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We present the first nonlinear results on the problem of non-rotating thermal convection
in an internally heated full sphere. A nonlinear stability analysis by the energy method
yields that, at least for no-slip boundary conditions, the critical Rayleigh numbers for linear
stability and nonlinear stability coincide. We then explore different ranges of the parameter
regime using direct numerical simulations. We first report on the system behaviour for a
fixed Prandtl number of unity and both stress-free and no-slip boundary conditions up to
very high forcing, reaching Rayleigh number Ra = 2 × 1012, approximately 250 million
times the critical value (Rac) for the onset of convection under no-slip conditions. For both
boundary conditions, we observe a scaling for the advective heat transfer measured by
the Nusselt number Nu close to Nu ∼ Ra1/4. This is consistent with a scaling prediction
that we formulate analogously to the classical scaling in Rayleigh–Bénard convection.
We then investigate the Prandtl number dependence at low to intermediate forcing for
stress-free boundary conditions in the ranges 0.1 ≤ Pr ≤ 30 and Rac = 3091 ≤ Ra ≤
3 × 105 ≈ 100Rac. We find five distinct dynamical regimes depending on the Prandtl
number, describe each regime individually and issue heuristic interpretations of the system
behaviour where possible.

Key words: buoyancy-driven instability, turbulent convection

1. Introduction

Fluid flow influenced by body forces such as buoyancy or electromagnetic forces, or
fictitious forces such as the Coriolis force, is ubiquitous in nature. Such convective motion
of fluids occurs, for example, in the interstellar medium, in the interior of stars and
planets such as the Earth, and in the Earth’s atmosphere and its oceans. It is also of
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Figure 1. Snapshot of the total temperature at a Rayleigh number of Ra = 5 × 109, a Prandtl number of
Pr = 1, with fixed temperature and stress-free boundary conditions.

great importance for manifold technical applications, ranging from the design of cooking
utensils and drag measurements in wind tunnels to the construction of hydroelectric power
plants or the development of nuclear fusion reactors. The study of the dynamics (i.e. the
fundamental laws and the resulting system behaviour) of convective fluid flow is thus
essential to many branches of science and industry, including astrophysics, plasma physics,
geophysics, meteorology, aerospace engineering and industrial design. Moreover, it is also
a fundamental subject of research on its own, being addressed using theoretical, numerical
and experimental methods.

In this work we consider the idealised problem of thermal convection in a non-rotating
full sphere with uniform internal heat generation and homogeneous boundary conditions
(of either Dirichlet or Neumann type). We adopt the Boussinesq approximation, all
material properties to be constant, except for the density occurring in the buoyancy force.
In this set-up, the fluid is incompressible and subject to a buoyancy force, to dissipative
viscous forces and to inertial interactions. In addition, there is thermal dissipation in the
system, and heat is both conducted and advected with the fluid. Convection ensues if the
internal heating exceeds a certain threshold to overcome the inhibiting dissipation.

This configuration can be characterised by only two non-dimensional control
parameters: the Prandtl number Pr, being the ratio of the viscous and thermal diffusivities,
and the Rayleigh number Ra, the ratio of the buoyancy and the viscous force, multiplied by
the Prandtl number. The Rayleigh number thus characterises the strength of the thermal
forcing in the system. Both control parameters will be defined in § 2. Figure 1 shows a
snapshot from a numerical simulation, visualising the temperature field inside the sphere
at Ra = 5 × 109 and Pr = 1. It is evident that the temperature field exhibits small spatial
scales, indicating that the corresponding flow field is turbulent.

The problem of thermal convection in a non-rotating full sphere has received remarkably
little attention so far. The linear stability problem, i.e. the problem of establishing the
threshold beyond which convection ensues, was studied by Jeffreys & Bland (1951),
Chandrasekhar (1952) and Backus (1955), and predictions for the linear onset of
convection (for fixed temperature boundaries) are summarised in Chandrasekhar (1961).
Later, Baldwin (1967) and Hsui, Turcotte & Torrance (1972) considered weakly nonlinear
approximations in order to investigate the nonlinear effects very close to the onset of
convection. However, no numerical study of this problem has ever been conducted to our
knowledge.
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Thermal convection in the internally heated sphere

The spherical geometry is of obvious relevance for convection in the interior of stars
and planets, and indeed, numerous studies pertaining to convection in the full sphere in
this context exist (see e.g. Guervilly & Cardin 2016; Kaplan et al. 2017; Lin & Jackson
2021). Convection in stars and planets is, however, generally strongly influenced by the
effects of both rotation and magnetic fields, and the dynamics considered in these studies
is therefore fundamentally different to the problem at hand.

Another related problem is convection in an (infinite) plane layer that is heated
from below and cooled from above. This configuration is also known as classical
Rayleigh–Bénard convection, and an abundance of literature on theory, numerical
modelling and experiments exists for this problem (summarised, for example, in
Manneville 2006; Ahlers, Großmann & Lohse 2009). The difference between
Rayleigh–Bénard convection and convection in the non-rotating full sphere is mainly in
the domain geometry and the nature of thermal forcing.

The main objective of this work is to characterise the fluid flow and the temperature
field resulting from the internally heated, non-rotating full sphere configuration. We are
interested in the resulting system behaviour for the different combinations of homogeneous
boundary conditions and for a wide range of values of the control parameters Ra and Pr.
The methods used for this characterisation depend on the values of the parameters and the
nature of the resulting system behaviour.

At and near the onset of convection, the equations of motion (or their stability)
can be investigated analytically. Because an exact analysis of the equations at finite
flow amplitudes is not possible, we then resort to numerical simulations. At low to
intermediate forcing, we analyse the time dependence and the spatial patterns of the
ensuing convection. In addition, we also examine the large-scale behaviour through
globally averaged quantities such as the kinetic energy density and non-dimensional
diagnostics like the Reynolds number Re, a measure of the vigour of the flow, and the
Nusselt number Nu, a measure of the strength of advective heat transfer in the system.
We further describe and study secondary bifurcations that occur at finite forcing, and the
different flow regimes that develop depending on Pr. Where possible, we also issue some
analytical or heuristic remarks on the nature of these secondary instabilities.

At sufficiently high forcing, the system transitions to turbulence. A classic problem
in thermal convection is the scaling of the vigour of the flow (represented by the
Reynolds number) and of the advective heat transfer (represented by the Nusselt number)
with the Rayleigh number Ra and the Prandtl number Pr at high forcing. To our
knowledge, such scalings cannot be directly inferred from the nonlinear equations of
motion (although techniques to establish rigorous bounds for such asymptotic scalings
exist; see e.g. Fantuzzi, Arslan & Wynn 2022), and therefore, scalings have been suggested
on the basis of heuristic physical considerations, in particular for Rayleigh–Bénard
convection. We adapt one such scaling prediction to the problem at hand. In addition, we
also investigate the partition of the kinetic energy into its toroidal and poloidal components
(based on a decomposition of the flow field introduced in § 2), and the thickness of the
thermal boundary layers.

2. Problem formulation and governing equations

2.1. Problem setting and equations of motion
We consider a non-rotating full sphere of radius r0 and assume uniform and steady internal
heating, characterised by a constant source term S denoting the associated change of
temperature. The fluid in the sphere is subject to the linear self-gravity g = g0r/r0 of a
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sphere of constant density, where g0 represents the gravitational acceleration at r = r0. We
adopt the Boussinesq approximation, assuming all material properties except the density to
be constant. The density is assumed to vary linearly with temperature (with an associated
thermal expansion coefficient α), and its variations are only considered in the buoyancy
force and disregarded elsewhere. The dynamics of the system are governed by conservation
of mass, energy and momentum. Under the Boussinesq approximation, these conditions
can be expressed by the following equations in dimensional form (Chandrasekhar 1961):

∇∗ · u∗ = 0, (2.1)

∂T∗

∂t∗
+ u∗ · ∇∗T∗ = S + κ∇∗2

T∗, (2.2)

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗Π∗ + gαT∗er + ν∇∗2

u∗. (2.3)

Here u∗ denotes the flow field, T∗ is the total temperature field, Π∗ := −p/ρ is the
ratio of the pressure and the (constant) density; α is the thermal expansion coefficient,
ν denotes the kinematic viscosity and κ is the thermal diffusivity. We non-dimensionalise
the system using the radius r0 as the length scale, βr2

0 as the temperature scale (where
β = S/(3κ)) and the viscous diffusion time r2

0/ν as the time scale. In non-dimensional
form, the equations of motion can then be expressed as

∇ · u = 0, (2.4)(
∂

∂t
− 1

Pr
∇2
)

T = 3
Pr

− u · ∇T, (2.5)

(
∂

∂t
+ (u · ∇)

)
u = −∇Π + Ra

Pr
rTer + ∇2u, (2.6)

where Π denotes a reduced pressure and the non-dimensional parameters Ra and Pr are
defined as

Ra = g0αβr5
0

νκ
, (2.7)

Pr = ν

κ
, (2.8)

where Ra and Pr are the Rayleigh and Prandtl number, respectively, constituting the
control parameters of the system. The Prandtl number is the ratio of viscous to thermal
diffusivity and the Rayleigh number is the ratio of buoyant to viscous forces multiplied by
the Prandtl number, thus representing a measure of the strength of the thermal forcing.

In the absence of fluid motion, heat transfer is solely by conduction. The purely
conductive background temperature profile can be obtained by directly integrating the
steady-state, purely conductive form of (2.5) given by

∇2Tb = −3 =⇒ Tb(r) = k − 1
2

r2 + γ

r
, (2.9)

with integration constants k and γ . The condition Tb(0) < +∞ implies that γ = 0 and we
choose k such that Tb(1) = 0, yielding

Tb(r) = 1
2 (1 − r2). (2.10)

Instead of considering (2.4)–(2.6), we can now consider perturbation equations from the
steady, purely conductive and hydrostatic background state. We define the perturbations
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Thermal convection in the internally heated sphere

in pressure, temperature and velocity as π = Π − Πb, Θ = T − Tb and u (since ub = 0),
and since the background temperature and hydrostatic pressure satisfy

∇2Tb = −3, (2.11)

∇Πb = Ra
Pr

rTber, (2.12)

the evolution equations for the perturbations can be expressed as

∇ · u = 0, (2.13)(
∂

∂t
− 1

Pr
∇2
)

Θ = −(u · ∇Tb + u · ∇Θ), (2.14)

(
∂

∂t
+ (u · ∇)

)
u = −∇π + Ra

Pr
rΘer + ∇2u. (2.15)

Since only ∇Tb and not Tb enters (2.13)–(2.15), it is evident that the choice of k in (2.9)
has no dynamic significance for the perturbation equations. We shall be concerned with
examining (2.13)–(2.15) analytically and numerically. We note that the problem at hand
is spherically symmetric (i.e. there is no preferred Cartesian axis that exists, for example,
in rotating fluids), but it is not isotropic, due to gravity and the background temperature
gradient acting solely in the radial direction.

2.2. Toroidal–poloidal decomposition and boundary conditions
Since the velocity field u is solenoidal (see (2.13)), it can be represented by just two
scalar functions (rather than three vector components). In spherical coordinates, this
toroidal–poloidal or Mie representation can be written as (see e.g. Backus 1986)

u = T + P = ∇ × (rT ) + ∇ × (∇ × (rP)), (2.16)

where T and P are the toroidal and poloidal field components and T (r) andP(r) are called
the toroidal and poloidal scalars, respectively. The toroidal field T does not have a radial
component, while the poloidal field P has all three spherical components.

The equations of motion (2.13)–(2.15) can be recast as evolution equations for the
temperature perturbation Θ and the toroidal and poloidal scalars T and P by virtue
of using the toroidal–poloidal representation (2.16). Such equations are obtained by
calculating r · ∇ × (2.15) and r · ∇ × (∇ × (2.15)) and complementing them by (2.14) to
yield (

∂

∂t
− 1

Pr
∇2
)

Θ = −L2 ∇Tb(r)
r
P+ NΘ = L2P+ NΘ, (2.17)

(
∂

∂t
− ∇2

)
L2T = r · (∇ × Nu), (2.18)

∇2
(

∂

∂t
− ∇2

)
L2P = Ra

Pr
L2Θ + r · (∇ × (∇ × Nu)), (2.19)

where

L2(·) = −r2∇2(·) + ∂

∂r

(
r2 ∂(·)

∂r

)
(2.20)
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is the angular momentum operator and

NΘ = −u · ∇Θ, (2.21)

Nu = −(u · ∇)u = u × (∇ × u) − ∇
(

u2

2

)
(2.22)

are the nonlinear interaction terms. Equations (2.17)–(2.19) now represent three scalar
equations fully describing the dynamics of the convective system. We note that by only
considering the curl (or double curl) of the Navier–Stokes equation in order to obtain
(2.18) and (2.19), the pressure no longer appears in the system (2.17)–(2.19). The pressure
therefore is not a dynamic variable in this problem.

The system (2.17)–(2.19) must be complemented by boundary conditions. As the thermal
boundary condition, we consider homogeneous fixed temperature boundaries and we
assume that the velocity field obeys either stress-free or no-slip boundary conditions.

These conditions read

Θ|r=1 = 0 fixed temperature, (2.23)

ur|r=1 = ∂

∂r

(uθ

r

)∣∣∣∣
r=1

= ∂

∂r

(uφ

r

)∣∣∣∣
r=1

= 0 stress free, (2.24)

ur|r=1 = uθ |r=1 = uφ|r=1 = 0 no slip. (2.25)

The velocity boundary conditions (2.24) and (2.25) can be converted to conditions for the
toroidal and poloidal scalar to read (see e.g. Hollerbach 2000):

P|r=1 = T |r=1 = ∂

∂r
(Pr) = 0 no slip, (2.26)

P|r=1 = ∂

∂r

(
T
r

)∣∣∣∣
r=1

= ∂

∂r

(
1
r2

∂

∂r
(Pr)

)∣∣∣∣
r=1

= 0 stress free. (2.27)

3. Numerical method and diagnostics

3.1. Spatial discretisation: spectral expansion
In our direct numerical simulations (DNS) we calculate solutions to (2.17)–(2.19) subject to
boundary conditions (2.23) and either (2.27) or (2.26) using the quasi-inverse convection
code (QuICC). The QuICC is a fully spectral framework for computational fluid dynamics
and magnetohydrodynamics in Cartesian and spherical geometries, supporting both
spherical shells and full spheres. In a full sphere geometry, it utilises spherical harmonics
as basis functions for the expansion in the horizontal direction and Jones–Worland
polynomials (introduced in Worland 2004 and Livermore, Jones & Worland 2007) in the
radial direction. We give a brief description of the methodology for the full sphere, which
has been used for the numerical calculations in this work.

The expansion of the scalar functions (Θ,T and P) in the full sphere is

f (r, θ, φ) =
L∑

l=0

l∑
m=−l

f m
l (r)Ym

l (θ, φ) =
L∑

l=0

l∑
m=−l

N∑
n=0

f m
l,nWl

n(r)Y
m
l (θ, φ), (3.1)

where Ym
l (θ, φ) denotes spherical harmonics, Wl

n(r) are the Jones–Worland polynomials
and f represents any of the three scalar functions. Below, we refer to the toroidal and
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Thermal convection in the internally heated sphere

poloidal vector modes T m
l and Sm

l corresponding to Tm
l (r) and Pm

l (r) (Bullard & Gellman
1954).

The QuICC supports different truncation schemes. For the numerical calculations in this
work, a uniform truncation was employed for expression (3.1) in which the radial sum in
n is truncated at the same N for all (l, m).

The radial expansion in the full sphere domain is complicated by the fact that the
origin presents an artificial singularity in spherical coordinates. Provided that a spherical
harmonic expansion is employed, requiring infinite differentiability at the origin imposes
the following constraint on the functional form of the radial expansion (see e.g. Lewis &
Bellan 1990):

f m
l (r) ∼ rlgn(r2) ∼ rl(α0 + α1r2 + α2r4 + · · · ). (3.2)

Here gn(r2) is a smooth and even polynomial. One set of basis functions that satisfies
this condition by construction are the Jones–Worland polynomials, a class of modified
one-sided Jacobi polynomials defined as

Wl
n(r) ∼ rlP(−1/2,l−1/2)

n (2r2 − 1), (3.3)

where P(α,β)
n (x) are Jacobi polynomials (Worland 2004). We note that different choices

of α and β have been considered by Lecoanet et al. (2019) (although it should be noted
that their approach is slightly different, for example, by not using the toroidal–poloidal
decomposition). If suitably normalised, Jones–Worland polynomials satisfy the following
orthonormality relation for a fixed spherical harmonic degree l:∫ 1

0

1√
1 − r2

Wl
n(r)W

l
n′(r) dr = δnn′ . (3.4)

Jones-Worland polynomials exhibit fast convergence and oscillate within an asymptotically
uniform envelope as n → ∞ (Livermore et al. 2007). The factor rl damps these
polynomials near the origin, rendering them close to zero for large l over large parts of
the radius. Thus, at the origin, only low l harmonics contribute significantly to the spectral
expansion.

3.2. Matrices, nonlinear terms and treatment of boundary conditions
The QuICC uses a non-interpolating spectral approach, generating equations for the
spectral coefficients by forming the weak-form equations, i.e. multiplying the equations
by the basis functions and integrating according to the orthogonality relations of spherical
harmonics and Jones–Worland polynomials (see relation (3.4)). The eigenfunction
property and orthogonality of spherical harmonics can immediately be exploited to yield(

∂

∂t
− 1

Pr
∇2
)

Θlm − l(l + 1)Plm = NΘ, (3.5)

(
∂

∂t
− ∇2

)
Tlm = r

l(l + 1)
er · (∇ × Nu), (3.6)

∇2
(

∂

∂t
− ∇2

)
Plm − Ra

Pr
Θlm = r

l(l + 1)
er · (∇ × (∇ × Nu)), (3.7)

from (2.17)–(2.19). The remaining radial linear differential operators are generally dense,
but are recast in terms of sparse banded matrices by virtue of the quasi-inverse technique
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due to Julien & Watson (2009). The boundary conditions can either be imposed by a Tau
method, i.e. incorporating corresponding Tau lines into the linear operator on the left-hand
side, or by using a Galerkin basis. For the numerical results in this work, the Tau method
was used.

The nonlinear terms on the right-hand side are calculated in physical space at every
time step in order to avoid computing large convolution sums in spectral space and the
result is then projected back into spectral space. Therefore, a forward and a backward
transform between spectral and physical space have to be calculated at every time step,
necessitating efficient spherical harmonics and Jones–Worland transforms. In QuICC,
the Fourier transform part of the spherical harmonics transform is performed using
fast Fourier transform (FFT), and the projection integrals for the associated Legendre
transform are calculated by Gauss–Legendre quadrature. The radial projection integrals
for the Jones–Worland transform are computed by Gauss–Chebyshev quadrature and read

f m
l,n =

∫ 1

0

1√
1 − r2

f m
l (r)Wl

n(r) dr =
Nr∑

i=1

vi f m
l (ri)Wl

n(ri), (3.8)

where the quadrature nodes are the Chebyshev nodes ri = cos((π/4)((2i − 1)/Nr))
independently of l, the weights are the Chebyshev weights vi = π/2Nr and for a
radial truncation N and spherical harmonic truncation L, Nr = 3

2 N + 3
4 L + 1 is chosen

(Marti & Jackson 2016). As for the associated Legendre polynomials, the evaluation of
the Jones–Worland polynomials is conducted by a three-term recurrence relation (see
e.g. Livermore et al. 2007).

Recently, efforts have been made to develop both radial and horizontal (i.e. spherical-
surface) transform algorithms that are partially based on FFT (see in particular Marti &
Jackson (2021) for the Jones–Worland transform) and to implement these on graphics
processing units (GPUs) (D. Tolmachev, personal communication).

3.3. Time stepping and parallelisation
Time integration in QuICC is performed in spectral space using either an implicit–explicit
Runge–Kutta scheme (for the present numerical study, the second-order algorithm
IMEXRKCB2 due to Cavaglieri & Bewley (2015) was employed) or a predictor–corrector
scheme. The diffusion terms are treated implicitly while all other terms are treated
explicitly. An adaptive time stepping scheme based on a Courant–Friedrichs–Lewy
(CFL)-type physical stability condition has been implemented, ensuring that the time step
is equal to the minimum of the following radial and horizontal CFL-constrained time steps:

Δrad
t = C min

(
�r
|ur|

)
, (3.9)

Δhor
t = C min

(
r√

Leff (Leff + 1)‖uh‖

)
. (3.10)

Here C is a safety factor, �r is the local radial grid spacing, uh is the horizontal
(i.e. spherical-surface) part of the velocity and r/

√
Leff (Leff + 1) is the effective local

horizontal resolution of spherical harmonics. This effective resolution takes into account
the fact that the Jones–Worland polynomials are close to zero near the origin for large l,
thus suppressing the oscillatory behaviour of the spherical harmonics. The zeros of the
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Thermal convection in the internally heated sphere

Jones–Worland polynomials close to the origin are taken as a heuristic measure of the
resolving power, and Leff is determined from an approximate expression for the location
of the leading zero of the Jones–Worland polynomial Wl

n(r) near zero (Marti & Jackson
2016).

Splitting algorithms and communication structures have been developed in order to
achieve high performance through efficient parallelisation (in particular by minimising
communication between computing units; see Marti 2012; Marti & Jackson 2016). The
code has been benchmarked, including for the case of rotating thermal convection (see
Marti et al. 2014).

3.4. Diagnostics
For the analysis of our numerical results, we employ certain key global diagnostics. One
of these primary diagnostics is the kinetic energy density. It is defined as

ekin = 1
2

1
V

∫
V

u2 dV = 1
2

u2
mean, (3.11)

where V = 4π/3 is the non-dimensional volume of the spherical domain. We subsequently
refer to the respective toroidal and poloidal contributions to the kinetic energy as ekin,tor.
and ekin,pol.. These are respectively defined as

ekin,tor. := 1
2V

L∑
l=0

l∑
m=−l

∫ 1

0
|
√

l(l + 1)Tm
l (r)|2r2 dr, (3.12)

ekin,pol. := 1
2V

L∑
l=0

l∑
m=−l

∫ 1

0

(∣∣∣∣ l(l + 1)

r
Pm

l

∣∣∣∣
2

+
∣∣∣∣
√

l(l + 1)

r
∂(rPm

l )

∂r

∣∣∣∣
2)

r2 dr. (3.13)

The thermal energy is similarly defined as

etherm. = 1
2

1
V

∫
V

Θ2 dV = 1
2
Θ2

mean = 1
2V

L∑
l=0

l∑
m=−l

∫ 1

0
|Θm

l |2r2 dr. (3.14)

The Reynolds number Re is the ratio of inertial to viscous forces, constituting a measure
for the vigour of convection. Using the chosen non-dimensionalisation, it can be expressed
as

Re = |u∗
mean|r0

ν
= |umean| =

√
2ekin. (3.15)

The Nusselt number Nu is the ratio of total heat transfer to purely conductive heat
transfer defined as

Nu = hr0

κρcp
, (3.16)

where h is the heat transfer coefficient corresponding to the total heat transfer and cp is the
specific heat capacity. We measure the Nusselt number indirectly by the temperature drop
at the origin, following Guervilly & Cardin (2016):

Nu = Tb(0)

T(0)
. (3.17)

The convective turnover time is the ratio of the characteristic length scale to the
characteristic velocity, thus providing a measure of the time required for a full convection
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cycle of the flow within the system. In non-dimensional form, this reads

τ = 1
2
√

ekin
= 1

Re
. (3.18)

The number of convective turnover cycles in a simulation run is then given by

trun

τ
= trunRe, (3.19)

where trun is the non-dimensional run time of the simulation.
For our series of simulations, the initial states for simulations at a given thermal forcing

are taken to be the resulting solutions from the previous simulation at lower Ra.

4. Results

4.1. Nonlinear stability analysis
In thermal convection the linear stability analysis of the purely conductive state at rest
yields a threshold in parameter space beyond which infinitesimal perturbations to the
purely conductive state will grow and convection will ensue. For the problem at hand,
this threshold is a critical Rayleigh number Rac depending on the boundary conditions but
not on the Prandtl number, as in Rayleigh–Bénard convection. In addition, the onset of
convection in the full sphere is known to be stationary (Chandrasekhar 1961). Using this,
and considering (2.5) and r · (∇ × (∇ × (2.6))), the linear stability system is given by

1
Pr

∇2Θ = −urr, (4.1)

∇4(rur) = Ra
Pr
L2Θ, (4.2)

where we used that r · ∇2u = ∇2(r · u) if ∇ · u = 0. The critical Rayleigh numbers
resulting from this system are Rac = 3091.2 for stress-free boundaries and Rac = 8040.0
for no-slip boundaries, and the onset mode in both cases is purely poloidal and has a
spherical harmonic degree l = 1 (Chandrasekhar 1961).

The linear stability system (4.1)–(4.2) is an eigenvalue problem for Ra and implies
that for Rayleigh numbers larger than the smallest eigenvalue (i.e. the critical Rayleigh
number Rac), perturbations to the purely conductive state at rest will grow. It does,
however, not imply that this background state is the only attractor below Rac. In principle,
it is conceivable that finite amplitude subcritical convection might be sustained below
Rac (e.g. by the nonlinear interactions), as indeed has been observed numerically in the
problem of rotating thermal convection in the full sphere (Guervilly & Cardin 2016;
Kaplan et al. 2017), or for wall modes in magnetoconvection in Cartesian geometry (see
e.g. McCormack et al. 2023; Bhattacharya et al. 2024). The global stability of an attractor
such as the purely conductive background state can, for example, be demonstrated by
constructing a suitable Lyapunov functional, i.e. a non-negative functional of the state
variables whose time derivative is non-positive. In fluid dynamics, usually Lyapunov
functionals that are quadratic in the state variables are considered in order to facilitate
in particular the calculation of their time derivative. This approach is known as the energy
method and has been applied to different problems in fluid dynamics (see e.g. Joseph 1966;
Straughan 2004; Goluskin 2015). We now apply the energy method to the problem at hand.
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Thermal convection in the internally heated sphere

We consider an energy functional of the form

E(u(t), Θ(t)) = 1
2

∫
V

(
Pr
Ra

|u|2 + Θ2
)

dV, (4.3)

where V denotes the full sphere domain. We note that additional parameters are sometimes
introduced in the definition of the energy functional (see e.g. Goluskin 2015), but as we
demonstrate, definition (4.3) yields the equivalence of the energy stability system and
the linear stability system and, thus, provides the optimal bound on the energy stability
Rayleigh number RaE.

Sufficient conditions for the global stability of the purely conductive background state
(and, thus, for it being the only attractor) are then (Goluskin 2015)

E(u(t), Θ(t)) ≥ 0 and E(u(t), Θ(t)) = 0 if u = Θ = 0, (4.4)

d
dt

E(u(t), Θ(t)) ≤ 0 and
d
dt

E(u(t), Θ(t)) = 0 ifu = Θ = 0, (4.5)

for all times t. If the inequalities (4.4) and (4.5) are strict, the static background is also
globally asymptotically stable and, thus, the only attractor in the system.

Condition (4.4) is evidently true for all t, since E(u(t), Θ(t)) is a quadratic functional.
Regarding condition (4.5), we need to consider the time derivative of E(u(t), Θ(t)). In
the case of no-slip boundary conditions, differentiation of E(u(t), Θ(t)) and inserting the
equations of motion (2.14) and (2.15) leads to

dE
dt

=
∫

V
2rΘur −

(
Pr
Ra

|∇ × u|2 + 1
Pr

|∇Θ|2
)

dV. (4.6)

Calculus of variations on the critical case dE/dt = 0 then yields a sufficient condition for
(4.5) to be satisfied. The highest value of Ra for which (4.5) is true for all t can be obtained
from the system of equations given by

δ
d
dt

E(t) != 0 ⇐⇒ d
dε

(
2
∫

V
r(Θ + εTh)(ur + εhr) dV

−
∫

V

Pr
Ra

(∇ × (u + εh))2 + 1
Pr

(∇(Θ + εTh))
2 dV

)∣∣∣∣
ε=0

=
∫

V
Th

(
2

Pr
∇2Θ + 2rur

)
dV +

∫
V

h ·
(

2Pr
Ra

∇2u − ∇π + 2rΘer

)
dV != 0, (4.7)

where h, Th are arbitrary, regular variations, the incompressibility condition was
introduced as a Lagrange multiplier and several vector calculus identities were used. We
note that in the case of stress-free boundary conditions, (4.6) is not valid, and we are thus
unable to formulate a corresponding variational problem.

Since Th and h are arbitrary and independent, the integrands themselves must vanish.
This leads to the following system of equations:

1
Pr

∇2Θ + rur = 0, (4.8)

Pr
Ra

∇2u − 1
2
∇π + rΘer = 0. (4.9)
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Equations (4.8)–(4.9) again constitute an eigenvalue problem for Ra with an associated
smallest eigenvalue RaE, implying that for Ra < RaE, the strict inequality in condition
(4.5) is satisfied and that thus the purely conductive background state is globally
asymptotically stable and the only attractor. Computing r · (∇ × (∇ × (4.9))) analogously
to the linear stability analysis produces the following system:

1
Pr

∇2Θ + rur = 0, (4.10)

− Pr
Ra

∇4(rur) +L2Θ = 0. (4.11)

This is equivalent to the system (4.1)–(4.2), thus leading to the same critical Rayleigh
number. We thus conclude that in the case of no-slip boundary conditions, subcritical
convection cannot occur, since RaE = Rac, i.e. the critical Rayleigh number for global,
nonlinear stability and for linear stability align. The analysis remains inconclusive,
however, in the case of stress-free boundary conditions, since the presence of additional
boundary terms precludes the formulation of a variational problem of the form (4.7) and,
therefore, the energy method does not yield a threshold value for global stability.

4.2. Convection at Pr = 1
In this section we present results for convection up to very high Rayleigh numbers for
a fixed temperature and both stress-free and no-slip boundary conditions. In particular,
we examine the scalings of the strength of heat advection (characterised by Nu) and the
vigour of the flow (characterised by Re) with the Rayleigh number and propose a theory
for the scaling of Nu. We also report on the standard deviation of the global diagnostics in
turbulent solutions, the partitioning of kinetic energy into toroidal and poloidal modes
and the scaling of the thermal boundary layer. Parameters and key diagnostics of all
simulations can be found in the supplementary material available at https://doi.org/10.
1017/jfm.2024.1187.

4.2.1. Global diagnostics
Figure 2 shows the Reynolds and Nusselt numbers as functions of Ra at Pr = 1
for a fixed temperature and both stress-free and no-slip boundary conditions. For
stress-free boundaries, we computed results up to Ra = 3 × 1010 ≈ 107Rac,SF and, for
no-slip conditions, we obtained results up to Ra = 2 × 1012 ≈ 2.5 × 108Rac,NS. For both
boundary conditions, we were thus able to investigate the system behaviour over several
orders of magnitude of thermal forcing, up to highly turbulent solutions.

Above the onset of convection, the system is initially in a purely poloidal steady-state
state that is dominated by the poloidal S0

1 onset mode for both velocity boundary
conditions (denoted by crosses in figure 2). Eventually, this regime becomes unstable
and toroidal flow sets in, generated by the nonlinear interactions. The resulting
toroidal–poloidal state is still time independent (denoted by open circles). In the case of
stress-free boundary conditions, the onset of toroidal flow is associated with Nu decreasing
with increasing Ra over a certain range of Ra. For no-slip boundaries, we then observe
a multi-frequency, time dependent but sub-turbulent solution (termed ‘vacillating’ and
denoted by the open triangle). Turbulence ultimately sets in at Ra = 105 for stress-free
boundary conditions (with an intermediate toroidal–poloidal steady-state solution at Ra =
1.5 × 105) and at Ra = 3 × 105. For stress-free boundary conditions, the behaviour at low
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Figure 2. Nusselt (red) and Reynolds (black) numbers at Pr = 1 for fixed temperature, (a,c) stress-free and
(b,d) no-slip boundary conditions. Plots (a,b) show power law fits of Re and Nu and (c,d) are compensated plots
of Re and Nu. The symbols represent distinct dynamical regimes: stars denote the purely poloidal steady-state
regime, open circles the toroidal–poloidal steady-state regime, open triangles signify the vacillating regime
and filled squares stand for turbulent solutions. Results for the vacillating and turbulent regimes are obtained
as time averages, and the error bars represent the standard deviation around the mean in the time series.

forcing and in particular the onset of toroidal flow has also been investigated (authors’
unpublished observations).

In the turbulent regime, the global diagnostics fluctuate chaotically in time. For our
analysis of the scaling of the Reynolds and Nusselt numbers with Ra, we calculated the
mean μ and the standard deviation σ around the mean μ of the time series of the respective
diagnostic. At very high Ra, the transients are generally very short, but also difficult
to distinguish from the turbulent states. For all simulations, we discarded the first ten
convective turnover times and performed time averages over the remaining run time. The
minimum time averaging window of 33.3 turnover cycles was reached for Ra = 3 × 1010

with stress-free boundaries. For most simulations, however, the averaging was performed
over a window of hundreds of turnover times.

Scaling predictions for Nu and Re and the control parameters Ra and Pr are often
assumed to follow power laws of the form

Nu ∼ RaγNuPrαNu, (4.12)

Re ∼ RaγRePrαRe . (4.13)

Noting that Pr = 1, we performed power law fits on the results obtained at high Ra
and obtained scaling exponents of γRe = 0.35, γNu = 0.23 for stress-free boundaries
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Figure 3. Relative standard deviation percentages σ/μ of the Reynolds (black) and Nusselt (red) numbers as
functions of Ra for fixed temperature and both (a) stress-free and (b) no-slip boundary conditions. Symbols
again denote the distinct dynamical regimes.

(fit performed between 108 ≤ Ra ≤ 3 × 1010) and γRe = 0.35, γNu = 0.25 for no-slip
boundaries (fit performed between 2 × 108 ≤ Ra ≤ 2 × 1012). In figure 2(c,d) we present
compensated plots of the Reynolds and Nusselt numbers for both boundaries. We scale
the Reynolds number by Ra0.35 and the Nusselt number by Ra0.25. While the Reynolds
number compensation is based purely on the empirically determined scaling exponents,
we present a theory for the Nu ∼ Ra0.25 scaling below. Figure 2(c) shows that the Reynolds
number scaling for stress-free boundaries is very robust, the scaling exponent γRe = 0.35
is reached at roughly Ra = 107 and does not change significantly at higher forcing.
Although we determined a scaling exponent of γNu = 0.23, the Nusselt number scaling
seems to converge to the scaling of Nu ∼ Ra0.25 for stress-free boundaries. In the case
of no-slip boundaries displayed in figure 2(d), the Reynolds number scaling is again
quite robust, with the scaling exponent being almost stationary beyond Ra = 109. The
plot of the compensated Nusselt number is more difficult to interpret, because it changes
non-monotonically. However, considering that these variations are not very large and that
the power law fit over more than three orders of magnitude of Ra yields γNu = 0.25, we
feel confident about this scaling.

Figure 3 displays the relative standard deviation (RSD) σ/μ for stress-free and no-slip
boundaries as a percentage. This gives us a measure of the relative amplitude of the
fluctuation of the diagnostics around the mean in time. For the steady-state solutions,
this fluctuation is evidently vanishing, but for the time-varying solutions (i.e. for both
the vacillating and the turbulent solutions that we observe), it grows up to roughly 18.3 %
of the mean of the Nusselt number with stress-free boundaries and 8.1 % of the mean of
the Reynolds number for no-slip boundaries.

As the system transitions to turbulence, the RSDs initially increase. For stress-free
boundary conditions, a maximum of approximately 16.1 % is reached at Ra = 2 × 105 for
fluctuations in Re, and a maximum of 18.1 % is reached at Ra = 5 × 105 for fluctuations
in Nu. Beyond these maxima, the RSDs generally decrease with Ra (although they vary
non-monotonically), and at least the RSD for Re seems to level off at around 8 %.

For no-slip boundary conditions, the behaviour is similar: after the onset of time
dependence with the vacillating states, and also beyond the transition to turbulence, the
RSDs initially grow, reaching maxima of 8.1 % at Ra = 5 × 106 for fluctuations in Re and
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Figure 4. Ratio of toroidal to poloidal kinetic energy at Pr = 1 with fixed temperature and (a) stress-free and
(b) no-slip boundary conditions.

7 % at Ra = 5 × 106 for fluctuations in Nu. Beyond these maxima, the RSDs decrease,
reaching approximately 3.5 % for fluctuations in Nu and 5 % for fluctuations in Re at
Ra = 1012. Relative standard deviations are observed to be smaller for no-slip boundaries
than for stress-free boundaries.

As the Rayleigh number is increased, both the buoyancy force and consequently the
nonlinear interactions driving the toroidal motion (and generating small-scale poloidal
motion as well) increase in amplitude, generally leading into an increase in both the
poloidal and the toroidal kinetic energy, and possibly affecting the partition of kinetic
energy between the two flow components. Figure 4 shows the ratio of the toroidal to
poloidal kinetic energy of the resulting solutions as a function of Ra for both stress-free
and no-slip boundary conditions.

For stress-free boundary conditions, displayed in figure 4(a), the ratio of toroidal to
poloidal kinetic energy initially decreases from a maximum value of 0.59 in the turbulent
range, having risen sharply at the onset of toroidal motion. It reaches a minimum of 0.4
at 1.5 × 107 and then increases again, reaching 0.55 at Ra = 3 × 1010, the highest forcing
for which results were obtained.

The results show a similar trend for no-slip conditions, displayed in figure 4(b): beyond
the transition to turbulence (at which the ratio attains a maximum value of 0.29 at Ra =
3 × 105), the ratio initially decreases, reaching a minimum of 0.19 at Ra = 3 × 106. It then
increases again, and seems to level off beyond Ra = 1011 at just below 0.5, reaching 0.48
at Ra = 2 × 1012. At the present time, we do not have an (asymptotic) theoretical model
for the ratio of toroidal to poloidal kinetic energy.

4.2.2. Thermal boundary layer scaling
As the Rayleigh number is increased, the stronger convection produces a progressively
more well-mixed interior, leading to the bulk of the sphere approaching an isothermal
state. The fixed temperature boundary condition, however, forces the temperature to drop
to zero at the boundary and, thus, induces a thermal boundary layer in the solutions.
Figure 5(a) shows a snapshot of the total temperature T on a slice at Ra = 1010 with
fixed temperature and stress-free boundary conditions, and spherical-surface averaged
instantaneous temperature profiles at various Ra for stress-free and no-slip boundary
conditions are displayed in figure 5(c,d). The spherical-surface averaged temperature is
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Figure 5. (a) Snapshot of the total temperature T on a slice at Ra = 1010 with fixed temperature and
stress-free boundary conditions, (b) instantaneous spherical-surface averaged velocity and temperature profiles
at Ra = 106 for fixed temperature and no-slip boundary conditions. A clear adverse temperature gradient
is shown in black; spherical-surface averaged toroidal velocity is shown in red, spherical-surface averaged
poloidal velocity is shown in green, illustrating that there is significant flow through the origin. Bottom row
shows instantaneous spherical-surface averaged temperature profiles for fixed temperature and (c) stress-free
and (d) no-slip boundary conditions on a logarithmic temperature scale at various Ra, illustrating the thermal
boundary layer.

defined as

Thor.avg.(r) = 1
V

∫
Ω

T(r, θ, φ) dΩ = 1
V

T0
0 (r) = 1

V
(Tb(r) + Θ0

0 (r)), (4.14)

where the integral is over the spherical surface Ω at radius r and the second equality
holds due to the orthogonality of spherical harmonics on the surface of the sphere Ω .
The spherical-surface averaged temperature is therefore fully represented by the radially
symmetric contribution Θ0

0 . Both the visualisation and the temperature profiles illustrate
that the bulk becomes increasingly well mixed and isothermal and that the range of the
radius over which the temperature drops to zero (i.e. the thermal boundary layer thickness)
becomes smaller as Ra is increased. Some of the instantaneous spherical-surface averaged
temperature profiles (e.g. the profile obtained at Ra = 106 for no-slip boundary conditions;
see figure 5b) intriguingly also exhibit an adverse, outward radial temperature gradient,
corresponding to at least instantaneous outward heat conduction in the system.
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Figure 6. (a) Instantaneous spherical-surface averaged total temperature, temperature perturbation and
temperature gradient at Ra = 3 × 1010 near the outer boundary and (b) time-averaged thermal boundary layer
thickness λ as a function of the thermal forcing. For both (a) and (b), fixed temperature and stress-free boundary
conditions were imposed.

Figure 5(b) also shows spherical-surface averaged toroidal and poloidal velocity profiles.
These are defined as

|urms,tor./pol(r)| =
√

1
V

∫
Ω

|utor./pol(r, θ, φ)|2 dΩ, (4.15)

such that
1
2

∫ 1

0
|urms,tor./pol(r)|2r2 dr = ekin,tor./pol.. (4.16)

The spherical-surface averaged velocity profiles illustrate that while the poloidal motion
vanishes at the origin and is strongest at a radius of roughly r = 0.57, there is strong
poloidal flow through and close to the origin.

There are several ways to define the thermal boundary layer and its extent. We choose
a criterion based on the spherical-surface averaged radial temperature gradient. We define
the extent of the thermal boundary layer as the radius rλ at which

r̂ · ∇T0
0,tot.|r=rλ = −0.01. (4.17)

This definition is ad hoc, but given the monotonic decrease of the gradient near the
boundary, it is well defined and consistent. Figure 6(a) shows the spherical-surface
averaged total temperature, temperature perturbation and temperature gradient near the
boundary for a highly turbulent state. Because of the conservation of energy, the outward
radial heat flux must balance the internal heat production in the time average, and therefore,
the spherical-surface averaged temperature gradient satisfies

∇T|r=1 = −1, (4.18)

where ·̄ denotes the time average. We emphasise that this holds in spite of the fact
that no boundary condition is explicitly imposed on the heat flux. We observe that the
instantaneous temperature gradient profiles also assume values close to −1.

Figure 6(b) shows the time-averaged thermal boundary layer thickness measured
according to definition (4.17) for fixed temperature and stress-free boundaries in the highly
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turbulent regime. The results show a scaling of

λ ∼ Ra−0.23 ∼ Nu−1, (4.19)

with the Nu ∼ Ra0.23 scaling displayed in figure 2(a). This inverse scaling of the boundary
layer thickness with the Nusselt number is consistent with a purely conductive boundary
layer (Plumley & Julien 2019).

4.2.3. Howard–Malkus-type Nusselt number scaling prediction
As the boundary layer thickness decreases, the effect of curvature becomes asymptotically
negligible. The boundary layer can thus be viewed as a Rayleigh–Bénard system with a
temperature at the top of Ttop = 0 and a bottom temperature of Tbot = Tbulk ≈ T(0). We
employ this picture of the thermal boundary layer as a nested Rayleigh–Bénard system
being heated from the bottom with Tbot = Tbulk ≈ T(0) and cooled from the top with
Ttop = 0 (visualised in figure 7) in order to formulate an asymptotic scaling prediction
for the Nusselt number similar to the one posited by Malkus (1954) and Howard (1963).
For very high Ra, the boundary layer representing the throttle for heat transfer in the
system asymptotically resembles a nested Rayleigh–Bénard system of layer height λwhose
Rayleigh number is then given as (see e.g. Chandrasekhar 1961)

Raλ = gα�Tλ3

νκ
, (4.20)

where �T = Tbulk − T(r = 1). Since the boundary layer becomes asymptotically thin, we
take the gravity g within the boundary layer to be constant at g0. The temperature drop
between the lower and upper boundary is given by

�T = Tbulk − T(r = 1) = T(0) = 1
2Nu

, (4.21)

where we used our definition of Nu (3.17) of the Nusselt number. Inserting this into the
definition of the Rayleigh number for the boundary layer (4.20) yields

Raλ = RaNu−1

2βr2
0

(
λ

r0

)3

. (4.22)

Following Howard (1963), we now assume that the boundary layer is marginally stable,
meaning that

Raλ = Rac = const. =⇒ λ ∼
(

Ra
Nu

)−1/3

, (4.23)

where the constant depends on the velocity boundary condition. The heat transferred
through the boundary layer must balance the internal heat production on time average.
If we further assume that the boundary layer is purely conductive, we must have

�T
λ

= T(0)

λ
= 1
λNu

= 1 =⇒ λ ∼ Nu−1. (4.24)

Equations (4.23) and (4.24) then imply together that

Nu−1 ∼
(

Ra
Nu

)−1/3

=⇒ Nu ∼ Ra1/4 =⇒ λ ∼ Ra−1/4, (4.25)

i.e. a scaling exponent of γNu = 1/4. We note that this scaling prediction does not depend
on the velocity boundary condition. Indeed, we observe scaling exponents at or close
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T ~ T (0)

T = 0

λ

Figure 7. Sketch of the thermal boundary layer of thickness λ as a Rayleigh–Bénard system, being cooled
from the bottom with the bulk temperature Tbulk ≈ T(0) and cooled from the top with Ttop = 0.

to γNu = 1/4 for both stress-free and no-slip boundaries (see figure 2a,b), and we also
observe a scaling of the thermal boundary thickness λ that is close to the predicted scaling
(see figure 6b and relation (4.19)).

4.3. Prandtl number dependence at low to intermediate forcing
As we have seen above, for the problem at hand, the onset of convection is independent of
the Prandtl number Pr, and so is the threshold for global stability established through the
energy method. At any given thermal forcing above the critical Rayleigh number, however,
the nature of the convection, i.e. the kinetic energy, potential flow patterns, the time
dependence, the heat transfer and all other characteristics will in general depend on Pr.
In this section we thus aim to provide a characterisation of the system behaviour at low to
intermediate Ra at different Pr for a fixed temperature and stress-free boundary conditions.
We choose stress-free boundaries because they lead to stronger nonlinear interactions at
given Ra and Pr, which are at the core of the phenomena that we observe at intermediate
forcing.

In our study we find five distinct convective regimes characterised primarily by their
spatial structure and distinct flow patterns, their time dependence, their spatial and
temporal coherence, the absence or presence of toroidal flow as well as the relative
contributions of the toroidal and poloidal components to the flow field. In particular, we
observe the dependence on Pr of both the Rayleigh number at which toroidal flow sets in
and the characteristics of the toroidal modes excited by nonlinear inertial interactions at
supercritical Ra.

We first present a regime diagram and discuss the global diagnostics, and then we
describe the five regimes individually.

4.3.1. Regime diagram
In our study of Prandtl number dependence at low forcing, we perform simulations at six
different values of Pr in the range 0.1 ≤ Pr ≤ 30, spanning 2.5 decades. We vary Ra as
Rac = 3091.2 ≤ Ra ≤ 3 × 105, spanning roughly two decades. In total, we observe five
distinct dynamic regimes, and the corresponding regime diagram is displayed in figure 8.

As mentioned in § 4.1, the critical Rayleigh number Rac obtained from linear stability
analysis at which convection sets in is independent of Pr, and so is the critical spherical
harmonic degree l = 1. For all Pr investigated in this study, there is a range of Ra above the
onset of convection over which the resulting solutions are purely poloidal, steady state and
dominated by the onset mode S0

1. If the forcing is increased, the purely poloidal solutions
become unstable and toroidal motion sets in. Both the Rayleigh number at which toroidal
flow sets in and the nature of the resulting state (e.g. its time dependence and energy
spectra) depend on Pr. In general, it is the case that the lower Pr, the less supercritical the
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Figure 8. Regime diagram in Ra − Pr-parameter space at low forcing for fixed temperature and stress-free
boundary conditions. The symbols again represent distinct dynamical regimes: stars indicate the purely poloidal
steady-state regime, open squares the oscillatory regime, open circles the toroidal–poloidal steady-state regime,
filled circles the bursting regime and filled squares the turbulent regime. Colours indicate the value of Pr.
Regime boundaries are merely sketched.

Rayleigh number at which the onset of toroidal motion occurs. For small Pr, buoyancy
and thermal dissipation are large (cf. (2.14) and (2.15)), leading to solutions near the
onset of convection with high kinetic energy and, thus, strong nonlinear interactions that
generate toroidal flow at comparatively small Ra. Regarding the time dependence of the
resulting solutions, we observe an oscillatory regime for Pr < 1, at Pr = 1 we find a
toroidal–poloidal steady-state solution and, for Pr > 1, we find bursting solutions.

As the Rayleigh number is increased further, the nonlinear interactions become stronger
and additional modes are excited. At some point then, the resulting solutions lose their
spatial and temporal coherence and transition to turbulence. In particular, such solutions
exhibit small length scales and fluctuations on short time scales. The Rayleigh number at
which this transition to turbulence occurs depends on Pr, and the corresponding heuristic
explanation is the same as for the onset of toroidal motion: the nonlinear interactions are
stronger for smaller Pr at a given forcing Ra and, thus, the lower Pr, the lower the Rayleigh
number at which the transition to turbulence occurs.

Beyond this qualitative argument, we currently do not have a theory for the scaling
of regime boundaries, both regarding the onset of toroidal flow and the transition to
turbulence. We emphasise that the regime boundaries displayed in figure 8 are merely
sketched and that further simulations would need to be run in order to establish them more
firmly.

The main diagnostics Re, Nu and the averaged kinetic energy density as functions of the
thermal forcing Ra at different Pr ranging between 0.1 < Pr < 30 are shown in figure 9.
For all Pr, convection commences with the purely poloidal onset mode and ultimately
transitions to a turbulent state. However, the vigour of convection, the strength of heat
advection, the nature of the intermediate convective regimes and the locations of regime
transitions depend very strongly on Pr, as is the case in other convective systems like the
plane layer system (see e.g. Krishnamurti 1973; Goluskin et al. 2014).

A general trend is that at lower Pr the flow is more vigorous (i.e. has higher Re) at a given
Ra as shown in figure 9(a). For Pr < 1, lower Pr leads to lower heat advection, as displayed
in figure 9(b). For Pr > 1, however, the correlation between Nu and Pr is not clear, and
the obtained values at Pr = 3, 10, 30 are similar to one another. Such a non-monotonic
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Figure 9. (a) Reynolds number, (b) Nusselt number and (c) averaged kinetic energy density as functions of
Ra for different Pr. The symbols represent distinct dynamical regimes as above.

variation of the Nusselt number with Pr has also been observed in an experimental study
of Rayleigh–Bénard convection by Belmonte, Tilgner & Libchaber (1994) and in thermal
convection in non-rotating spherical shells (Tilgner 1996). Schmalzl, Breuer & Hansen
(2002) similarly report two distinct scalings of Nu with Pr for numerical simulations of
Rayleigh–Bénard convection with stress-free boundary conditions, with the transition at
Pr = 1, and an associated significant change of the character of the flow at Pr = 1.

Heuristically, the general trend in Re is again due to the increased strength of the
nonlinear interactions at lower Pr, causing more vigorous flow. The greater effectiveness
of heat conduction at lower Pr and the excitation of modes that do not contribute to heat
advection by the stronger nonlinear interactions at lower Pr might explain the trend in Nu
for Pr < 1. The dependence of Nu on Pr seems to qualitatively change at Pr = 1, and we
are unaware of a corresponding theory.

Figure 10(a) shows the Reynolds number collapsed onto RePr, the Péclet number
for heat transport. The Péclet number is the ratio of the rate of heat advection to the
rate of heat diffusion. In spite of the dynamically distinct flow regimes, the Reynolds
number for different Pr can be collapsed reasonably well onto RePr, although there is still
considerable scatter of, for example, up to a factor of 2 at Ra = 3 × 105. This indicates
that the system solutions organise themselves such that they have a Péclet number of a
similar magnitude independent of Pr. However, the Péclet number RePr is not the best
possible collapse of the data. Best fit estimates for our results yield scaling exponents of
γRe = 0.44, αRe = −0.89 for the power law relations between the control parameters Ra
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Figure 10. (a) Plot of RePr as a function of Ra at different Pr. The Reynolds number at different Pr can be
collapsed reasonably well onto RePr, a Péclet number. (b) The best fit collapse with RePr0.89.

and Pr and Re given by (4.13). The collapse corresponding to this best fit estimate is shown
in figure 10(b).

For all surveyed Pr except for Pr = 3, we observe that Nu drops at the onset of toroidal
flow (see figure 9b). This is heuristically plausible, since the additional toroidal motion
does not contribute to the radial advective heat transfer. For the case of Pr = 1 and the
decrease of Nu with increasing Ra beyond the onset of toroidal flow, this effect was
observed (authors’ unpublished observations). At the present time, we do not have an
explanation as to why at Pr = 3 there seems to be no intermediate regime between the
purely poloidal onset regime and the turbulent regime and why, consequently, a similar
kink in the Nu slope and the non-monotonic change with Ra are absent.

In total, we can identify five distinct convective regimes that we describe in the
following. The different sub-turbulent regimes are sufficiently distinct, such that they can
clearly be distinguished through the analysis of the time evolution of their diagnostics. We
provide some examples in which the transitions between regimes are clearly visible. The
situation is more complex, however, near the transition to the turbulent regime. In some
instances, spatial or temporal coherence is lost to a certain degree, and so the classification
has to be made on the assessment whether the character of the convective behaviour is
determined rather by the coherent structures or by turbulent patterns. Again, we provide
an example of this below.

4.3.2. Purely poloidal steady-state regime
Sufficiently close to the onset of convection, the flow is purely poloidal and dominated
by the time-independent onset mode S0

1 for all Pr. In this regime, no poloidal flow is
being generated through the nonlinear interactions. An exact analysis of the domain of
stability of this regime has not been possible so far, but the existence of a class of poloidal
modes whose nonlinear interactions do not generate any toroidal flow can be demonstrated
(authors’ unpublished observations).

As the Rayleigh number is increased, higher modes are excited, but the flow remains
largely dominated by the l = 1 modes. This is illustrated by the kinetic energy l spectrum
in figure 11. At some forcing (depending on Pr), the purely poloidal solutions become
unstable and toroidal flow sets in. For lower Pr, the stability threshold for the onset of
toroidal flow is at lower Ra.
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Figure 12. (a) Time evolution of the main diagnostics kinetic energy density and the Nusselt number
displaying the transition from a metastable state and (b) the oscillatory behaviour of the main diagnostics
at Ra = 6 × 103, Pr = 0.1.

We emphasise again that the case of Pr = 3 is special: the purely poloidal regime is
stable up to (at least) Ra = 7 × 104, and then gives way to turbulent solutions without
going through an intermediate regime.

4.3.3. Oscillatory regime
We observe oscillatory solutions in which the global diagnostics oscillate with a single
fixed frequency for low Pr, i.e. Pr = 0.1, 0.3, and only in a small range of Ra. The
transition from the purely poloidal steady-state regime to this time-periodic regime with
a toroidal flow component occurs via a metastable state, as can be seen in figure 12(a).
This time series of the diagnostics at Ra = 6 × 103, Pr = 10−1 is an example of a regime
transition from one regime to another that is clearly visible in the time evolution. After the
usual initial transient, the system first seems to settle in the purely poloidal steady-state
regime. However, both the total kinetic energy density and the Nusselt number decrease
while the toroidal contribution to the kinetic energy grows exponentially.
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Figure 13. Time evolution of the global diagnostics at Ra = 7 × 104, Pr = 10, using (a) a linear scale and
(b) a logarithmic scale for the kinetic energy. The system exhibits regular convective bursts with a fixed
signature in time.

Figure 12(b) illustrates that the oscillations of the Nusselt number and the poloidal
kinetic energy are roughly in phase. This is to be expected, as heat advection should be
strong whenever the poloidal flow and, thus, the radial velocity is strong. The poloidal and
toroidal kinetic energies are not in phase, indicating a periodic exchange of energy between
the two flow components. The time-averaged relative contribution of the toroidal flow
component to the total kinetic energy at Ra = 6 × 103, Pr = 10−1 is 2.4 %. An animation
of the evolution of the magnitude of velocity at Ra = 6 × 103, Pr = 10−1, illustrating the
oscillatory regime, can be found in the supplementary material.

Over the small range of Ra in which the oscillatory regime exists, the frequency of the
oscillations increases, Re slightly increases with Ra and Nu slightly decreases with Ra;
see figure 9. The relative contribution of the toroidal flow also grows with Ra. As Ra is
increased further, the oscillatory solutions become unstable and the system transitions to
turbulence.

4.3.4. Toroidal–poloidal steady-state regime
For Pr = 1 (and only for a Prandtl number of unity), we observe a transition from the
purely poloidal steady-state regime to a toroidal–poloidal steady-state solution. It extends
from the onset of toroidal flow at Ra = 3 × 104, Pr = 1 up to at least Ra = 8 × 104, Pr =
1. As the Rayleigh number is increased, higher-order modes become excited increasingly.
At Ra = 105, Pr = 1, we observe the transition to a turbulent state, but at Ra = 1.5 × 105,
Pr = 1, we find that the system attains a toroidal–poloidal steady state again. All solutions
with Ra > 1.5 × 105, Pr = 1 are then turbulent.

4.3.5. Bursting regime
For Pr = 10, 30, we observe yet another type of convective regime after the onset of
toroidal flow that occurs at Ra = 7 × 104 at Pr = 10 in our study. Here, after an initial
transient, the system settles into a regime where heat advection and toroidal flow exhibit
bursts that leave a characteristic signature in the time series of the diagnostics. An example
of this is given in figure 13. There are long quiescent phases in which the toroidal kinetic
energy decreases down to ekin,tor. ≈ 10−18 as illustrated in figure 13(b). The poloidal
kinetic energy and Nusselt number decrease in parallel, but settle at much larger values
corresponding to the fundamental poloidal modes specified in table 1 and then appear
quasi-static during the quiescent phase. The poloidal and toroidal kinetic energies then
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l m % ekin,t=60 % ekin,t=85

1 0 4 × 10−14 4 × 10−11

1 ±1 2 × 10−14 10−10

2 0 3 × 10−2 19.4
2 ±1 64.8 66.6
2 ±2 30.9 9.6

Table 1. Relative contribution of the first five spherical harmonic modes to the kinetic energy of two
consecutive quiescent phases at Ra = 7 × 104, Pr = 10. The toroidal kinetic energy is vanishing during these
quiescent phases. Kinetic energy seems to be shifted between the S2

2 mode and the axisymmetric S0
2 mode by

the bursts, while the contribution of the S1
2 mode does not change significantly.

Nonlinear

interactions,

excitation of

toroidal flow

Dispersion

of convective

structures

Burst

Convective

instability

Survival of

fundamental

poloidal mode

Quiescent

phase

Figure 14. Sketch of the suggested cyclic burst mechanism: toroidal flow is generated by nonlinear
interactions, but it inhibits and disperses the (mostly poloidal) convective structures that drive it, leading to
a quiescent-bursting cycle.

start to increase again (with the exponential growth of the toroidal kinetic energy being
particularly noticeable), culminating ultimately in a burst of peaks of stronger kinetic
energy than during the quiescent phases. The Nusselt number initially drops before the
occurrence of the burst and then also steeply increases. During each burst, the diagnostics
vary in time according to a fixed pattern, with the kinetic energies and the Nusselt number
forming several distinct spikes before the next quiescent phase sets in.

Such bursting convection has been observed, for example, in the case of
two-dimensional planar convection (see e.g. Garcia et al. 2003; Goluskin et al. 2014) and
the corresponding physical interpretation has been discussed (see Leboeuf, Charlton &
Carreras 1993; Garcia et al. 2006; Goluskin et al. 2014). The central idea is that the mean
horizontal flow component (corresponding to the toroidal motion in our case) inhibits heat
advection, leading to the dispersion of convective structures, with the most slowly decaying
mode surviving the longest. This is what is observed as a quiescent phase. At sufficiently
large Ra however, this configuration is highly unstable and so once the horizontal flow
component suppressing the convective instability has decayed sufficiently, convection sets
in again, causing the vertical flow component (corresponding to the poloidal flow in our
case) and, thus, the Nusselt number to increase. The nonlinear interactions then transfer
the associated kinetic energy to the horizontal toroidal flow, and a burst is observed.
The excited toroidal motion in turn inhibits the very convective structures that drive it
and, thus, ends the burst and a new quiescent phase begins. The suggested cyclic burst
mechanism is sketched in figure 14.
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Figure 15. Snapshots of the magnitude of velocity |u| on a meridional slice at (a) t = 60 and (b) t = 80,
corresponding to two consecutive quiescent phases of the bursting solution at Ra = 7 × 104, Pr = 10. The red
arrow of the coordinate system points in the direction of ez, the green arrow in the direction of ex and ey points
into the plane. The two consecutive quiescent phases have the same globally averaged kinetic energy and are
both dominated by the quadrupolar l = 2 modes, but differ precise contributions of the spherical harmonic
modes.

We believe that despite some differences to the numerical observations in
two-dimensional planar convection (e.g. the share of kinetic energy in the toroidal flow
we observe is generally much smaller compared with that contained in the mean shearing
motion observed by Goluskin et al. 2014), a mechanism of the kind that is sketched
in figure 14 causes these convective bursts both in the planar convection and in the
three-dimensional simulations in the full sphere.

However, the situation is more complicated than the sketch (figure 14) suggests, because
we observe that the system does in fact not always return to the same fundamental flow
state during the quiescent phases. Instead, it alternates between two different virtually
purely poloidal states with the same kinetic energy, being separated by the bursts. The
kinetic energy contained in the first spherical harmonic modes of the two different
quiescent states attained during two consecutive quiescent phases is given in table 1.
During the quiescent phases (sampled at time t = 60), 95.7 % of the kinetic energy is
contained in just the S1

2 and S2
2 modes. Unlike this first state, the other solutions (sampled

at time t = 85) also have a significant contribution from the axisymmetric S0
2 mode.

During this phase, 95.6 % of the kinetic energy is in the S0
2, S1

2 and S2
2 quadrupolar modes.

The relative contribution of S1
2 remains largely unchanged between the quiescent phases,

suggesting an exchange of energy between the S0
2 and S2

2 modes during the bursts. The
different flow states corresponding to these two solutions are visualised in figure 15. An
animation of the evolution of the magnitude of velocity at Ra = 8 × 104, Pr = 10 showing
a burst can be found in the supplementary material.

As Ra is increased, the quiescent phases become shorter and the signature of the bursts
becomes simpler. Near the transition to the turbulent regime, the temporal coherence is
gradually lost, as can be seen in figure 16. This is an example of a time series of the
diagnostics that contains features both from the bursting regime, a sub-turbulent regime,
as well as from the turbulent regime. It was still classified as belonging to the bursting
regime because the time evolution is primarily characterised by the bursts and not by the
deviations from the bursting behaviour. At some Ra, the solutions lose all spatial and
temporal coherence and clearly transition to turbulence.
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Figure 16. Time evolution of the averaged kinetic energy density and the Nusselt number at Ra = 1.5 × 105,
Pr = 10. This state was classified as belonging to the bursting regime, although there are instances when the
temporal coherence is transiently lost and then recovered.

4.3.6. Turbulent regime
For all Pr and at sufficiently high Ra, the states attained by the system lose spatial and
temporal coherence and become turbulent. Figure 17(a) shows an example of the time
evolution of the diagnostics in this regime. All diagnostics now vary without any coherent
time dependence. The snapshot of the velocity shown in figure 17(b) shows smaller-scale
structures and the loss of any spatial coherence or symmetry. However, the observed spatial
features are not extremely small scale compared with the size of the domain, possibly being
an effect of the forcing being still only about 100Rac, as opposed to the turbulent states
observed at very high forcing discussed in § 4.2. An animation of the evolution of the
temperature field in a highly turbulent simulation at Ra = 5 × 109, Pr = 1 can be found
in the supplementary material.

Figure 17(c) shows kinetic energy l spectra for the different values of Pr at Ra =
3 × 105, i.e. at a forcing at which the solutions are turbulent for all surveyed Pr. The
general trend is that the kinetic energy spectra become steeper as Pr is increased. This is
heuristically plausible, since high Pr corresponds to strong viscous dissipation compared
with, for example, the buoyant thermal forcing, becoming then significant not only on
small but also on intermediate length scales. Our observation is in agreement with
previous studies of the Prandtl number dependence of energy spectra in Rayleigh–Bénard
convection (Bhattacharya, Verma & Samtaney 2021).

Figure 17(d) shows these kinetic l spectra compensated by l−5/3. This scaling
corresponds to the well-known universal scaling postulated for the inertial subrange by
Kolmogorov (1941) (with the spherical harmonic degree asymptotically corresponding to
the Fourier wavenumber k for large l). We observe that for each Pr, there is a range of l
over which the compensated spectrum does not vary strongly (e.g. the range 2 ≤ l ≤ 4 for
Pr = 30) and over which thus the Kolmogorov scaling l−5/3 approximately holds. Beyond
these ranges, the spectra decrease more strongly with l than l−5/3, which according to the
theory of Kolmogorov (1941) is due to the dominance of dissipation over inertia at these
scales. The ranges over which the Kolmogorov scaling seems to hold appear to extend up
to higher l for lower Pr, reflecting the higher kinetic energies and, thus, the stronger inertia
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Figure 17. (a) Time evolution of the main diagnostics and (b) a snapshot of the absolute velocity on a
slice at Ra = 3 × 105, Pr = 0.1, (c) instantaneous kinetic energy l spectra for different Pr at Ra = 3 × 105,
(d) instantaneous kinetic energy l spectra compensated by the Kolmogorov scaling l−5/3 for different Pr at
Ra = 3 × 105, and (e) instantaneous thermal energy l spectra for different Pr at Ra = 3 × 105.

at those scales for lower Pr. We note, however, that especially for high Pr, the Reynolds
numbers of the associated turbulent solutions are still relatively low (see figure 9a).

In figure 17 (e) the corresponding thermal energy l spectra for the surveyed values of Pr
are displayed for the turbulent solutions at Ra = 3 × 105. All of these spectra are clearly
dominated by the contribution from the l = 0 modes. For higher l, there is not a clear
dependence of the thermal energy spectral coefficients on Pr for a given l. At least for
l > 20, the coefficients of the solutions at Pr = 10, 30 are the lowest for a given l (with
the coefficients of the solution at Pr = 10 being the lowest) and those at Pr = 0.1 are the
highest. A detailed investigation of the dependence of the thermal energy spectra on Pr is
the subject of future work.
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Figure 18. (a) Kinetic energy l spectrum at Ra = 3 × 1010, Pr = 1. (b) Thermal energy l spectrum at
Ra = 3 × 1010, Pr = 1. Kolmogorov scaling l−5/3 for comparison.

Figure 18(a) shows a kinetic energy l spectrum at Ra = 3 × 1010 (the largest Rayleigh
number for which results were computed) and a l−5/3 scaling for comparison. This highly
turbulent solution with a Reynolds number of Re = 3.3 × 103 is still dominated by modes
of low spherical harmonic degree, i.e. by large length scales. In particular, the largest
contribution still comes from l = 1, the degree of the onset mode. In addition, we find that
in the range 10 ≤ l ≤ 80, the spectrum indeed decays approximately as the Kolmogorov
scaling l−5/3, and faster than this for l > 80. Figure 18(b) shows an l spectrum of thermal
energy at Ra = 3 × 1010. Similarly to the kinetic energy spectrum, the thermal energy l
spectrum is dominated by the low l modes, and we also observe a steeper slope of the
spectrum beyond roughly l = 80, consistent with strong thermal diffusion at the small
length scales. We note, however, that in the inertial subrange, the scaling of the temperature
l spectrum is less steep than a l−5/3 scaling. The investigation of the scaling of the thermal
energy is also subject for future work.

5. Conclusion

In this work we investigated the problem of thermal convection in an internally heated,
non-rotating full sphere. We characterised the fluid flow and heat transfer depending
on the boundary conditions and the non-dimensional control parameters Ra and Pr in
this configuration, employing both analytical methods and DNS computed with the fully
spectral code QuICC.

We first applied the energy method for nonlinear stability to the problem at hand. We
described the formalism to establish global nonlinear stability by the energy method, and
then demonstrated that in the case of no-slip boundary conditions, linear and nonlinear
stability coincide. This implies that the purely conductive state is globally nonlinearly
stable below the Rayleigh number for the onset of convection and that subcritical
convection is thus impossible for no-slip boundary conditions. The situation remains
inconclusive for stress-free boundaries, since boundary terms preclude the formulation
of a corresponding variational problem in the energy method.

We proceeded by presenting results for high-Rayleigh-number convection at Pr = 1
and for a fixed temperature and both stress-free and no-slip boundary conditions. We
computed results up to Ra = 3 × 1010 ≈ 107Rac for stress-free boundaries and up to Ra =
2 × 1012 ≈ 2.5 × 108Rac for no-slip boundaries. For the two boundary conditions, we
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obtained power law scaling exponents of γNu,SF = 0.23 and γRe,SF = 0.35 for stress-free
boundaries and γNu,NS = 0.25 and γRe,NS = 0.35 for no-slip boundaries for the scaling of
Nu and Re with Ra, respectively. We analysed the change of the RSD with the thermal
forcing and observed that it decreases with increasing Ra. In addition, we examined
the toroidal–poloidal partition of the kinetic energy and found that its change with Ra
varies significantly between the configurations with stress-free and those with no-slip
boundaries. For very high Ra, however, we find Ekin.,tor./Ekin.,pol ≈ 0.5 for both types
of velocity boundary conditions. The thermal boundary layer thickness was measured to
scale as λ ∼ Ra−0.23 ∼ Nu−1 for stress-free boundaries, which is consistent with a purely
conductive boundary layer. We then adapted the classical scaling argument due Malkus
(1954) and Howard (1963) assuming purely conductive and marginally stable boundary
layers to the internally heated full sphere configuration. Using our definition of the Nusselt
number, we obtained a scaling prediction of Nu ∼ Ra1/4, which is consistent with the
numerically established scalings.

Finally, we discussed results of a study of the Prandtl number dependence of the system
at low to intermediate forcing and with a fixed temperature and stress-free boundary
conditions. We computed results for 0.1 ≤ Pr ≤ 30 and up to roughly 100Rac, observing
five distinct convective regimes in total. We first presented a regime diagram and then
discussed the dependence of the global diagnostics on Ra and Pr. We observed that
the Reynolds number scales roughly inversely with Pr (with a measured power law
scaling exponent of αRe = −0.89). Results obtained at different Pr can thus reasonably
be collapsed onto RePr, a type of Péclet number. For Pr < 1, a lower Pr leads to
lower Nu, but for Pr > 1, Nu seems almost independent of Pr. We then proceeded to
describe the distinct convective regimes individually, focusing on their respective flow
patterns, spectral content and time dependence. For the bursting regime, we put forward an
interpretation of its distinctive time dependence as the toroidal flow component inhibiting
the convective structures by which it is driven, analogous to the analysis of bursting
regimes in the plane layer geometry in Garcia et al. (2006) and Goluskin et al. (2014).

Supplementary materials and movies. Supplementary materials and movies are available at https://doi.
org/10.1017/jfm.2024.1187.
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