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Abstract

We show that rings for which every non-constant multiplicative endomorphism is additive
are trivial or power rings (that is, rings R such that R = R2 and x2 = 0 = x + x for all x e R)
and that if R is a power ring for which every multiplicative endomorphism is additive, then
End (R) is a zero semigroup or a semilattice according to how the product is defined.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 M 25, secondary 16 A 48.

1. Introduction

Steve Ligh (1978) has removed the assumption of an identity in Theorem 2 of
Cresp and Sullivan (1975), so that we now have (compare Exercise 38.5 of Warner
(1971)):

PROPOSITION. The only non-trivial rings (other than the ring {0, a} with a% = 0)
in which every subsemigroup containing the zero is a subring are the finite fields F
for which F* has order a Mersenne prime.

In this note we shall improve Theorem 4 of Cresp and Sullivan (1975) by
describing all commutative rings which contain a non-nilpotent element and have
property (s'): any non-constant semigroup endomorphism is a ring endomorphism.

It has been shown by Cresp and Sullivan (1975) that if R is a commutative ring
with the property (e): every semigroup endomorphism of R is a ring endomorphism,
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then R can only be the trivial ring, the ring {0, a} where a2 = 0, or a non-trivial ring
satisfying (i) R = {xy: x,yeR} (denoted by R2) and (ii) a+a = 0 = a2 for all aeR.
The existence of this last-mentioned type of ring (now called power rings) and the
question of whether they possess (e) was left open. We shall show that power
rings (if they exist) do not always have (e), but do have particularly simple endo-
morphism semigroups.

We are indebted to A. Brunner for some stimulating conversations, and to
M. Newman for encouraging correspondence, on this work.

2. Endomorphisms of rings

In the following result we use Lemma 1.2 of Kist (1963).

THEOREM 1. If R is a non-trivial commutative ring and satisfies (e'), then either
\R\ = 2 and R2 = 0, or R is the field of 2 elements, or R is a power ring.

PROOF. Let a eR be non-nilpotent and note that {0}n<a> = n . Hence we can
choose a prime semigroup ideal M in R maximal with respect to not meeting <a>
and for each «Ss 1, define An: R^-R by setting xXn = xn for all x$M and equal
to 0 otherwise. It is easily seen that An is a non-constant semigroup endomorphism
of R and so by (e') preserves addition. Hence if a+aeM, we have

0 = (a+a) Ajj = aAsj+aAjj = a2+a2.

Since the same conclusion occurs if a+a$M, we have a(a+a) = 0eM from
which we obtain a+aeM. Using Xu we now find a+a = 0.

Next we assert that x^y+xy2 = 0 for all x,y$M. For, consider x,y$M and
suppose x+yeM. Using Al5 we obtain x+y = 0 and the assertion follows. On
the other hand, if x+y $M, then using \ we find xy+xy = 0: this and the use of Aj
now shows that xy2+x2y = 0 as required. We now conclude that a+a2eM. For,
ifa+a2<£M, then

0 = a(a+a2)2+a\a+a2) = a(a2+a4) + (a3+a*).

Hence ^(a+a2) = OeM and so a+a2eM, a contradiction. One final application
of \ shows that a+a2 = 0.

We can now define a semigroup endomorphism y: R->R by setting xy = a
for all JC£M and equal to 0 otherwise. From (e') we observe that if x,yeM and
x-y$M, then a = (x+y)y = xy+yy = 0, a contradiction. Hence, M is a ring
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ideal and if XBM then x+a$M. In this event, we have

x+a = (x+a)X1 = xX

and so x = 0. Thus R = {0, a} where a2 = a.
If R is a non-trivial ring in which every element is nilpotent, then R certainly

contains a non-zero element a such that a2 = 0. Hence if, in addition, R is commu-
tative and satisfies (e'), then the proof of Theorem 3 of Cresp and Sullivan (1975)
can be used to show that R is either {0, a} or a power ring. To see this, first note
that if 0n is constant then (x+y)n = 0 = xn for all x,yeR. Thus, regardless of
whether or not 02,03 are constant, we have xy+xy = 0 and xy2+x2y = 0 for all
x, y e R and so if also R = R2, then R is a power ring. On the other hand, if R^ R2,
then pa (see Cresp and Sullivan (1975), p. 175) is non-constant and we have:
if u^R2, veR2, then u+v$R2. If Aa is constant, then R = R2uc where c$R2 and
so for all x,yeR, xy+c must equal c. Thus, R2 = 0 and .R = {0,c}. If Aa is non-
constant, (e') enables us to establish the above remark as in the proof of Theorem 3
of Cresp and Sullivan (1975).

We now consider power rings in general and start by noting that if a,beR,
then (a+b)2 = 0 implies ab = ba (thanks to R. Bowshell for this simple observation).
Moreover, if x, y e R satisfies x = xy then x = xy = xy2 = 0, and so if x e R, x=£ 0,
then there exist distinct x^x^eR such that x = xr.x2 and neither xt equals x.
Similarly, xx = JCU . x12 and x2 = x21. x^ for suitable xu, x12, x^, x^ in R which
must in fact be distinct and not equal to x. This procedure can be continued
indefinitely, the number of elements rising by a multiple of 2 after each successive
factorization. Power rings are therefore both commutative and infinite, and this
fact will be used without further mention.

The Remark of Cresp and Sullivan (1975) raised the question of whether all
power rings are (e)-rings. We now answer this in the negative by using an idea
introduced at the end of Martindale (1969). Let R be a non-trivial power ring. It
is easily checked that, under component-wise addition and multiplication, R x R
is also a non-trivial power ring, but it does not possess (s). For, if it does, then the
mapping

\:RxR->RxR, (a,b)-+(ab,0)

is not only multiplicative, but also additive. In this case, (a+x).(0+y) = a.O+x.y
for all a,x,yeR and we have R2 = 0, a contradiction.

The set, End (R), of all semigroup endomorphisms of a commutative ring R
is a semigroup under either pointwise multiplication or functional composition.
The next result shows that in either case the product on End (R) is quite elementary
when R is a power ring with (e); the second case involves an ingenious argument
due to A. Brunner.
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THEOREM 2. If R is a non-trivial power ring with (s), then <x.fi = 0 and aoa = a
for all a, jSe End (R).

PROOF. Let a, ]8 e End (R) and consider A: R-+R, x -> xoc. xf$. Since A is multiplica-
tive, it is also additive and consequently xoc.yfi = xfi.yoc for all x,yeR. This shows
that (xy) A = 0 for all x,yeR and since R = R2 the first assertion follows.

In case jS is the identity on R, we have xoc. y = x. yoc for all x, y e R. Let x, y, z e R
and note that

xy.zo? = (xy)oc.za. = xoc.yoc.zoc

= x.yoP.za. = xy.zo?.

Since R = /{2, we conclude that x.yoc2 = x.yo? for all x,yeR. From this we have

(xy)o? = xoc2. yoc2 = jca.j'a3 = xa.jx*2

= x.yo? = ;t.ja2 = xa.yoc = (xj)a

and /? = R2 now implies a = a2.

To conclude we note that when R is a power ring with (e), the identity
xa.yfi = xfi.yoc implies that End(7?) is closed under pointwise addition and so
ao£ = jSoa for all a, j36End(R).
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