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Abstract

Let Bn denote the unit ball in Cn , n ≥ 1. Given an α > 0, let Fα(n) denote the class of functions defined
for z ∈ Bn by integrating the kernel (1− 〈z, w〉)−α against a complex Borel measure dµ(w), w ∈ Bn .
The family F0(n) corresponds to the logarithmic kernel log(1/(1− 〈z, w〉)). Various properties of the
spaces Fα(n), α ≥ 0, are obtained. In particular, pointwise multiplies for Fα(n) are investigated.
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1. Introduction

Let Bn = {z ∈ Cn
: |z|< 1}, n ≥ 1. For λ ∈ B1, put

k0(λ) = log
1

1− λ
;

kα(λ) =
1

(1− λ)α
, α > 0.

Here and in what follows we use the principal branch of the logarithm.

1.1. Fractional Fantappiè transforms. Let M(Bn) denote the space of complex-
valued Borel measures defined on the ball Bn . Let α ≥ 0. Given a measure µ ∈
M(Bn), its fractional Fantappiè transform of order α is defined by the identity

Fα[µ](z)=
∫

Bn

kα(〈z, w〉) dµ(w), z ∈ Bn.

The classical Fantappiè transform in the ball is F1[µ]. See, for example, [1] for a
detailed treatment of the Fantappiè transform.

Note that
1

(1− 〈z, w〉)n+1 , z, w ∈ Bn,
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is the Bergman kernel in the ball. So, one may consider Fα[µ] as fractional Bergman
transforms of µ ∈M(Bn).

Let νn denote the normalized Lebesgue measure on the ball Bn . In numerous
applications one usually considers Fα[µ], where µ is absolutely continuous with
respect to νn (see, for example, [12]).

Let Hol(Bn) denote the space of functions holomorphic on the ball Bn . Consider
the families

F0(n) = { f ∈Hol(Bn) : f − f (0)= F0[µ] for some µ ∈M(Bn)};

Fα(n) = {Fα[µ] : µ ∈M(Bn)}, α > 0.

Note that

1=
∫

Bn

dνn(w)

(1− 〈z, w〉)α
∀z ∈ Bn, α > 0.

Therefore, 1 ∈ Fα(n) for all α ≥ 0. Standard arguments show that Fα(n), α ≥ 0, are
Banach spaces with respect to the following norms:

‖ f ‖F0(n) = | f (0)| + inf{‖µ‖M(Bn) : f − f (0)= F0[µ]}, f ∈ F0(n);

‖ f ‖Fα(n) = inf{‖µ‖M(Bn) : f = Fα[µ]}, f ∈ Fα(n), α > 0.

Assume that f = Fα[µ], α > 0, for some positive measure µ ∈M(Bn). Let f =
Fα[ρ], ρ ∈M(Bn). Then ‖ρ‖M(Bn) ≥ ρ(Bn)= f (0)= ‖µ‖M(Bn). Therefore,
‖ f ‖Fα(n) = ‖µ‖M(Bn).

1.2. Multipliers. Assume that X, Y ⊂Hol(Bn) are Banach spaces. A function
g ∈Hol(Bn) is called a (pointwise) multiplier from X to Y provided that f g ∈ Y
for all f ∈ X . Let M(X, Y ) denote the set of all multipliers from X to Y . Put
M(X)=M(X, X) and Mα(n)=M(Fα(n)). Mα(n), α ≥ 0, is a Banach space with
respect to the natural operator norm defined by the identity

‖g‖M α(n) = sup{‖ f g‖Fα(n) : ‖ f ‖Fα(n) ≤ 1}, g ∈Mα(n).

1.3. Families Fα(n) and fractional Cauchy transforms. Let M(∂Bn) denote the
space of complex-valued Borel measures defined on the sphere ∂Bn . Let α ≥ 0. Given
a measure ρ ∈M(∂Bn), its fractional Cauchy transform of order α is defined by the
identity

Kα[ρ](z)=
∫
∂Bn

kα(〈z, ζ 〉) dρ(ζ ), z ∈ Bn.

Put

K0(n) = { f ∈Hol(Bn) : f − f (0)= K0[ρ] for some ρ ∈M(∂Bn)};

Kα(n) = {Kα[ρ] : ρ ∈M(∂Bn)}, α > 0.

Fα(n), α ≥ 0, are Banach spaces with respect to the natural norms

‖ f ‖K0(n) = | f (0)| + inf{‖ρ‖M(∂Bn) : f − f (0)= K0[ρ]}, f ∈K0(n);

‖ f ‖Kα(n) = inf{‖ρ‖M(∂Bn) : f = Kα[ρ]}, f ∈Kα(n), α > 0.
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The families Kα(n) and M(Kα(n)) are rather close to Fα(n) and Mα(n),
respectively. In particular, Fα(n)⊂Kα(n), Fα(n) 6=Kα(n) and Mα(n)⊂M(Kα(n)).
The author does not know whether Mα(n) coincides with M(Kα(n)).

The classical spaces K1(1) and M(K1(1)) are investigated in [3]. Various properties
of the families Kα(1) and M(Kα(1)) are collected in [8]. Certain results about Kα(n)
and M(Kα(n)) are obtained in [4–6] for arbitrary n ∈ N. To the best of the author’s
knowledge, the spaces Fα(n) and Mα(n) have not been investigated systematically.

1.4. Organization of the paper. Definitions and auxiliary results are collected in
Section 2. In Section 3 embedding properties for the families Fα(n) and Bergman–
Sobolev spaces are investigated. Radial derivatives of functions from Fα(n) are
studied in Section 4. It is shown in Section 5 that Fα(n) is a proper subset of Kα(n).
The multiplier spaces Mα(n) are investigated in the final Sections 6 and 7. The main
results are Proposition 7.1 and Theorem 7.7.

2. Preliminaries

2.1. Radial derivatives. Given f ∈Hol(Bn), the radial derivative R f is defined by
the identity

R f (z)=
n∑

j=1

z j
∂ f

∂z j
(z), z ∈ Bn.

It is well known that

f (z)− f (0)=
∫ 1

0

R f (t z)

t
dt, z ∈ Bn. (2.1)

Direct calculations show that

R( f g)= f ·Rg +R f · g ∀f, g ∈Hol(Bn).

Further, put
R =R+ I :Hol(Bn)→Hol(Bn).

Note that
R( f g)= f · Rg +R f · g ∀f, g ∈Hol(Bn). (2.2)

2.2. Operators of radial differentiation. Fractional analogs of the operator R are
defined in terms of the homogeneous expansions of holomorphic functions. Namely,
assume that s, t ∈ R, s >−n − 1 and s + t >−n − 1. An invertible operator

Dt
s :Hol(Bn)→Hol(Bn)

is defined as follows. If f =
∑
∞

k=0 fk is the homogeneous expansion of f ∈Hol(Bn),
then

Dt
s f (z)=

∞∑
k=0

0(n + 1+ s)0(n + 1+ k + s + t)

0(n + 1+ s + t)0(n + 1+ k + s)
fk(z), z ∈ Bn. (2.3)

Note that, under the above restrictions on s and t , definition (2.3) coincides with those
in [12, Section 1.4] and [9].
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We have
(Dt

s)
−1
= D−t

s+t :Hol(Bn)→Hol(Bn),

where D−t
s+t is defined by formula (2.3). Finally, observe that R =R+ I = D1

−n .

3. Embedding properties

3.1. Weighted Bergman spaces. Recall that νn denotes the normalized Lebesgue
measure on the ball Bn . For p, q > 0, the weighted Bergman space Ap

q (Bn) consists
of those f ∈Hol(Bn) for which

‖ f ‖p
Ap

q (Bn)
=

∫
Bn

| f (z)|(1− |z|)q−1 dνn(z) <∞.

PROPOSITION 3.1. Suppose that n ∈ N.

(i) If α > n, then A1
α−n(Bn)⊂ Fα(n).

(ii) If β > α ≥ 0 and β > n, then Fα(n)⊂ A1
β−n(Bn).

PROOF. (i) If f ∈ A1
α−n(Bn), α > n, then [12, Theorem 2.2] guarantees that

f (z)= cα

∫
Bn

f (w)(1− |w|2)α−n−1 dνn(w)

(1− 〈z, w〉)α

for all z ∈ Bn . By the assumption,

f (w)(1− |w|2)α−n−1 dνn(w) ∈M(Bn).

Therefore, A1
α−n(Bn)⊂ Fα(n) for α > n.

(ii) Assume that α > 0, µ ∈M(Bn) and

f (z)= Fα[µ](z)=
∫

Bn

dµ(w)

(1− 〈z, w〉)α
, z ∈ Bn.

If β > n and β > α, then, changing the order of integration, we obtain∫
Bn

| f (z)|(1− |z|)β−n−1 dνn(z) ≤
∫

Bn

∫
Bn

(1− |z|)β−n−1 dνn(z)

|1− 〈z, w〉|α
d|µ|(w)

≤ C
∫

Bn

d|µ|(w) <∞

by [10, Proposition 1.4.10]. So Fα(n)⊂ A1
β−n(Bn). The proof of the embedding

F0(n)⊂ A1
β−n(Bn), β > n, is analogous. 2

3.2. Bergman–Sobolev spaces. Suppose that p, q > 0 and j ∈ Z+. By definition,
the Bergman–Sobolev space Ap

q, j (Bn) consists of those f ∈Hol(Bn) for which

‖ f ‖Ap
q, j (Bn)

=

∫
Bn

|R j f (z)|p(1− |z|)q−1 dνn(z) <∞.
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For p ≥ 1, Ap
q, j (Bn) is a Banach space. Note that Ap

q,0(Bn) coincides with the

weighted Bergman space Ap
q (Bn). Basic properties of the general spaces Ap

q,s(Bn),
s ∈ R, are gathered together in [2].

PROPOSITION 3.2. Assume that n ∈ N, j ∈ {0, 1, . . . , n} and α > n − j .

(i) The embedding A1
α−n+ j, j (Bn)⊂ Fα(n) holds.

(ii) If β > α, then Fα(n)⊂ A1
β−n+ j, j (Bn).

PROOF. If j = 0, then Proposition 3.1 applies. We assume that j ∈ {1, . . . , n}.
(i) Let f ∈ A1

α−n+ j, j (Bn). We have

D j
α−n−1(A

1
α−n+ j, j (Bn))= A1

α−n+ j (Bn)

by [9, Proposition 3.2]. (Note that in [9], Bergman–Sobolev spaces are called Besov
spaces.) Therefore, D j

α−n−1 f ∈ A1
α−n+ j (Bn)⊂ Fα+ j (n) by Proposition 3.1(i). So,

D j
α−n−1 f (z)=

∫
Bn

dµ(w)

(1− 〈z, w〉)α+ j , z ∈ Bn,

for some µ ∈M(Bn). We have α > 0, hence, the inverse operator (D j
α−n−1)

−1
=

D− j
α+ j−n−1 is correctly defined by (2.3). Next, [12, Proposition 1.14] guarantees that

D− j
α+ j−n−1

1
(1− 〈z, w〉)α+ j =

1
(1− 〈z, w〉)α

, z, w ∈ Bn.

Therefore,

f (z)= D− j
α+ j−n−1 D j

α−n−1 f (z)=
∫

Bn

dµ(w)

(1− 〈z, w〉)α
, z ∈ Bn.

In other words, f ∈ Fα(n).
(ii) Assume that j ∈ {1, . . . , n}, α > n − j and

f (z)=
∫

Bn

dµ(w)

(1− 〈z, w〉)α
, z ∈ Bn,

for some µ ∈M(Bn). For z ∈ Bn , straightforward calculations show that

R f (z)=R f (z)+ f (z)=
∫

Bn

α dµ(w)

(1− 〈z, w〉)α+1 + (1− α) f (z) ∈ Fα+1(n)+ Fα(n).

By induction,
R j f ∈ Fα+ j (n)+ · · · + Fα(n). (3.1)

Now, suppose that β > α. Note that β + j > α + j and β + j > n, hence,

Fα+ j (n)+ · · · + Fα(n)⊂ A1
β+ j−n(Bn)

by Proposition 3.1(ii). So (3.1) guarantees that f ∈ A1
β+ j−n, j (Bn). 2

For α = 0, we have the following analog of Proposition 3.2(ii).
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PROPOSITION 3.3. Let n ∈ N. Then F0(n)⊂ A1
ε,n(Bn) for any ε > 0.

PROOF. Let µ ∈M(Bn) and let

f (z)= f (0)+
∫

Bn

log
1

1− 〈z, w〉
dµ(w), z ∈ Bn.

For z ∈ Bn , direct calculations show that

R f (z)=R f (z)+ f (z) =
∫

Bn

1
1− 〈z, w〉

dµ(w)+ C + log
1

1− 〈z, w〉
dµ(w)

∈ F1(n)+ F0(n).

Therefore,
Rn f ∈ Fn(n)+ · · · + F0(n)⊂ A1

ε(Bn)

by Proposition 3.1(ii) with β = ε + n > n. So f ∈ A1
ε,n(Bn). 2

COROLLARY 3.4. Let n ∈ N and let 0≤ α < β. Then Fα(n)⊂ Fβ(n).

PROOF. Applying Proposition 3.2 with j = n and Proposition 3.3, we obtain Fα(n)⊂
A1
β,n(Bn)⊂ Fβ(n) for 0≤ α < β. 2

4. Families Fα(n) and radial derivatives

The proof of the following proposition is similar to that of [6, Proposition 4.2].

PROPOSITION 4.1. Suppose that α ≥ 0, n ∈ N and f ∈Hol(Bn). Then f ∈ Fα(n) if
and only if R f ∈ Fα+1(n).

PROOF. Let f ∈ Fα(n). Assume that α = 0. Then

f (z)= f (0)+
∫

Bn

log
1

1− 〈z, w〉
dµ(w), z ∈ Bn,

for some µ ∈M(Bn). Direct calculations show that

R f (z)=
∫

Bn

〈z, w〉

1− 〈z, w〉
dµ(w)= F1[ρ](z), z ∈ Bn,

where ρ = µ− µ(Bn)νn . So R f ∈ F1(n).
Now assume that α > 0. Then

f (z)=
∫

Bn

1
(1− 〈z, w〉)α

dµ(w), z ∈ Bn,

for some µ ∈M(Bn). We have

R f (z)=
∫

Bn

α

(1− 〈z, w〉)α+1 dµ(w)− α f (z), z ∈ Bn.

Note that α f ∈ Fα(n)⊂ Fα+1(n) by Corollary 3.4, thus R f ∈ Fα+1(n).
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It is convenient to prove the converse implication in two steps.

Step 1. α = m ∈ N ∪ {0}. By the hypothesis,

R f (z)=
∫

Bn

1

(1− 〈z, w〉)m+1 dµ(w), z ∈ Bn.

Applying (2.1), we obtain

f (z)− f (0)=
∫ 1

0

R f (t z)

t
dt =

∫ 1

0

∫
Bn

1

t (1− t〈z, w〉)m+1 dµ(w) dt, z ∈ Bn.

If λ ∈ C and |λ|< 1, then

1

t (1− tλ)m+1 =
1
t
+

m+1∑
j=1

λ

(1− tλ) j .

Put λ= 〈z, w〉. Note that R f (0)= 0, thus µ(Bn)= 0. Hence, changing the order of
integration, we obtain

f (z)− f (0) =
m+1∑
j=1

∫
Bn

∫ 1

0

〈z, w〉

(1− t〈z, w〉) j dt dµ(w)

=

∫
Bn

log
1

1− 〈z, w〉
dµ(w)

+

m+1∑
j=2

∫
Bn

1

( j − 1)(1− 〈z, w〉) j−1 dµ(w)

∈ F0(n)+ · · · + Fm(n)⊂ Fm(n)

by Corollary 3.4. Recall that 1 ∈ Fm(n), hence f ∈ Fm(n).

Step 2. α > 0, α /∈ N. Repeating the arguments used in Step 1 and changing the order
of integration,

f (z)− f (0) =
∫ 1

0

∫
Bn

1

t (1− t〈z, w〉)α+1 dµ(w) dt

=

∫
Bn

∫ 1

0

〈z, w〉

(1− t〈z, w〉)α+1 dt dµ(w)

+

∫ 1

0

1
t

∫
Bn

1
(1− t〈z, w〉)α

dµ(w) dt.

The inner integral in the first summand is explicitly calculable. So, consider the second
summand. Put [α] = m ∈ N ∪ {0}. We have m + 1> α, hence, by Corollary 3.4, there
exists a measure ρ ∈M(Bn) such that Fm+1[ρ] = Fα[µ]. Also, we have

ρ(Bn)= Fm+1[ρ](0)= Fα[µ](0)= µ(Bn)= 0.
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Therefore,

f (z)− f (0) =
1
α

∫
Bn

1
(1− 〈z, w〉)α

dµ(w)+
∫ 1

0

∫
Bn

1

t (1− t〈z, w〉)m+1 dρ(w) dt

∈ Fα(n)+ Fm(n).

The latter property is obtained in Step 1. Recall that α > m, hence f ∈ Fα(n)+
Fm(n)⊂ Fα(n) by Corollary 3.4. 2

THEOREM 4.2. Assume that α ≥ 0, n ∈ N and f ∈Hol(Bn). Then the following
properties are equivalent:

(i) f ∈ Fα(n);
(ii) R f ∈ Fα+1(n);
(iii) R f ∈ Fα+1(n).

PROOF. Proposition 4.1 guarantees that (i) holds if and only if (ii) holds. Next, (i) and
(ii) imply (iii). Finally, assume that (iii) holds. Then

R f ∈ Fα+1(n)⊂ Fα+3/2(n)⊂ A1
α+1,n−1(Bn)

by Proposition 3.2(ii) with j = n − 1. Therefore, f ∈ A1
α+1,n(Bn)⊂ Fα+1(n) by

Proposition 3.2(i). So R f = R f − f ∈ Fα+1(n), that is, (iii) implies (ii). 2

5. Spaces Fα(n) and Kα(n)

It is shown in [6] that analogs of Proposition 3.2, Corollary 3.4 and Theorem 4.2
hold for the spaces Kα(n) of fractional Cauchy transforms. Note that the arguments
used in Sections 3 and 4 provide alternative proofs of those analogs. Also, the
following assertion implies certain embedding properties.

PROPOSITION 5.1. Let n ∈ N and let α ≥ 0. Then Fα(n)⊂Kα(n).

PROOF. Suppose that α > 0, µ ∈M(Bn) and

f (z)=
∫

Bn

dµ(w)

(1− 〈z, w〉)α
, z ∈ Bn.

Note that µ ∈M(Bn), where M(Bn) denotes the space of complex-valued Borel
measures defined on the closed ball Bn . Without loss of generality, assume that µ is a
probability measure. Let δξ denote the point mass at ξ ∈ Cn . By the Banach–Alaoglu
theorem, there exist probability measures µk =

∑J (k)
j=1 ak, jδξk, j , ξk, j ∈ Bn , such that

µk→ µ in the weak* topology of M(Bn). Therefore,

J (k)∑
j=1

ak, j

(1− 〈z, ξ j,k〉)α
→ f (z), as k→∞,

for all z ∈ Bn .
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Let k ∈ N. If ξk, j ∈ ∂Bn , then put ρk, j = δξk, j ∈M(∂Bn). Thus,

1
(1− 〈z, ξk, j 〉)α

= Kα[ρk, j ](z), z ∈ Bn.

Further, assume that ξk, j ∈ Bn . Given z ∈ Bn ,

h(w)=
1

(1− 〈z, w〉)α
∈Hol(Bn) ∩ C(Bn), w ∈ Bn.

Hence,

1
(1− 〈z, w〉)α

=

∫
∂Bn

1
(1− 〈z, ζ 〉)α

1− |w|2

|w − ζ |2n
dσn(ζ ), z, w ∈ Bn.

In other words, if ξk, j ∈ Bn , then

1
(1− 〈z, ξk, j 〉)α

= Kα[ρk, j ](z), z ∈ Bn,

for a probability measure ρk, j ∈M(∂Bn). Put

ρk =

J (k)∑
j=1

ak, jρk, j .

Then ρk ∈M(∂Bn) is a probability measure and

Kα[ρk](z)=
J (k)∑
j=1

ak, j

(1− 〈z, ξ j,k〉)α
→ f (z), as k→∞, (5.1)

for all z ∈ Bn . By the Banach–Alaoglu theorem, there exists a subsequence ρkm such
that ρkm → ρ in the weak* topology of M(∂Bn). Therefore,

Kα[ρkm ](z)→ Kα[ρ](z), as km→∞,

for all z ∈ Bn . Hence, f = Kα[ρ] by (5.1).
The proof for α = 0 is analogous. 2

Below we show that Fα(n) 6=Kα(n) for all α ≥ 0.
Given ξ ∈ ∂Bn and C > 1, recall that the Korányi approach region DC (ξ) is defined

by the identity
DC (ξ)= {z ∈ Bn : |1− 〈z, ξ 〉|< C(1− |z|)}.

PROPOSITION 5.2. Suppose that α > 0, n ∈ N, µ ∈M(Bn), ξ ∈ ∂Bn and C > 1.
Then

lim
z→ξ

z∈DC (ξ)

(1− 〈z, ξ 〉)αFα[µ](z)= 0.
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PROOF. Assume that w ∈ Bn and ξ ∈ ∂Bn . Then

lim
z→ξ
z∈Bn

(1− 〈z, ξ 〉)α

(1− 〈z, w〉)α
= 0.

If z ∈ DC (ξ), then ∣∣∣∣ 1− 〈z, ξ 〉
1− 〈z, w〉

∣∣∣∣α ≤ |1− 〈z, ξ 〉|α(1− |z|)α
≤ Cα.

Hence,

lim
z→ξ

z∈DC (ξ)

(1− 〈z, ξ 〉)αFα[µ](z)= lim
z→ξ

z∈DC (ξ)

∫
Bn

(1− 〈z, ξ 〉)α

(1− 〈z, w〉)α
dµ(w)= 0

by the dominated convergence theorem. 2

Assume that α > 0, n ∈ N, ρ ∈M(∂Bn), ξ ∈ ∂Bn and C > 1. Then, by [6,
Proposition 6.1],

lim
z→ξ

z∈DC (ξ)

(1− 〈z, ξ 〉)αKα[ρ](z)= ρ({ξ}).

Therefore, if ρ({ξ}) 6= 0 for some point ξ ∈ ∂Bn , then Kα[ρ] ∈Kα(n)\Fα(n). Similar
arguments show that F0(n) 6=K0(n).

6. Multipliers: necessary conditions

PROPOSITION 6.1. Assume that n ∈ N, 0≤ α ≤ β and g ∈Hol(Bn). Then the
following properties are equivalent.

(i) g ∈M(Kα(n), Kβ(n)).
(ii) g ∈M(Fα(n), Kβ(n)).
(iii) g(z)kα(〈z, w〉) ∈Kβ(n) for all w ∈ Bn , and

sup
w∈Bn

‖g(z)kα(〈z, w〉)‖Kβ (n) ≤ C <∞;

if α = 0, then it is also required that g ∈Kβ(n).
(iv) g(z)kα(〈z, ζ 〉) ∈Kβ(n) for all ζ ∈ ∂Bn , and

sup
ζ∈∂Bn

‖g(z)kα(〈z, ζ 〉)‖Kβ (n) ≤ C <∞;

if α = 0, then it is also required that g ∈Kβ(n).

PROOF. By Proposition 5.1, (i) implies (ii). Let (ii) hold. Note that

‖kα(〈z, w〉)‖Fα(n) ≤ 1, ∀w ∈ Bn,
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hence (iii) holds by the closed graph theorem. If α = 0, then g ∈Kβ(n), since
1 ∈ F0(n).

Now, let (iii) hold and let ζ ∈ ∂Bn . Fix a sequence {w j}
∞

j=1 ⊂ Bn such thatw j → ζ .
Note that

g(z)kα(〈z, w j 〉)→ g(z)kα(〈z, ζ 〉), as j→∞, (6.1)

for all z ∈ Bn . By property (iii), there exist measures ρ j ∈M(∂Bn) such that
‖ρ j‖M(∂Bn) ≤ C and

g(z)kα(〈z, w j 〉)=

∫
∂Bn

kβ(〈z, ζ 〉) dρ j (ζ ), z ∈ Bn.

By the Banach–Alaoglu theorem, there exists a subsequence ρ jm such that ρ jm → ρ in
the weak* topology of M(∂Bn). Note that ‖ρ‖M(∂Bn) ≤ C . So

g(z)kα(〈z, w jm 〉)→

∫
∂Bn

kβ(〈z, ζ 〉) dρ(ζ ), as jm→∞,

for all z ∈ Bn . By (6.1), we obtain

‖g(z)kα(〈z, ζ 〉)‖Kβ (n) ≤ ‖ρ‖M(∂Bn) ≤ C.

Finally, standard arguments, based on approximation by discrete measures, show
that (iv) implies (i) (see [11, Theorem 1], [7, Lemma 2.1]). 2

COROLLARY 6.2. Assume that n ∈ N and 0≤ α ≤ β. Then

M(Fα(n), Fβ(n))⊂M(Kα(n), Kβ(n)).

In particular, Mα(n)⊂M(Kα(n)).

PROOF. We have Fβ(n)⊂Kβ(n), hence

M(Fα(n), Fβ(n))⊂M(Fα(n), Kβ(n))=M(Kα(n), Kβ(n))

by Proposition 6.1. 2

Standard arguments guarantee that Mα(n)⊂ H∞(Bn) for all α ≥ 0. Moreover, if
g ∈Mα(n), α > 0, n ∈ N, then

sup
ξ∈∂Bn

∫ 1

0
|Rg(rξ)| dr <+∞

by Proposition 6.1 and [6, Proposition 7.3].

COROLLARY 6.3. Suppose that n ∈ N, M ∈ {1, . . . , n}, n ≥ α > n − M and that
g ∈Mα(n). Then

sup
ζ∈∂Bn

∫
Bn

|Rk g(z)|(1− |z|)α+M−n−1

|1− 〈z, ζ 〉|α+M−k

(
log

e

1− |z|

)−1−ε

dνn(z) <∞ (6.2)

for k = 1, . . . , M and any ε > 0.

PROOF. We apply Proposition 6.1 and [5, Theorem 1.2]. 2
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7. Multipliers: sufficient conditions

Suppose that n ∈ N, α ≥ 0 and g ∈Mα(n). Note that g ∈ H∞(Bn), hence

sup
w∈Bn

‖(g(z)− g(w))kα(〈z, w〉)‖Fα(n) <∞ (7.1)

by the closed graph theorem.

7.1. Spaces Mα(n)with α > n. The following proposition shows that the necessary
condition (7.1) becomes a sufficient one, for α > n, when the norm of Fα(n) is
replaced by the norm of the weighted Bergman space A1

α−n(Bn).

PROPOSITION 7.1. Assume that n ∈ N, α > n and g ∈ H∞(Bn). Suppose that

sup
w∈Bn

∥∥∥∥ g(z)− g(w)

(1− 〈z, w〉)α

∥∥∥∥
A1
α−n(Bn)

≤ C <∞. (7.2)

Then g ∈Mα(n).

We will need two auxiliary lemmas.

LEMMA 7.2. Assume that µ and µk , k ∈ N, are probability measures on Bn . Suppose
that µk→ µ in the weak* topology of M(Bn). Let ε > 0. Then there exists an
r = r(ε) ∈ (0, 1) such that µ(Bn\r Bn) < ε and µk(Bn\r Bn) < ε for all k ∈ N.

PROOF. We have µ(Bn) <∞, hence µ(Bn\RBn) < ε for some R ∈ (0, 1). Put r =
(1+ R)/2 and consider a function f ∈ C0(r Bn) such that 0≤ f ≤ 1 and f |RBn ≡ 1.
By the definition of weak* convergence, we obtain

µk(r Bn)≥

∫
Bn

f dµk→

∫
Bn

f dµ≥ µ(RBn) > 1− ε.

Therefore, µk(Bn\r Bn) < ε for all sufficiently large k. Hence, the required property
holds. 2

LEMMA 7.3. Let µk ∈M(Bn), k ∈ N. Assume that, for any ε > 0, there exists an
r ∈ (0, 1) such that |µk |(Bn\r Bn) < ε for all k ∈ N. Let µk→ µ in the weak*
topology of M(Bn). Then∫

Bn

f dµk→

∫
Bn

f dµ, as k→∞,

for any bounded function f ∈ C(Bn).

PROOF. Assume that f ∈ C(Bn) and | f (z)| ≤ 1 for all z ∈ Bn .
Fix an ε > 0. We have |µ|(Bn) <∞, thus, applying the hypotheses of the

lemma, choose r ∈ (0, 1) such that |µ|(Bn\r Bn) < ε and |µk |(Bn\r Bn) < ε for
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all k ∈ N. Consider a function f0 ∈ C0(Bn) such that f0(z)= f (z) for all z ∈ r Bn , and
| f (z)| ≤ 1 for all z ∈ Bn . By the definition of the weak* topology of M(Bn),∣∣∣∣∫

Bn

f0 dµk −

∫
Bn

f0 dµ

∣∣∣∣< ε
for all k ≥ k0. Also note that∫

Bn

| f − f0| d(|µk | + |µ|)≤ 2
∫

Bn\r Bn

d(|µk | + |µ|) < 4ε.

Therefore, ∣∣∣∣∫
Bn

f dµk −

∫
Bn

f dµ

∣∣∣∣< 5ε

for all k ≥ k0. 2

PROOF OF PROPOSITION 7.1. Let f = Fα[µ], α > n. We have to prove that f g ∈
Fα(n). Without loss of generality, assume that µ ∈M(Bn) is a probability measure.
Applying the Banach–Alaoglu theorem, select a sequence of probability measures
µk =

∑J (k)
j=1 ak, jδwk, j ,wk, j ∈ Bn , such that µk→ µ in the weak* topology of M(Bn).

If z ∈ Bn , then (1− 〈z, ·〉)−α ∈ C(Bn). Hence, Lemmas 7.2 and 7.3 guarantee that

g(z)
J (k)∑
j=1

ak, j

(1− 〈z, wk, j 〉)α
→ g(z)

∫
Bn

dµ(w)

(1− 〈z, w〉)α
= g(z) f (z) (7.3)

for all z ∈ Bn . Consider the measures ρk =
∑J (k)

j=1 ak, j g(wk, j )δwk, j . Note that g ∈
H∞(Bn) and the measures µk ∈M(Bn) satisfy the hypotheses of Lemma 7.3, thus
the measures ρk ∈M(Bn) also satisfy the hypotheses of Lemma 7.3.

Remark that ‖ρk‖ ≤ ‖g‖H∞(Bn), thus, by the Banach–Alaoglu theorem, there exists
a subsequence ρkm which converges in the weak* topology. Without loss of generality,
assume that ρk→ ρ in the weak* topology of M(Bn). Lemma 7.3 guarantees that

J (k)∑
j=1

ak, j g(wk, j )

(1− 〈z, wk, j 〉)α
→

∫
Bn

dρ(w)

(1− 〈z, w〉)α
, as k→∞, (7.4)

for all z ∈ Bn . Put

hk(z)=
J (k)∑
j=1

ak, j (g(z)− g(wk, j ))

(1− 〈z, wk, j 〉)α
. (7.5)

Recall that ak, j > 0 and
∑J (k)

j=1 ak, j = 1, hence ‖hk‖A1
α−n(Bn)

≤ C by (7.2). Therefore,
the sequence {hk}

∞

k=1 is uniformly bounded on compact subsets of the ball Bn . Thus,
there exists a subsequence which converges to a holomorphic function uniformly on
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compact subsets. Without loss of generality, assume that hk(z)→ h(z) ∈Hol(Bn) for
all z ∈ Bn . Fatou’s theorem guarantees that h ∈ A1

α−n(Bn).
Consider the limit as k→∞ in identity (7.5). Applying (7.3) and (7.4), we obtain

f (z)g(z)=
∫

Bn

dρ(w)

(1− 〈z, w〉)α
+ h(z), z ∈ Bn.

Recall that A1
α−n(Bn)⊂ Fα(n) by Proposition 3.1(i), thus f g ∈ Fα(n). 2

Let δ > 0. The holomorphic Lipschitz space3δ(Bn) consists of those g ∈Hol(Bn)

for which
|R j g(z)| ≤ C(1− |z|)δ− j , z ∈ Bn, (7.6)

where j is the least integer such that j > δ. It is well known that, replacing R by R in
estimate (7.6), we obtain an equivalent definition of the space3δ(Bn). In particular, if
0< δ < 1, then the space 3δ(Bn) is defined by the following property:

|Rg(z)| ≤ C(1− |z|)δ−1, z ∈ Bn.

We will need the following lemma.

LEMMA 7.4 [4, Lemma 2.7]. Assume that n ∈ N, 0< δ < 1 and g ∈3δ(Bn). Then g
extends continuously to the closed ball Bn . Moreover, if 0< τ <min{1/2, δ}, then
there exists a constant C > 0 such that

|g(z)− g(w)| ≤ C |1− 〈z, w〉|τ ∀z, w ∈ Bn. (7.7)

COROLLARY 7.5. Suppose that n ∈ N, α > n and δ > 0. Then 3δ(Bn)⊂Mα(n).

PROOF. Without loss of generality, assume that 0< δ < 1/2. Let g ∈3δ(Bn).
Lemma 7.4 guarantees that inequality (7.7) holds for some τ ∈ (0, 1/2). Hence,

sup
w∈Bn

∫
Bn

|g(z)− g(w)|

|1− 〈z, w〉|α
(1− |z|)α−n−1 dνn(z)

≤ sup
w∈Bn

∫
Bn

(1− |z|)α−n−1

|1− 〈z, w〉|α−τ
dνn(z)

≤ C

by [10, Proposition 1.4.10]. It remains to apply Proposition 7.1. 2

7.2. Spaces Mα(n) with 0 ≤ α ≤ n.

PROPOSITION 7.6. Assume that n ∈ N, α ≥ 0, β >max{α, n} and g ∈Hol(Bn).
Suppose that

sup
w∈Bn

‖g(z)kα(〈z, w〉)‖A1
β−n(Bn)

<∞. (7.8)

If α = 0, then suppose also that g ∈ A1
β−n(Bn). Then g ∈M(Fα(n), A1

β−n(Bn)).
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PROOF. If α > 0, then it suffices to repeat the arguments used in the proof of
Proposition 7.1, putting ρk = ρ = 0. Now, let α = 0 and let f = f (0)+ F0[µ],
µ ∈M(Bn). As in the case α > 0, we have F0[µ] · g ∈ A1

β−n(Bn). It remains to

remark that f (0)g ∈ A1
β−n(Bn). 2

THEOREM 7.7. Let n ∈ N and let g ∈3δ(Bn) for some δ > 0. Assume that M ∈
{1, . . . , n} and n ≥ α > n − M, or assume that M = n + 1 and α = 0. Suppose that

sup
w∈Bn

∫
Bn

|Rk g(z)|(1− |z|)α+M−n−1

|1− 〈z, w〉|α+M−k dνn(z) <∞, k = 1, . . . ,min{n, M}. (7.9)

If α = 0 and M = n + 1, then suppose also that∫
Bn

|Rn+1g(z)| log
e

1− |z|
dνn(z) <∞. (7.10)

Then g ∈Mα(n).

PROOF. Let f ∈ Fα(n). Theorem 4.2 guarantees that R M f ∈ Fα+M (n). We have
g ∈3δ(Bn)⊂Mα+M (n) by Corollary 7.5, hence

R M f · g ∈ Fα+M (n). (7.11)

Further, let k ∈ {1, . . . ,min{n, M}}. Then R M−k f ∈ Fα+M−k(n) by Theorem 4.2.
Note that α + M >max{n, α + M − k}, hence property (7.9) and Proposition 7.6
guarantee that

R M−k f · Rk g ∈ A1
α+M−n(Bn)⊂ Fα+M (n) (7.12)

by Proposition 3.1(i).
If α = 0 and M = n + 1, then (7.10) implies (7.8) for Rn+1g, α = 0 and β =

n + 1. Also, property (7.10) guarantees that Rn+1g ∈ A1
1(Bn). Hence, applying

Proposition 7.6 with β = n + 1, we obtain property (7.12) for α = 0 and k = M =
n + 1.

Now, properties (2.2), (7.11) and (7.12) guarantee that RM ( f g) ∈ Fα+M (n).
Finally, f g ∈ Fα(n) by Theorem 4.2. 2

Assume that g ∈Hol(Bn), M ∈ {1, . . . , n} and n ≥ α > n − M . Note that
condition (7.9) is equivalent to the following property:

sup
ζ∈∂Bn

∫
Bn

|Rk g(z)|(1− |z|)α+M−n−1

|1− 〈z, ζ 〉|α+M−k dνn(z) <∞, k = 1, . . . , M. (7.13)

Indeed, (7.9) implies (7.13) by Fatou’s theorem. On the other hand, if λ ∈ B1
and r ∈ [0, 1), then |1− λ| ≤ 4|1− rλ|. Hence, |1− 〈z, ζ 〉| ≤ 4|1− 〈z, rζ 〉| for all
z ∈ Bn , ζ ∈ ∂Bn and r ∈ [0, 1). Therefore, (7.13) implies (7.9).
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Note that the sufficient condition in Theorem 7.7, for α > 0, is not too far from the
necessary condition in Corollary 6.3. Indeed, dropping the logarithmic term in (6.2),
we obtain (7.13) or, equivalently, (7.9).

Several explicit conditions, sufficient for (7.13), are given in [4, 5] when n > α > 0.
As an illustration, consider the holomorphic Lipschitz spaces 3δ(Bn), δ > 0.

COROLLARY 7.8. Let n ∈ N. Assume that 0≤ α ≤ n and g ∈3δ(Bn) for some
δ > n − α. Then g ∈Mα(n).

PROOF. If 0< α < n and g ∈3δ(Bn) for some δ > n − α, then, as shown in the proof
of [5, Corollary 4.2], property (7.13) holds. Hence, Theorem 7.7 is applicable.

Further, let α = 0 and let g ∈3δ(Bn) for some δ ∈ (n, n + 1). Put M = n + 1.
Then

|Rn+1g(z)| ≤ C(1− |z|)δ−n−1, z ∈ Bn.

Therefore, property (7.10) holds. For k = 1, . . . , n, we have Rk g ∈ H∞(Bn), thus

sup
w∈Bn

∫
Bn

|Rk g(z)|(1− |z|)α+M−n−1

|1− 〈z, w〉|α+M−k dνn(z)≤ sup
w∈Bn

∫
Bn

dνn(z)

|1− 〈z, w〉|n+1−k
≤ C

by [10, Proposition 1.4.10]. So, g ∈M0(n) by Theorem 7.7.
Finally, let α = n and let g ∈3δ(Bn) for some δ ∈ (0, 1). Put M = 1. Then

sup
w∈Bn

∫
Bn

|Rg(z)|(1− |z|)α+M−n−1

|1− 〈z, w〉|α+M−1 dνn(z)≤ C
∫

Bn

(1− |z|)δ−1

|1− 〈z, w〉|n
dνn(z)≤ C

by [10, Proposition 1.4.10]. So, g ∈Mn(n) by Theorem 7.7. 2
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