus defining a mapping ¢ : T - UCt. Since

(U't converges to q;(to), we have Ut D(n\b(f ) (= neighbourhood
° ;
o o

system at q;(to)) .

Now suppose we are given FO C T, a neighbourhood N

b(t)

for each te FO, and @ e A. For each te FO, Lp_ti (N ) e WU,

G (t)
and also {d)a ta> o te W; hence the set U = {c})a: @z N

N { "chi (NL[J(t)) tte FO} ¢ W\; and in particular U is non-empty.
Thus there exists B e A, B> a such that 4)5 e U, and it follows
that for each t ¢ FO we have %(t) = ¢t(¢6) € NLL' (t)

-1
pcve (N

(since ¢

COROLLARY 2.1.1 (R. Rado [8]). Given a family {K:te T}

of finite sets, and given for each finite subset FC T a corresponding
choice function ¢F:T—> UKt (with q)F(t) 3 Kt for each te T),

then there exists a choice function (: T = UKt with the following

property: if any finite subset FO C T is chosen, then there exists

a finite subset FCT with FD Fo such that d)F(t) = (t) for each
te F .
o

Proof . The finite sets Kt become compact under the discrete

topology, and the finite subsets of T are directed by inclusion;
hence the collection {¢F: F CT, F finite}] becomes a net of choice

functions into a family of compact sets. Let § be the mapping which
exists by Theorem 2. 1.
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For any finite subset FO C T, choose the neighbourhoods

NL]J(t) to be the singleton sets {{(t)} for te F and take the

index @ to be Fo . Then by Theorem 2.1 there exists a larger
index F (i.e. a finite set F D F(‘) ) such that ¢F(t) e {U(t)} for all

te F .
o

REMARK. Proofs of Rado's theorem have also been given by
Gottschalk [4] (using Tychonoff's theorem, but in a different way),
and by Luxemburg [7] (using the method of ultrapowers).

For most applications of Rado's theorem it is sufficient to take
all the finite sets Kt to be the sarne. We then get

COROLLARY 2.1.2. Given a set T and finite set K, suppose
that for each finite subset F C T there is given a corresponding
function ¢F: T - K. Thenthere exists a function ¢ : T - K with the

following property: if any finite subset FO C T is chosen, then there

exists a finite subset F C T with FDO FO such that ¢F(t) =y (t) for

each te F .
o

For some applications of the main theorem, it is necessary to
retain a general net of mappings, but is sufficient to take all the
compact sets equal to one finite set. Theorem 2.1 then becomes

COROLLARY 2.1.3. Given a set T, a finite set K, and a net
{¢ :@e¢ A} of mappings, ¢ : T — K, then there exists a mapping
o o

jp: T = K such that: given any finite subset FO CT and any o e A,

there exists B > a such that %(t) =y (t) for all te F.

Finally, we mention the common situation where the compact
sets Ct are all compact subsets of the reals R. The neighbourhoods

NLLJ can then all be taken to be €- intervals, and Theorem 2.1

(t)

becomes

COROLLARY 2.1.4. Suppose we are given a family
{Ct :te T} of compact subsets of R, and a net {¢a: ae A} of

functions ¢oz: T - R such that q>a/(t) € Ct for every aoe¢ A. Then there

is a function ¢ : T - R with the following property : given any finite
subset FO C T and any 0 < ¢e¢ R, then for any aj e A there exists

[3_>_on such that l¢ﬁ (t) - q,(t), < ¢ for each te FO.
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3. Graph Coloring

Definition, Given a positive integer k, a k-coloring
of a graph T is a mapping from T to the set {1,2,....,k} such
that adjacent vertices are assigned different integers (colors).

Erdds and de Bruijn [2] noticed that the following theorem about
infinite graphs follows easily from Rado's theorem. The proof is
omitted since it is similar to that of Theorem 3.3.

THEOREM 3.1 (Erdés, de Bruijn.) A graph T is
k-colorable if and only if every finite subgraph is k-colorable.

Given a graph T, we may ask to what extent T is determined
by its colorings. More precisely: given T, we may consider the
(possibly empty) collection of k-colorings of T; and conversely,
given any point set S together with a collection of k-colorings of the
peoints of S, we may obtain a graph by connecting two points of S
if and only if none of the colorings assigns them the same color. We
say that a graph T is k-reproducible if the graph generated by the
k-colorings of T is T again.

The following lemma is clear.
LEMMA 3.2. A graph T is k-reproducible if and only if for

any two non-adjacent vertices there is some k-coloring that assigns
them the same color.

Fig. 1(a) below shows a 3-reproducible graph (having two distinct
3-colorings), and Fig. 1(b) shows a graph which is not 3-reproducible
(the top left and lower right vertices always get different colors).

(a) (b)

Figure 1

576

https://doi.org/10.4153/CMB-1968-069-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-069-4

THEOREM 3.3. A graph T is k-reproducible if and only if
every finite subgraph of T is k-reproducible.

Proof. Suppose T is such that every finite subgraph is
k-reproducible. We will show that T is also k-reproducible.

(By Lemma 3.2 the converse is clear.) Let t1 and t2 be any

two fixed non-adjacent vertices of T. By Lemma 3.2 it is sufficient
to find a k-coloring  which assigns the same color to t1 and tz.

Let K={1,2,...k}. For any finite subset F C T, let
q)F:T—> K be a k-coloring of the finite subgraph FU{t1, tz} which
assigns the same color to t1 and tz. Then the mapping ¢ :T > K
which exists in virtue of Corollary 2.4.2 is the required coloring.

For, let 'c3 and t4 be any two adjacent vertices of T, and let

Fo = {ti’ tz, t3, t4} . Then Corollary 2.1.2 states there exists
F D FO such that c])F(t) =y (t) for each te FO, and hence

Wty) = Gplty) #0p(t) =G (E,), and b)) = o (6) = 6L (5,) = blt,) .
4. Representations of Boolean Algebras. The author noticed

recently [9] that Stone's representation theorem for Boolean algebras
could be proved simply using Rado's theorem. We have:

THEOREM 4.1 (Stone [11]). Every Boolean algebra T is
isomorphic to a Boolean algebra of subsets of some set H.

Proof. Let H be the set of all non-trivial Boolean homomorphisms
h:T - {0,1} . We may thenmap T into the collection 4?2 (H) of subsets
of H by p: T~ P (H) where p(t) ={h e H:h(t) =1} . It is easy to check
that o is a Boolean homomorphism, and to show that it is an
isomorphism, it is only necessary to show that for any 0 # tO e T

there is an h ¢ H such that h(to) # 0 (i.e. that there are enough

homomorphisms). Now, it is not hard to see that any finite Boolean
algebra does have enough homomorphisms into {0, 1}, so for any
finite subset F C T we may let ch: T - {0,141} be such that it acts

as a homomorphism on the finite subalgebra generated by FU{tO}
and such that ¢F(to) =4. It can then be seen (c.f. [9]) that the

mapping y:T = {0,141} which exists in virtue of Corollary 2.41.2 is a
homomorphism of T, and that q;(to) = 1.

We may put a topology on H by taking as a basis for the open
sets the collection {p(t):t e T} . We note that for any te T, with
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complement t’, the complementary set C p(t) = p(t’) is open, so
that the basis sets are both open and closed. The fact that H has
enough homomorphisms implies that the space is Hausdorff,

THEOREM 4.2. The topological space H is compact.

Proof. Let {h :ae¢ A} be anetin H. Since h :T-K = {0,1},
L root. o o
by Corollary 2.41.3 we get a certain mapping ho: T - {0,1} . Again,
it may be verified without difficulty that hO is a non-trivial homomorphism
from T to {0,1}, so ho e H. And in fact ho is a limit point of the
net {ha}’ for : take any basic neighbourhood of ho’ (i.e. take any
t ¢ T suchthat h (t ) =1 and consider the neighbourhood p(t ),
o o' o o
and take any a e A. Let FO = {to} C T. Then there exists

g > o such that hﬁ(to) = ho(to) =1, i.e. h_ e p(to).

p

The reader will notice that the topology on H is the weakest
topology making the characteristic functions X (t)’ te T, all
P

continuous. Another example of the compactness of weak topologies

will be given in §6.

5. Existence of Haar Measure. Our object in this section is
to use the Main Theorem (actually, Corollary 2. 1.4) to prove

THEOREM 5.1. In every locally compact topological group X,
there exists at least one regular Haar measure, i.e. a left-
translation-invariant Borel measure.

Proof. The proof, in outline, follows that in Halmos [5]
One first observes that it is sufficient to find an invariant content
on the compact sets, since then the measure induced by the content
will be as required.

Let T be the collection of compact subsets of X, and let T°
be the collection of compact subsets of X with non-empty interior.
For De T and Ue T® let r(D;U) = the minimum number of left
translations of U needed to cover D. To fix the scale, fix B ¢ To;
and then for any U ¢ T° define 6 ;T >R by

() =220 o b T.

cI’U T r(B; U)

It follows ¢U is translation invariant, and subadditive; and if

D 1 N D2 = ¢, then for U sufficiently small, ¢U(D1U DZ) = ¢U(D1) + ¢U(D2).
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We now apply Corollary 2.1.4. It is easy to show that
0< ¢U(D) < r(D; B), hence for all U ¢ To, ¢U(D) is in the compact
interval [0, r(D;B)] = CD, say. Also, the sets U ¢ T° are directed
(down) by inclusion. Hence {¢U:U € To} is a net of choice functions
into compact subsets of R, so by Corollary 2.1.4 we get a certain
mapping y: T - R.

It is straightforward now to verify that  is the required content.
We show, as a sample, that ( is finitely additive: given Dir\DZ =,
take any ¢ > 0, and find UO such that U C Uo implies
o5y U D,) = ¢ y(Dy) +oy(D,). Let F o= {Di,DZ,D1U Dz} .
By Corollary 2.1.4 there exists U C U0 such that
|¢U(D) -y (D)|< € for De F_; hence qu(DiuDZ) - $(D,) - Lp(DZ)]

1]

IMDiuDZ) - 6;(D,UD,) - U(D,) +¢,(D)) - $(D,) +¢,(D) |

IN

[$(D,UD,) -6, (D,UD,) | +[6(D) - 6, (D)) | + [4(D,) - 6,(D,)] < 3e.

And since ¢ is arbitrary we get qJ(D1 UDZ) = ¢(D1) +4J(D2) .

6. Representations of Vector Lattices. Let L be a vector
lattice which is Dedekind complete (i.e. conditionally complete: every
subset of L which is bounded above has a least upper bound), and
which has a strong order unit 1 (i.e. for every x ¢ L there is a real
number o« such that le <a1). L then becomes a normed space by
setting ”x” = inf {a: |x| < al}. Several proofs exist of the fact that
L can be represented as the space of all continuous functions on a
suitable compact Haudsdorff space (c.f., for instance [1], [6]).

A common technique in representation theory is to take as the
base space some collection of linear functionals, and one of the main
problems is usually to show that there are enough functionals of the
required type. More precisely, we say that a linear functional
¢: L= R is lattice-preserving if for x,y ¢ L, d(xVy) = ¢(x)V ¢(y) and
d(x Ay) = ¢(x) Ad(y); and we will use the main theorem (actually
Corollary 2.1.4) to prove

THEOREM 6.1. Let L be a Dedekind complete vector lattice
with a strong order unit 41, and let 0 < x ¢ L. Then there is a
lattice-preserving linear functional ¢ of norm 1, such that

Vo) = I, I
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We will prove Theorem 6.1 by using a series of lemmas to get
approximations to the functional we want, and then applying
Corollary 2.1.4. First of all, we say that an element e ¢ L is
unitary if inf(e,1-e) = 0. Freudenthal proved [3] thatif 0< xe L,
then there exists a unitary element e > 0 and a real number o > 0
such that we< x. If xe¢ L and e is unitary, we define the product
x+e to be the projection of x into the normal subspace (band) generated
by e. It is easy to verify that this "product' has desirable properties
such as:

i) i d i t ce = i :
(1) if e, and e, are unitary, then e e, inf (e1,ez)

and is again unitary;

(ii) (x-ei) e, = X-(e-1 e_);

(iii) (x +y)-e=x+e +y-e;

(iv) x <y implies x-e < y-e.

It follows from Freudenthal's result that if x _{_ 0,
then there exists e > 0 such that x.e > 0; for since
+ . +
x >0 wemayfind e>0 and o> 0 suchthat 0<aee<x ; and
+ .. - . -
since x 1is disjoint from x , so is e so that x .e = 0; and hence

+ + ,
0 <ae=pere<x re = x +e-X +e=XxX-e.

For any e >0, x >0 in L, define

p (e, x) = sup {Be Ripe<x}.

LEMMA 6.2. (i) For any x> 0 and any unitary e > 0,

plesx) < [lxrell < x|

(ii) For any x >0 and any unitary e > 0, there exists 0<e'< e
such that whenever 0< e''< e' then

e | - e < lxeel - e < pler.
Proof. (i) p(e,x)e <x, so (e, x)e= H(e,x)e.e< xe < ”x-e ”1,
and hence g(e,x)e < |[x-e| e, so that ple,x) < | x-e |
”x'e” < Il x || follows from 0<xre< x. -
(ii) Let a= | x+ef/- . Since x-e ¢ at, therefore

(x*e - al) £ 0, and hence by the remarks above there exists a
unitary e, > 0 such that 0< (x-e - a1). ey It follows that

e-e1¢0, so let 0<e'=e'ei$e, and then whenever 0< e'" < e!
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we have ae'' < x-<e' < x, so that p(e“,x)z a= ”x e” - €. The other
inequality of (ii) is immediate since 0< x+e'" < x'e, so that
[x-emf < [[xef-

LEMMA 6.3. For any 0<xe L, 0<ae¢ R, and unitary
e> 0, p(e, ax)=a p(e,x).
Proof. f e< ax if and only if oz_1 B e<x; hence p(e,ozx)
A -
= sup {B:pe< ax} =sup {Bia Be< x} =qa- sup{e 1[3:oz"1ﬁe<x}

= o p(e,x).

LEMMA 6.4, Given x,y 20, € >0, and e > 0, there exists

0< €& < e such that whenever 0< e'" < e' then

(i) ple',x) +ple,y) < ple',x +y) < ple,x) +p(e,y) + e,
(ii) p(e",x Viy) < ple',x) Vple',y) < ple', x Vy) +e,
(iii) p(e", x AY) < p(e“,x) A p(e”, y) < p(e“, x ANy) +e.

Proof. By Lemma 6.2 there exists 0 < e' < e such that

whenever 0< e"< e' then [x-e"| - €/ ple',x) < [[x-e"|

IA

2

A

and ly-el - %/, <plety) < lly-en.

For (i) we observe that p(e”,x)e”_<_ x and p(e”,y)e" <vy,
so that [p(e",x) + p(e", y)]e""< x +y; and hence
ple', x) + ple",y) < ple", x+y). Also, p(e", x +y) < [(x +y)-e"|
vt +y-enll< Ixen] + Iyverll< plems =) + S/ 4 plemy) + </, .

The proofs of (ii) and (iii) are exactly similar.

Proof of Theorem 6.41. We have xO > 0, and we want to find

a lattice-preserving linear functional { of norm 1 such that
=) = Il X | . For any finite subset F C L% and any ¢ > 0,

there exists by the preceding lemmas a unitary e > 0 such that
. +
(i) 0<ple,x) < x| for all xe L
(i) [ | - e< plesx) < = |
(iii) p(e,x) + p(e, y) < p(e,x +y)< p(e,x) + p(e,y) +e for all x,y eF.

(iv) p(e,ax) = o p(e,x) for 0<aoe R and x ¢ L+
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(v) p(e,x Vy) < p(e,x)\/ p(e, y)<ple,xVy)+ e forall x,yeF

(vi) p(e,x/\ y) < p(e,x)/\p(e,y)gp(e,x/\ y) + ¢ for all x,ye F.

Let S={F,¢}, and define ¢S:L+~> R by q)s(x) = p(e,x).
Then ¢»S is an approximation (at least on F) to the required
functional . Note that by (i), ¢S(x) is in the compact interval
[0, ||x]|]]CR; also, the collection
{S:S={F,¢}, F finite, F C L+, 0< ee R} is directed by the

lati > h s > i .
relation > where {FZ €2} —{F1’€1} if FZDF1 and ezs €

Hence by Corollary 2.1.4 there is a mapping {¢:L - R such that

(i) W(x) e [0, ||x]|] for xe L+, and

(i1) given any finite subset FO et and any ¢ > 0, then
(letting S0 = {FO, €}), there exists S={F,e'}>{F ,¢}
o

(i.e. FDFO and ¢'< ¢) such that lq;s(x) —¢(x)l < ¢ for all x e FO.

. + . .
One can now verify that § acts on L as the required functional.
For example, we show that ( is additive. Let

+
y,2e¢ L, and let ¢ >0, and take SO={{y,z,y+z},e}.

Then for an appropriate S ={F, ¢} > SO we have
[oly +2) - 4ly) - W=)] <[4y +2) - ogly+2)]+ [W ) - ogly) | +

[b(z) - <|>S(z), + |¢S(y +g) - dgly) - ¢S(z)|_<_ ctetete < 4e.

And ¢ is arbitrary, so Y(y+z) = U(y) +¢(2). The other properties
are verified similarly.

{ can now be extended linearly to the required functional on L.

One may now get a representation of L as a real function space
as follows. Let & be the collection of all lattice-preserving linear
functionals of norm 1, and define r:L % (d,R) by
(1 (x))(d) = d&(x) ¢ R. It is easy to verify that T is a vector-lattice-
homomorphism into F(5,R), and Theorem 6.1 shows that it is an
isomorphism.

® may be given the weakest topology under which all the functions
in T(L) are continuous, i.e. a typical neighbourhood of
b, € b is {d e B: ]q:(xi)— ¢0(xi)|§_e, x, ¢ L,i=1,...,n}.

This topology is Hausdorff, and we can use Corollary 2.1.4 to see
that it is compact: indeed, suppose {¢a tae A} is anetin & ;
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since ”c])Q” =1, therefore ¢a(x) e [- |x|l, ||x]]] for every ac A,

so there exists by Corollary 2.1.4 a certain mapping y:L—R, and
it follows easily that ye & and is a limit point of the net {¢ } .
o

The reader will notice that Corollary 2.1.4 can be used in a
very similar way to prove the compactness of the unit ball in the
norm-dual X' of a normed linear space X, in the weak topology
w(X',X). This theorem is, of course, already very close to
Tychonoff's theorem.

With the topology thus defined on b, v (L) becomes the space of
all continuous functions on the compact Handsorff space &.
This is a function algebra, so a multiplication can be induced on L
itself by using the isomorphism t. It is interesting to note, therefore,
that in fact there is a natural way of defining a multiplication implicitly
in L, which coincides with this induced multiplication (c.f. [10]).
Under this multiplication in L, the functionals ¢ ¢ & are exactly
the multiplicative linear functionals.
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