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Spatial detection and hierarchy analysis of
large-scale particle clusters in wall-bounded
turbulence
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Large-scale inertial particle clustering in a turbulent boundary layer (TBL) was
investigated experimentally by two-colour particle-image velocimetry and particle-tracking
velocimetry measurements in the wall-parallel plane of the log layer. The particle clusters
were detected by Voronoi tessellation and a new application of a technique based on
the spatial wavelet transform. Anisotropic wavelets spanning the range of measurable,
large-scale particle clusters were applied to experimentally measured particle fields,
and significance testing was used to identify hierarchies of particle clusters. Unlike the
Voronoi tessellation, which primarily identified small-scale clusters, the wavelet technique
also found a significant amount of anisotropic, large-scale clusters on the scale of the
large-scale motions (LSMs) of the momentum field. The large-scale clusters were shown
to be composed of a hierarchy of smaller clusters of varying degrees of isotropy. In addition
to the cluster size distribution, the particle velocities within the clusters were studied
as a function of cluster size. Larger clusters exhibited faster particle convection speeds,
consistent with observations of the convection speeds of LSMs, thus providing additional
evidence for the hypothesis that particles in the TBL accumulate on and are transported
by large-scale, attached coherent structures.

Key words: particle/fluid flow, turbulent boundary layers

1. Introduction

1.1. Large-scale coherent structures and particles
The complex behaviour of particles in turbulent, wall-bounded flows is a direct
consequence of the organization of coherent structures in the flow. Understanding the

† Email address for correspondence: ijacobi@technion.ac.il

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 942 A52-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:ijacobi@technion.ac.il
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/jfm.2022.429


G. Cui, I. Ruhman and I. Jacobi

large-scale clustering behaviour of particles thus starts with understanding large-scale
motions (LSMs) in turbulence.

Very large-scale streamwise regions of coherent momentum and vorticity have been
recognized in measurements of the turbulent boundary layer (TBL) since the early work of
Kovasznay, Kibens & Blackwelder (1970). As spatial measurement techniques improved,
the nature of these large-scale features was explored by Adrian, Meinhart & Tomkins
(2000) and Dennis & Nickels (2011) in the context of the uniform momentum zones that
appeared to flank packets of hairpin vortices, and by Hutchins & Marusic (2007a,b) in the
context of the very long, meandering features in the near-wall region of the TBL. These
meandering features were identified visually in both particle image velocimetry (PIV)
measurements of the streamwise–spanwise velocity plane, e.g. Adrian (2007), as well as
via rakes of hotwires that were interpreted using Taylor’s frozen turbulence hypothesis as
spatially coherent structures, e.g. Monty et al. (2007). While these LSMs features can be
isolated by spatial or temporal filtering of the measured velocity fields, their interpretation
ultimately remains somewhat subjective: many of the low-to-moderate Reynolds number
studies of Adrian et al. (2000), Adrian (2007), Tomkins & Adrian (2003) and, for example,
Saxton-Fox & McKeon (2017) suggested that the LSMs represent the superposition of
smaller scale features, in a ‘bottom-up’ construction, while Hunt & Morrison (2000),
based on theoretical analysis, and Liu, Wang & Zheng (2019), based on measurements
in the atmospheric boundary layer, argue that these LSMs were the ‘top-down’ result
of large-scale dynamics at the outer edge of the boundary layer. Whatever the causal
direction of the hierarchy, the hierarchical nature of the large- and small-scale motions has
significant implications for the development of turbulence models and control strategies
(see Marusic, Mathis & Hutchins 2010).

The same question about the hierarchical nature of coherent structures also arises in the
context of particle-laden, turbulent flows. Caporaloni et al. (1975) and then Crowe, Gore &
Troutt (1985) reported that particles tend to preferentially accumulate in regions of the flow
that correspond to coherent motions of the carrier fluid. Squires & Eaton (1991) found that
different accumulation behaviours correspond to specific types of coherent motion, with
particles that are denser than the carrier fluid gathering in regions of high strain and low
vorticity. Crowe, Troutt & Chung (1995) described this preferential concentration in terms
of the Stokes number of the particles in the flow, St, which represents the characteristic
time scale of the particles to that of the flow. Higher Stokes number particles corresponded
to denser particles and thus concentrated preferentially in regions of high strain. In the
near wall region, Picano, Sardina & Casciola (2009) observed that particles approach the
wall by means of high momentum sweeps (Q4 events) and are swept away from the wall
by means of coherent ejections (Q2 events). Although the sweeps and ejections occur in
roughly equal proportion, particles can still accumulate at the wall due to the presence
of low-speed streaks, which trap particles beneath quasi-streamwise vortices, according to
Sardina et al. (2012a) and Marchioli & Soldati (2002).

With increasing Stokes number, the particle inertia becomes more significant and, at
sufficient volume fraction, two-way coupling between the particles and flow is observed,
which can result in enhancement or suppression of turbulent fluctuations, as reviewed by
Hetsroni (1989). However, particles can also modify the coherent structures themselves.
Gillissen (2013) reported that particles appear to interfere with the regeneration process
of hairpin eddies at the wall. Similarly, Dritselis & Vlachos (2008, 2011) showed that
particles can modify the shape of coherent structures, at least in an ensemble-averaged
sense. And, Wang & Richter (2019) showed how inertial particles in open channel flow
can exert a direct modulating effect on the LSMs.
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Hierarchical particle cluster detection in wall turbulence

Although the local kinematic behaviour of individual particles in the immediate vicinity
of vortices has been thoroughly studied, the behaviour of individual, coherent particle
clusters has only recently begun to receive more attention.

1.2. Identifying particle clusters
Initially, particle clustering behaviours were analysed only with respect to mean
concentration distributions or particle velocities. Early studies, like Eaton & Fessler
(1994), presented qualitative particle density maps and concentration profiles. Righetti
& Romano (2004) quantified the particle and fluid velocity distributions, and Rouson &
Eaton (2001) showed how the presence of particles affected the joint probability density
function (p.d.f.) of invariants of the velocity gradient tensor near the wall. Lagrangian
techniques have also been applied to study the collective particle dynamics by Berk &
Coletti (2021).

Eventually, the spatial particle distribution was explored in a more quantitative manner.
Namenson, Antonsen & Ott (1996) utilized a wavenumber power spectra of the two-point
correlation function of particle density in order to quantify the spatial patterns of
particles in a fractal sense, whereas Falkovich, Fouxon & Stepanov (2003) adopted a
pair-correlation function between spatially separated regions of particle concentration to
describe the scales of clustering. Aliseda et al. (2002) employed a box-counting approach
in which the p.d.f. of the number of particles in a given box was compared with the Poisson
distribution expected for uniformly distributed particles. These methods all provide a
statistical picture of the magnitude of the clustering and the dominant length scales
associated with clusters in an average sense, which was shown by Aliseda et al. (2002)
to be around 10 Kolmogorov length scales in homogeneous isotropic turbulence (HIT).
However, these statistical methods were not used to directly identify and study the structure
of individual particle clusters.

Monchaux, Bourgoin & Cartellier (2010, 2012) first began identifying specific particle
clusters with Voronoi tessellation, a technique that had been used widely in the
astrophysics community, e.g. Ramella et al. (1998), precisely because it is non-parametric
and thus less subjective than filter-based approaches. Voronoi tessellation circumscribes
each individual particle inside a unique cell, thereby tessellating the entire flow field.
Like Aliseda et al. (2002), they then compared the p.d.f. of Voronoi cell areas with
the p.d.f. produced from a uniform particle distribution and identified all Voronoi cells
smaller than the area at the intersection of these two p.d.f.s as being part of a cluster. The
tessellation approach identifies clusters in a bottom up approach, from individual particles,
and thus tends to reproduce the same characteristic length scales found in the box-counting
methods. However, when cells associated with a small-scale cluster are not contiguous
with other small-scale cluster cells, due to intervening non-cluster cells, there is no means
of identifying a larger-scale cluster within the Voronoi algorithm itself.

The Voronoi approach has been recently applied by Zhu et al. (2021) to the experimental
identification of particle clusters in the streamwise/wall-normal (x–y) plane of a TBL.
They showed that particle clusters tend to reside on the downstream-inclined ridges of
attached, streamwise (x), low-momentum structures as a result of the high-strain associated
with the near-wall, sweep-ejection process. The particle cluster size was quantified by the
area of the Voronoi region used to identify the clusters, Av . As expected for the Voronoi
technique, the typical cluster size, defined as

√
Av , was found to be small compared with

the boundary-layer thickness, δ, with the vast majority of clusters exhibiting
√

Av/δ <
0.1. Berk & Coletti (2020) and Baker & Coletti (2021) also reported the strong impact
of ejection events on particle dynamics in the TBL. They found a reduced velocity of
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particles relative to the fluid, largely associated with particles collecting predominantly in
low velocity regions, farther from the wall. In their recent review of particle-laden flows,
Brandt & Coletti (2021) also report the general tendency for particles to lag the flow above
the viscous sublayer due to their preferential appearance in low-speed regions.

However, there are cases where the particles tend to lead the surrounding flow. Sardina
et al. (2012b) found that above one displacement thickness, δ∗, particles lead the fluid in
a TBL. They claimed that this was the result of particles’ retaining their inertia while the
fluid loses momentum (at a fixed wall-normal location) due to the growth of the boundary
layer. Zhu et al. (2021) also found inertial particles leading the fluid at y+ ≈ 330, well
beyond the viscous sublayer, but they suggested that the cause was particle advection by
large-scale coherent structures which tend to exceed the local mean velocity. The idea that
particles collect as a result of turbulent, coherent motions goes back to the work of Crowe
et al. (1985) and Eaton & Fessler (1994), noted above, who identified regions of high
strain and low vorticity as ideal ‘convergence’ zones for inertial particles. But, most of
the clusters identified in previous studies have been substantially smaller than large-scale
coherent motions.

1.3. Identifying large-scale clusters in wall-bounded flows
In the momentum field, LSMs have traditionally been detected by filtering the
instantaneous velocity fields into large- and small-scale signals, following the approach
of Bandyopadhyay & Hussain (1984). However, filtering is not well-suited for the
identification of clusters of discrete features, like particles, hence the use of the Voronoi
technique described above. But there are alternative approaches to identifying clusters and
hierarchies of scalar quantities, many of which, like the Voronoi tessellation, have emerged
in the field of astrophysics with respect to the problem of identifying clusters of galaxies
from telescope measurements.

Slezak, Bijaoui & Mars (1990) first introduced the use of the continuous, spatial
wavelet transformation to identify spatial clusters of galaxies over a broad range of length
scales. The hierarchical nature of wavelets is ideally suited for detecting the hierarchical,
geometric organization of galaxy clusters. Wavelets have also been used widely in
turbulence analysis, typically for temporal measurements (see the works of Meneveau
(1991) and Narasimha (2007) for examples), although they have appeared occasionally
for analysing spatial turbulent fields. Li (1998) and Li et al. (2001, 2002) employed
spatial wavelets as a means of efficiently decomposing and representing the fluctuating
velocity field in turbulent shear flows. And, more recently, He, Wang & Rinoshika (2019)
used a one-dimensional temporal wavelet, along with proper-orthogonal decomposition, to
explore the interactions between large- and small-scale structures. Very recently, Matsuda,
Schneider & Yoshimatsu (2021) applied a wavelet decomposition to particle density fields
in HIT in order to calculate scale-dependent statistics, analogous to the filtering technique
for momentum decomposition. However, none of these studies used spatial wavelets to
establish a hierarchy of discrete, coherent structures of particles in turbulence, or to study
their spatial distribution and clustering.

In order to identify specific clusters via wavelets (as opposed to a general wavelet
decomposition of an instantaneous field), Slezak et al. (1990) followed by Escalera,
Slezak & Mazure (1992), Escalera & Mazure (1992) and Escalera & MacGillivray (1995)
identified local maxima in the wavelet transformation of the galaxy field, and used
these maxima to locate discrete clusters. By comparing the wavelet coefficients of these
local maxima with coefficients generated from synthetic, uniformly distributed galaxy
fields, statistical significance testing was used to identify clusters of galaxies which were
statistically unlikely to appear by chance for a given wavelet length scale.
942 A52-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.429


Hierarchical particle cluster detection in wall turbulence

Unlike Voronoi tessellation, the wavelet-based approach allows for the identification of
hierarchies of clusters at any size, shape or spatial orientation, and the use of significance
testing means that the number of arbitrary parameters is reduced to choosing a significance
level only. The wavelet-based cluster detection is therefore ideally suited for the detection
of large-scale particle clusters in turbulent flows, at the scale of the LSMs, which are
only rarely found by Voronoi tessellation. On the other hand, the essentially hierarchical
nature of wavelets means that special care must be taken in the interpretation of large-scale
clusters which may be double-counted as the superposition of many smaller scale clusters,
a problem absent in the Voronoi approach.

In § 2, we describe wall-parallel measurements of a low concentration particle field in
the log layer of a TBL. The particle and velocity fields are measured simultaneously, and
in § 3, two techniques are used to identify large-scale particle clusters in the flow: Voronoi
tessellation in § 3.1; and the spatial wavelet transformation in § 3.2. The spatial wavelet
is shown to identify large-scale particle clusters that are not detected by the Voronoi
approach. The hierarchical structure of the large-scale clusters detected by wavelets is
then investigated in § 4 and contrasted with the Voronoi results. Finally, the relationship
between cluster size and particle velocities is examined in § 5, with emphasis on the
extent to which particle velocity varies with the size of associated cluster, in order to
provide additional evidence for previous reports that particles tend to collect on large-scale
coherent motions.

2. Experiments

Simultaneous measurement of particles and their surrounding flow field has been
performed by adapting the widely used approach of PIV and particle tracking velocimetry
(PTV). Towers et al. (1999) showed that by using two colours, one for the velocity tracers
and another for inertial particles, the two fields could be measured simultaneously with
simple optical discrimination via filtering. Alternatively, single colour particles have been
discriminated by digital masking, exploiting variations in their size and relative light
intensity, by Lindken & Merzkirch (2002) and Cheng, Pothos & Diez (2010). Subsequent
studies by Elhimer et al. (2017) and Hoque et al. (2016) have employed a combination of
digital and optical discrimination techniques.

In the present study, we have adopted the combined optical/digital approach to make
two-dimensional measurements in the wall-parallel plane of a TBL. Although holographic
techniques capable of resolving the three-dimensional flow field have started to be used in
recent years, their limited observational volume tends to make them ill-suited for capturing
large-scale coherent motions, which can meander for over a length of many boundary layer
thicknesses in the streamwise (x) direction, as noted by Katz & Sheng (2010). Moreover,
the computational comparison study of Monchaux (2012) has indicated that the particle
clusters educed from two-dimensional measurements are not significantly biased by the
lack of the third dimension and thus should still provide valuable dynamical information
not available in the smaller volumes demanded by three-dimensional measurement
techniques.

2.1. Planar, two-colour PIV in the log-layer
The two-colour PIV and PTV measurements were performed in the 200 mm × 200 mm ×
2000 mm test section of the Technion High Speed Water Tunnel Facility. The experimental
set-up for the two-colour PIV is illustrated in figure 1, where the streamwise (x),
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y

z
x

U∞

Figure 1. An illustration of the experimental set-up, showing the green laser illumination of the wall-parallel
plane (x–z) near the bottom wall of the test section. Green and red dots represent the glass tracer particles and
fluorescent inertial particles, respectively. Two cameras were positioned above and below the test section, each
with colour filters to record the two types of particles simultaneously. The resulting filtered fields are illustrated
above and below the test section, in place of the cameras.

U∞ uτ δ θ h ε

(m s−1) (m s−1) (mm) (mm) (mm) h+ Reθ Reτ K (m2 s−3)

2.39 0.093 23.5 2.34 2.5–3.3 229–302 5520 2150 1.2 × 10−8 0.6

Table 1. Parameters for the underlying boundary layer flow and the location of the laser sheet at wall normal
height, h. The boundary layer thickness, δ, represents δ99. Mean flow profiles and streamwise energy spectra
are provided in Appendix A.

wall-normal (y) and spanwise (z) velocity components are denoted by u, v and w,
respectively. The wall-parallel (x–z) plane was illuminated with a 527 nm wavelength laser
sheet produced by a dual-pulse laser (Litron LD30-527) and imaged by two high-speed
cameras (Phantom VEO-340L and VEO-440L, 2560 × 1600 pixels) positioned above and
below the test section, oriented perpendicular to the measurement plane. The field of
view was centred on a streamwise position 847 mm downstream of the entrance of test
section where the boundary layer was tripped via a small step in the wall surface. The
laser sheet was approximately 0.8 mm thick and was positioned with its centre location, h,
2.9 mm above the floor of the test section. Previous streamwise/wall-normal measurements
were used to determine the friction velocity of the flow by a modified Clauser method.
Details of the flow, including the acceleration parameter, K = (ν/u2

τ )(dU∞/dx), are
shown in table 1. The mean velocity profile, turbulence intensity profile and streamwise
map of spectral energy density appear in Appendix A. The wall-normal range of the
laser sheet corresponded to h+ = 229–302, which falls within the upper range of the
log layer described by Marusic et al. (2013) as 3Re1/2

τ < y+ < 0.15Reτ or, in this case,
139 < y+ < 323. The total measurement area was 5.9δ in the streamwise direction and
3.7δ in the spanwise direction, centred within the test section.

The flow was seeded with small, glass tracers (Sigma-Aldrich 440345-500G,
1.1 g ml−1, diameter 9–13 μm) to measure the velocity field, and large polyethylene
fluorescent particles (Cospheric UVPMS-BR-1.20 75–90 μm, 1.2 g ml−1, diameter
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Flow Stη = τp

τη
Stν = τp

τν
φvol φmass

Glass tracer TBL 0.0068 0.076 6.7 × 10−5 7.4 × 10−5

Fluorescent particle TBL 0.52 5.8 9.2 × 10−6 1.1 × 10−5

Monchaux et al. (2010) HIT 0.01 — 2–30 × 10−6 1.6–24 × 10−3

Aliseda et al. (2002) HIT 1–6 — 1.5–7 × 10−5 1.2–5.6 × 10−2

Baker & Coletti (2021) Channel PIV — 15 10−4 —
Zhao et al. (2013) Channel DNS — 1–50 2.9–116 × 10−5 5.5 × 10−3–1
Berk & Coletti (2020) TBL — 18–870 10−6 —
Zhu et al. (2021) TBL — 100–1000 7–11 × 10−5 —

Table 2. Range of particle parameters for current experiment (top) and past clustering studies (bottom). The
Kolmogorov time scale, τη, was calculated using the dissipation rate obtained via the balance of production
and dissipation in the log layer. Here DNS is direct numerical simulation.

75–90 μm) to identify particle clustering. The volume fractions for the tracers and particles
were 6.7 × 10−5 and 9.2 × 10−6, respectively.

The key parameter describing the relative inertia of the particles compared with that
of the carrier flow, and thus the extent of coupling, is the Stokes number, St, which
is the ratio of the viscous time scale of the particle, τp, to an appropriate time scale
of the flow, τf . The viscous time scale, in the limit of infinitesimal particle Reynolds
number, Rep ≡ d3

pρf g(ρp − ρf )/18μ2 � 1, is given in terms of the particle density, ρp,
the fluid density, ρf , the particle diameter, dp, and the dynamic viscosity, μ, as τp =
(ρp − ρf )d2

p/18μ (Eaton & Fessler 1994). For heavy particles, ρp � ρf , this viscous time
scale is approximately τp ≈ ρpd2

p/18μ (Stokes 1851).
The flow time scale τf for turbulent flows can be defined in terms of the Kolmogorov

scales, as τη = (ν/ε)1/2 (via the dissipation rate, ε, and kinematic viscosity, ν) following
Monchaux et al. (2010) and Aliseda et al. (2002); or in terms of the friction velocity as
τν = ν/u2

τ , following Yamamoto et al. (2001) and Zhao, Andersson & Gillissen (2013).
The dissipation rate in the log layer was estimated from the planar PIV data, assuming
that it is in balance with the production rate (see Brouwers (2007) for discussion).
The production itself was approximated as P ≈ −uv(∂U/∂y)− vv(∂V/∂y), where the
remaining contributions to the production are assumed negligible, following Blackman
et al. (2017), yielding a dissipation rate of ε ≈ 0.6 m2 s−3.

Table 2 summaries the Stokes numbers and mass/volume fractions for the particles used
in this experiment, along with a selection of relevant past studies performed in a channel
flow, boundary layer and in experiments with HIT. The current volume fraction for inertial
particles was consistent with previous studies, although the mass fraction is much lower,
due to the smaller density of the current particles. Nevertheless, the Stokes number of the
inertial particles is nearly two orders of magnitude larger than the velocity tracers due to
their size. According to Brandt & Coletti (2021), the low volume fraction in all of these
experiments is indicative of the one-way coupling regime between the fluid and inertial
particles, which is better suited to observe the influence of large-scale coherent motions of
the canonical boundary layer on the particle clustering.

2.2. Particle and velocity field processing
The fluorescent, inertial particles had an excitation peak at 575 nm and an emission peak
at 607 nm. Therefore, the fluorescent light of the particles was isolated from the laser
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light by using a notch filter (Chroma, ZET532nf) blocking the laser wavelength, 527 nm.
The reflected light of the tracer particles was isolated from the fluorescent light by using
a bandpass filter (Chroma, ET525/30m) overlapping the same wavelength. Because the
fluorescent particles also reflected light at the laser wavelength, albeit at much weaker
intensity than the glass tracers, the slight signature of the fluorescent particles was removed
from the tracer image using a digital masking procedure, which also eliminated noise
from the particle image. The fluorescent particles were masked using a fixed intensity
threshold (1000 out of 4096 grey levels). The resulting binary mask was then used for
measuring the particle clustering behaviour, described in § 3, as well as for masking out the
low-intensity reflections of the fluorescent particles from the velocity tracer images, prior
to PIV processing of the velocity field. The size distribution of the fluorescent signature of
the particles is discussed in the next section, § 2.3.

The masking and PIV processing was performed using commercial software (Davis
10.1.1). Five independent recordings were performed at 800 Hz with�t = 130 μs (�t+ =
1.1) between image pairs. The duration of each recording was approximately 188 eddy
turnover times (δ/U∞), yielding a total temporal record length of around 940 eddy
turnover times. The convergence of all statistical quantities was verified by random
sampling of the snapshots across different eddy turnover times. Perspective correction was
applied to the image pairs according to a planar calibration image, and a sliding-average
background of size 8 pixels was subtracted. The multipass vector calculation included
an initial pass of a square 32 × 32 pixel window, followed by a second pass with a
16 × 16 pixel circular window. To avoid spatial aliasing, interrogation windows with
50 % overlap were applied for both passes. The correlation value was also calculated
for the PIV algorithm and vectors with a correlation value lower than 0.5 were deleted.
Vectors with greater deviation than two times the standard deviation were removed and
replaced with interpolated velocity data. The spatial resolution of the underlying images
was 0.054 mm pixel−1, resulting in a spatial resolution of the velocity field, after PIV
processing, of �x+ = 39.5. The spatial resolution for the particle field was �x+ = 4.9.

The particle velocities themselves were obtained by PTV applied to the pre-binarized
fluorescent particle image pairs, where the time delay between pairs was 130 μs.
A ‘Laplace of Gaussian’ filter was applied to the particle images first, and the particle
centres were obtained with subpixel accuracy after a Gaussian interpolation, following
Heyman (2019). The velocities of the particles were then calculated by matching particle
pairs between two pulses, using the numerical approach described in Janke, Schwarze
& Bauer (2020). More than 95 % of particles in the two pulses were matched with high
confidence; the remaining 5 % particle losses were due to out-of-plane particle motions.

2.3. Particle cross-section homogenization
The threshold binarization of the fluorescent particle field had the effect of exaggerating
the size of some particles due to their greater scattering cross-section. The variations in
scattering cross-section can result from both variations in the physical size of the particle
(which, in this case is relatively small for highly monodisperse particles) and variations in
the intensity of incident light, which varies with the location of the particles relative to the
peak intensity of the laser sheet as noted by Raffel et al. (2018). In order to identify particle
clusters purely by their spatial distribution, without bias due to the scattering cross-section
of individual particles, the binarized particle images were homogenized to generate a field
in which all particles were represented with a uniform number of pixels (i.e. perfectly
monodisperse).
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Figure 2. (a) A sample particle field with particles denoted by blue points surrounded by the black edges of the
Voronoi cells. Cells with area Ā < Āc are shaded grey. (b) Probability density (p) of normalized Voronoi cell
areas (Ā) for: 105 synthetic fields generated by a Poisson process (dashed, red) with shape parameter equal to
the mean number of particles in the experimental particle fields; and 4425 experimental particles fields (solid,
black). The vertical dashed (black) line represents the crossing point between the two p.d.f.s (Āc = 0.68) which
distinguishes between clustered and non-clustered cells.

The homogenization process first eliminated all binary pixel clusters with fewer than two
pixels. The pixel clusters were then fitted by an ellipse where the major (dmaj) and minor
(dmin) axes of the ellipse were defined by the second moments of the underlying cluster
area, as described in Appendix A of Haralock & Shapiro (1991). The image processing
was performed using MATLAB. Prior to homogenization, the mode of the major axes was
approximately 3.7 pixels, and the distribution was clearly not singular, as desired. Thus,
all of the irregular shaped (polydisperse) pixel clusters were replaced by square clusters at
their original centroid locations with side length 3 pixels, corresponding to a major axis of
approximately 3.5, in order for the homogenized particle field to retain particles of similar
size as in the original particle field, but perfectly homogeneous in shape and pixel count.

3. Cluster identification

The homogenized binary particle field was used to detect spatially significant clusters
of particles using two different techniques: Voronoi tessellation and spatial wavelet
identification.

3.1. Voronoi tessellation
The Voronoi technique was implemented following the approach of Monchaux et al. (2010)
and Monchaux et al. (2012). We first analysed each homogenized particle field to obtain the
unique Voronoi tessellation of cells describing that field, as shown in figure 2(a). Each cell
represents the region of the field closer to the particle it encloses than to any other particle.
A cluster of particles is defined as a region of contiguous cells, each of area A, where the
area of each cell normalized by the average area of all cells, 〈A〉, Ā = A/〈A〉, is smaller than
some normalized threshold area, Āc, that would be expected were the particles distributed
spatially by a uniform random distribution with the total number of particles specified by a
Poisson point process, with expected value, λ, set equal to the average number of particles
per field detected in the real experiments. (An alternative method for generating synthetic
particle fields with fixed numbers of particles per field will be described in § 3.2.2.)
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Figure 3. (a) Ellipses identifying the cell clusters previously identified in the example particle field from
figure 2(a), marked with red solid lines. (b) Joint p.d.f. (p) of the major and minor axis lengths of ellipses
bounding the Voronoi clusters, including all orientation angles. The domain of the map represents the physical
measurement limits of the present experiment, including the definitional requirement for all ellipses that Lmaj >

Lmin.

Figure 2(b) shows the distribution of the cell areas from the synthetic Poisson fields
(dashed) and measured particle fields (solid). Cells bordering the edge of the measurement
region were eliminated. The intersection point between the two distributions is used as the
threshold area value, Āc. Cells with area smaller than this threshold represent regions of
unusually dense particle concentration and are marked grey in figure 2(a).

The contiguous regions of grey cells in figure 2(a) were treated as particle clusters. Note
that here, contiguity includes cells that share a common edge and even cells connected
by only a single vertex. To quantify the size and orientation of these very irregular
clusters of cells, each cell cluster was fitted to an ellipse by least squares (following the
same procedure described in § 2.3 for the pixel clusters) and the major and minor axes,
denoted Lmaj and Lmin, respectively, and the orientation angle, θ , measured with respect
to the streamwise direction, were extracted. The characteristic ellipses associated with the
Voronoi clusters are illustrated in figure 3(a). This ellipse fitting was done for consistency
with the wavelet analysis presented below in § 3.2, in which the wavelets are naturally
characterized by the geometric parameters of an ellipse. But the characteristic scale of the
Voronoi clusters can also be calculated directly by their total area and perimeter, as done
by Monchaux et al. (2010).

The parameters describing the cluster ellipses provide a convenient statistical
perspective on both the size and orientation of particle clusters in the flow. Figure 3(b)
shows the joint p.d.f. of the cluster major axes, Lmaj, with respect to the minor axes, Lmin,
averaged over all orientation angles. The vast majority of particle clusters detected by
the Voronoi technique is smaller than δ and there are almost no large clusters detected
with a size of 2δ or greater. The most probable clusters are slightly anisotropic, with
(Lmaj/δ, Lmin/δ) ≈ (0.29, 0.18). In terms of the actual area of the Voronoi cluster, the
mode was approximately

√
Av/δ ≈ 0.2. These clusters are a bit larger than the typical size

detected in previous studies; for instance, Zhu et al. (2021) reported the most probable
Voronoi area as

√
Av/δ ≈ 0.04. The difference is due to the particle volume fraction: in

Zhu et al. (2021), the volume fractions are 7 × 10−5 and 11 × 10−5, approximately one
order of magnitude higher than the volume fraction in present experiment, 9.2 × 10−6.
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The tendency of the Voronoi approach to detect small-scale features is also apparent in
reports of clustering in HIT by Monchaux et al. (2010). There, they reported an inverse
power law distribution (with an exponent of −2) of particle cluster areas, without any
particular characteristic length scale, and all of the clusters identified were nearly an order
of magnitude smaller than the integral length scale of the flow (granting that their field of
view in the streamwise direction extended only approximately two integral length scales).
Using a box-counting technique, Aliseda et al. (2002) were able to obtain a typical cluster
size for HIT of approximately 10 Kolmogorov length scales, again about an order of
magnitude smaller than the integral scales of their flow.

Based on Voronoi analysis alone, we might conclude that the significant organization
of particles is confined to the small scales and does not extend in space as far as the
coherent momentum structures, associated with LSMs. However, the Voronoi analysis is
inherently limited in its ability to detect such extended features, because even a single
non-contiguous cell can interrupt a cluster. In other words, multiple contiguous cells are
needed to instantiate a large-scale cluster, but only a single large cell can prevent one from
being detected, and thus we expect a bias towards the detection of small-scale features. In
particular, if large-scale features are the result of a superposition of small-scale features,
as is hypothesized in the case of momentum structures, then any separation between the
constituent small-scale features will prevent detection of the resultant large scales by
the Voronoi technique. We therefore turn to an alternative technique for spatial cluster
identification in order to identify large-scale particle clustering behaviour without this
bias: the wavelet.

3.2. Wavelet transformation
In order to identify large-scale particle clusters, the homogenized binary particle map was
transformed via a wavelet transform. The wavelet transform represents a convolution of
a wavelet kernal, ψ(x, z), with the underlying wall-parallel (x–z) particle field in order to
detect clusters of particles that correspond to the wavelet geometry. Farge (1992) noted that
the continuous wavelet transform is better suited for tracking coherent structures, although
worse for efficient modal representation of data. Because of this, the astrophysics studies
referenced in § 1.3 generally employed the continuous wavelet transform to identify galaxy
clusters, whereas previous turbulence studies utilized the discrete transform to produce
efficient, low-order representations of turbulent flow fields.

3.2.1. Anisotropic wavelets
The wavelet employed for the cluster detection was the anisotropic (real-valued) Mexican
hat wavelet as defined in Antoine et al. (2004), which allows for independent variations in
the minor axis length of the wavelet, Lmin, the aspect ratio of the major and minor axes,
ε = Lmax/Lmin, and the major axis orientation angle θ , and is particularly well suited for
feature detection applications, as noted by Hou & Qin (2012). The wavelet parameters
are illustrated in figure 4(a). The major and minor axes describe the spatial domain of an
ellipse that coincides with the positive annulus of the wavelet. (Note that not all anisotropic
Mexican hat wavelet definitions are the same – see the discussion in Appendix B for
details.)

As the Mexican hat wavelet is convolved with a particle field, the resulting wavelet
coefficient field represents the magnitude of the spatial particle clustering within the
positive annulus of the wavelet, discounting those particles that appear in the negative
annulus, and ignoring particles situated beyond that region. Therefore, the spatial
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Figure 4. (a) A representative wavelet amplitude map, illustrating the signed magnitude of the wavelet (red
for the positive annulus, blue for the negative), showing its major and minor axes, Lmaj and Lmin, and its
orientation angle, θ . The inset illustrates the cross-sectional slice of the wavelet across its major axis, showing
the magnitudes of the positive (red) and negative (blue) annuli. (b) A grid of the wavelet dimensions and aspect
ratios, where each intersection indicates a particular combination of wavelet parameters. The dashed horizontal
line indicates the streamwise domain size.

parameters which define the positive annulus of the wavelet also characterize the geometric
clustering of the particles detected by that wavelet. The axes are thus conceptually
analogous to the elliptical axes that were used to bound the grey cells of the Voronoi
clusters in the previous section. By varying the wavelet parameters, (Lmin, ε, θ), different
shapes and orientations of particle clusters were detected.

The wavelet transform was calculated over 10 linearly spaced minor axis scales, Lmin,
starting from the smallest scale of interest, 0.1δ or 215ν/uτ , chosen to comfortably exceed
the typical spanwise length scale of the near wall streaks (see Smith & Metzler 1983),
and extending to 0.73δ. This resulted in the largest major axis within the measurement
domain, Lmaj ≈ 5.9, obtained when the minor axis is multiplied by the largest aspect ratio
considered. The aspect ratios were linearly spaced between ε = 1 and 10. The resulting set
of wavelet dimensions is illustrated in the map in figure 4(b). Every combination of wavelet
dimensions was deployed at all orientation angles, θ = 0◦, 15◦, 30◦, . . . , 180◦, resulting in
a total number, n, of unique wavelets, (Lmin, ε, θ)j.

Each particle field, i = 1, . . . ,N, was transformed into the wavelet domain for
each unique wavelet, j = 1, . . . , n, yielding maps of wavelet coefficients Cij(x, z). The
continuous wavelet was implemented via a Fourier transform technique (‘cwtft2’ in
MATLAB), where finite boundary effects were avoided by assuming a periodic particle
domain.

Following the approach of Escalera & Mazure (1992), the locations, (x∗, z∗)ij, of the
relative maxima, C∗

ij(x
∗, z∗), of the wavelet transform field were identified using a sparse

peak finder. These maxima represent strong regions of local particle clustering at the scale
(and orientation) of a specific wavelet. However, the presence of a relative maximum alone
does not necessarily indicate a statistically significant spatial density of particles. In order
to ascertain whether the maximum is significant, it was compared with a threshold value
of the wavelet coefficient maximum, Ĉ95, at the 95th percentile level, determined via
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the wavelet transform of a uniform, spatial, random process with the same number of
particles as the field of interest. To accomplish this comparison, synthetic particle fields
were generated with a uniform random process in order to establish the statistical threshold
of significance.

3.2.2. Significance testing via synthetic particle fields
The threshold for significant wavelet maxima, Ĉ95, was determined as a function of the
wavelet geometric properties Lmin and ε (excluding θ by symmetry arguments). However,
the wavelet coefficient field was also found to depend on the size of the particles used
in the homogenization procedure, dh (measured in pixels), as well as the number density
of particles in a particular field, φp, where number density is defined as the number of
particles per field area.

The particle number density dependence also influenced the Voronoi technique
described above, and was taken into account via the generation of synthetic particle fields.
There, the random fields were based on a Poisson point process, in which the number of
particles per field was selected from a Poisson distribution with the same mean number of
particles as the measured fields. In this way, the dependence on number density was swept
into the threshold generation implicitly. An alternative approach, adopted in the wavelet
studies of Slezak et al. (1990) and Escalera & Mazure (1992), involved generating random
fields with a fixed number of particles, identical to the experimental field of interest. In
this way, the confounding effect of number density was eliminated from the threshold
completely, not just in an average sense. The difficulty with using a fixed number of
particles is that every new experimental particle field would require a corresponding set
of synthetic fields with that same particle density to generate a new statistical threshold.
Therefore, in this study, we chose the middle ground between these approaches: explicitly
modelling the wavelet field dependence on the number density, φp, to obtain higher
accuracy than the Poisson assumption (which had previously been criticized by Escalera
et al. (1992)) without the computational cost of calculating separate synthetic fields for
each new measured field.

The threshold wavelet maximum, Ĉ95(Lmin, ε, dh, φc), was determined by (1) generating
large sets of random particle fields for each parameter value; (2) finding the converged
distribution of wavelet maxima C∗ for each set; (3) selecting the 95th percentile value
of C∗ to define the threshold, Ĉ95, for each particular wavelet; and (4) fitting an empirical
function to describe parametric dependence of Ĉ95 on these individual wavelet parameters.
The functional representation of the threshold reduced the computational burden of
calculating new synthetic fields for every possible combination of wavelet parameters.
To obtain a statistically converged threshold, each set of wavelet parameters required a
large number of synthetic fields (resulting in more than 2.5 × 106 maxima detected per
wavelet). The convergence behaviour and accuracy of the threshold, Ĉ95, is discussed in
Appendix C.

Figure 5 shows the variation of the threshold, Ĉ95, as a function of the particle size, dh
in pixels (figure 5a), the particle number density (per frame), φp (figure 5b), the wavelet
minor axis, Lmin (figure 5c), and the aspect ratio, ε (figure 5d). These different relations
were collapsed into the approximate threshold function,

Ĉ95(dh,Lmin, ε, φp) = Ĉ95,0

(
dh

dh,0

)αd
(
φp

φp,0

)αφ ( Lmin

Lmin,0

)−αL(φp/φp,0)
βL(

ε

ε0

)−αε(φp/φp,0)
βε

,

(3.1)
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0 2 4 6 0.5 1.0 1.5

dh (px) Lmin/δφp

(b)(a) (c) (d )

Figure 5. The variation of Ĉ95 with respect to (a) homogeneous particle size, dh, holding the other parameters
fixed; (b) particle number density, φp; (c) wavelet size, Lmin; (d) wavelet aspect ratio, ε. The individual points
(red circles) are chosen from within the range given in the second column of table 3. The solid lines are fitted
power laws with exponents given in the last two columns of table 3.

A [A] A0 αi βi

Lmin/δ [0.31, 1.6] 1 1.079 ± 0.005 −0.052 ± 0.004
ε [1, 10] 5 0.548 ± 0.003 −0.053 ± 0.005
φp [2.8 × 10−5, 1.4 × 10−3] 5.6 × 10−4 0.512 ± 0.006 —
dh [pixels] [3, 8] 6 1.996 ± 0.002 —

Ĉ95 — 0.00270 ± 0.00002 — —

Table 3. Nonlinear, least-squares, best-fit parameters for the wavelet maxima threshold model described
in (3.1). The uncertainty is listed as standard error, where n = 132 unique wavelets were used for fitting the
power-law surface.

where each parameter, A, is normalized by a characteristic value, A0, and then raised
to a power that itself can depend on number density, in the form: αAφ

βA
p . The fit was

performed by nonlinear least square regression, and the range of parameters and their
resulting exponents and corresponding standard errors, are listed in table 3. The quality
of the fit was assessed by comparing the actual statistical percentile of the synthetic data
corresponding with the model threshold (i.e. the effective threshold percentile) versus the
design percentile of 95 from which the model was formulated. It was found that more than
87 % of the effective threshold percentiles were within the percentile of 95 ± 2.5, such
that using the model threshold was likely to produce nearly the same effective significance
level as direct examination of the distribution of maxima from synthetic fields.

The threshold relation in (3.1) was applied to the experimental particle fields to
determine which wavelet maxima represented statistically significant spatial particle
clusters. Unlike the threshold used previously in the Voronoi analysis, the percentile-based
approach adopted here allows for the choice of significance level, and provides for an
intuitive interpretation of the particle clusters. Significant particle clusters are defined
in terms of the likelihood of those clusters appearing in a field of randomly distributed
particles. Clusters of particles that result in a wavelet maximum in the top 5 % of all
wavelet maxima from randomly distributed particle fields are defined as statistically
significant. Other threshold values, from 10 % to 1 %, were also examined and result in
similar trends as presented below, with some slight variation in the prominence of less
likely (i.e. more extreme) cluster sizes.
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Figure 6. (a) Ellipses identifying the wavelet clusters, marked with red solid lines, overlayed on the Voronoi
clusters from figure 3(a). (b) Joint p.d.f. of the two ellipse axes of the wavelet clusters for all orientation angles.

3.2.3. Wavelet-identified clusters
Figure 6(a) illustrates the same example particle field used above for the Voronoi analysis,
with all the significant wavelet maxima circumscribed by their corresponding positive
annulus ellipses, showing the regions of significant, coherent clustering. The wavelet
ellipses in the example appear to encompass all of the particles previously identified by
the Voronoi analysis, along with a substantial number of additional particles not identified
by the Voronoi. Over all the particle fields, 94 % of the particles associated with Voronoi
clusters were also associated with wavelet clusters. And while the Voronoi analysis placed
approximately 32 % of all particles inside clusters, the wavelet analysis placed nearly 72 %
of all particles inside clusters. Of course, this number could be reduced by increasing
the statistical significance threshold. But more important than the difference between
these techniques in the number of particles identified within clusters is the difference
in appearance of the cluster-bounding ellipses. Unlike the Voronoi ellipses, the wavelet
ellipses overlap each other, i.e. multiple different wavelets detect the same underlying
clusters of particles, but at different scales.

The overlapping of ellipses is indicative of the hierarchical nature of the wavelet
detection technique, which identifies small clusters whose superposition creates the
appearance of larger clusters, and also those large clusters themselves. This overlap
reveals a hierarchy of particle clustering, similar to the momentum hierarchies familiar
from wall-bounded turbulence. However, this redundancy also creates an interpretative
difficulty, because the distribution of wavelet clusters inherently conveys a cumulative
picture, potentially double-counting ‘child’ clusters within ‘parent’ clusters. Thus special
care is required when analysing the distribution of the geometric cluster parameters
obtained by the wavelet technique.

Figure 6(b) shows the joint p.d.f. of the cluster major axes, Lmaj, with respect to the
minor axes, Lmin, averaged over all orientation angles, comparable to the joint p.d.f. of
the Voronoi ellipses shown earlier in figure 3(b). The Voronoi ellipse parameters were
continuously distributed and thus the joint p.d.f. could be constructed by a standard
histogram technique. However, the wavelet ellipse parameters constitute a finite set of
discrete values, illustrated by the grid in figure 4(b), and thus linear interpolation was
used to obtain a continuous probability density surface, i.e. filling in between the grid
locations. The outer boundary of the grid is shown in solid black outline. The final Voronoi
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Figure 7. (a) Joint p.d.f. for the characteristic cluster ellipses for the wavelet technique (colour levels) and the
Voronoi technique (contour lines, black) for all orientation angles; the probability peak for Voronoi clusters
and wavelet clusters are marked by magenta square and diamond, respectively. (b) The conditional joint p.d.f.
of the wavelet technique for all clusters whose centroid falls within the large-scale cluster corresponding to the
label (b) in panel (a) of the figure. (c) The conditional joint p.d.f. of the wavelet technique for all clusters whose
centroid falls within the large-scale cluster corresponding to the label (c) in panel (a) of the figure.

and wavelet p.d.f.s were linearly interpolated to the same, underlying grid density for
comparison.

The wavelet cluster joint p.d.f. shows a high concentration of isotropic clusters, ranging
from the smallest wavelets up to the largest (along the bottom edge of the graph), with
the highest probability clusters being small, nearly isotropic clusters consistent with the
Voronoi distribution. However, unlike the Voronoi distribution, the wavelet p.d.f. also
shows a substantial number of large-scale clusters with major axis larger than 1δ in length,
including both highly anisotropic clusters as well as nearly isotropic clusters. These large
scales are consistent with the overlapping, large-ellipses noted above, and thus are assumed
to be associated with the hierarchical superposition of smaller particle clusters.

4. Particle clusters and hierarchies

To better understand the content of the large-scale clusters identified by the wavelet
technique, we first compare the joint p.d.f.s of the wavelet and Voronoi clusters in
figure 7(a), superimposing the contour lines from the Voronoi joint p.d.f. in figure 3(b)
over the colour levels of the wavelet joint p.d.f. from figure 6(b).

As noted above, the major axes of most Voronoi clusters are smaller than δ, with
almost no clusters greater than δ, while we can detect a significant amount of clusters
that are greater than δ in the wavelet analysis. However, the peak of the Voronoi cluster
distribution, (Lmaj/δ, Lmin/δ) = (0.29, 0.18), is actually slightly greater than the wavelet
peak location, (Lmaj/δ, Lmin/δ) = (0.1, 0.1), which corresponds to the smallest wavelet,
i.e. the basic building block for superposition of particle clusters. The Voronoi and wavelet
peaks are marked by the magenta square and diamond symbols, respectively, in figure 7(a).
This is likely due to the hierarchical nature of the wavelet identification: all wavelet clusters
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can, in principle, be decomposed into smaller clusters, down to the smallest measurable
wavelet scale, whereas a Voronoi cluster represents only a single scale and does not allow
for the possibility that the cluster is actually composed of sub-clusters, i.e. ‘children’. So,
the Voronoi analysis is actually biased against the smallest possible constituent clusters
and thus displays a slightly larger peak cluster size than the wavelet.

Besides the peak for small clusters, the wavelet distribution also shows peaks at the large
scales which are not apparent in the Voronoi analysis, exemplified by the points labelled
(b) and (c) in figure 7(a). Point (b) represents strongly anisotropic, large-scale clusters
of size (Lmin/δ, Lmaj/δ) = (0.24, 1.92) which are similar to the dimensions of LSMs in
turbulent wall-bounded flows. Point (c) represents mildly anisotropic, large-scale clusters
of size (Lmin/δ, Lmaj/δ) = (0.66, 1.98). Because we expect these large-scale peaks in the
cluster distribution to represent a superposition of smaller scale clusters, we reconstruct a
conditional version of the joint p.d.f., including only clusters whose characteristic ellipses
overlap the ellipses of the points (b) and (c). These conditional joint p.d.f.s are displayed
in figure 7(b,c).

The conditional p.d.f. of cluster size in figure 7(b) shows that the large-scale, highly
anisotropic (long, thin) clusters detected by the wavelets are predominantly coincident
with very small, isotropic clusters (along with a small number of large-scale, isotropic
clusters). In other words, long, thin particle clusters at the scale of the LSMs can be thought
of as a superposition of small-scale isotropic clusters, reminiscent of the superposition
explanation of large-scale, long meandering momentum streaks suggested by Adrian et al.
(2000), among others. Similarly, the conditional p.d.f. of cluster size in figure 7(c) shows
that the large-scale, nearly isotropic clusters detected by the wavelets are predominantly
coincident with the long, thin clusters at point (b), in addition to the small-scale isotropic
clusters, which again substantiates the idea that the wavelets detect a wide range of ‘parent’
clusters which are constituted of one or more generations of smaller ‘child’ clusters.

Unfortunately, while the wavelet technique is adept at determining the hierarchical
relationships between parent and child clusters, there is no objective way to assign the
hierarchy of related particles a unique, characteristic scale. In other words, there is no
direct comparison with the unique clusters identified by the Voronoi analysis. However,
recent work on data-driven wavelet selection by Floryan & Graham (2021) may provide a
unique wavelet decomposition useful for making such characterizations in the future.

The identification of spatial particle clusters from instantaneous measurements, either
via the Voronoi or wavelet techniques, leaves open the question of the dynamical
significance of the detected clusters: do the instantaneous clusters exhibit an influence on
the velocity of the particles included within them? And if so, how do the particle velocities
vary, on average, with the size of their corresponding clusters?

5. Particle velocities within clusters

5.1. Particle velocity distribution
To study the velocity of the particles within the clusters, we first present the overall
probability distribution of the fluid velocity, u, and the particle velocity, up, irrespective
of the clusters, in figure 8(a). The fluid velocity distribution (in blue) is bimodal reflecting
the signature of the high and low speed streaks in the wall-parallel plane at the height
of the log layer. The particle velocity distribution is unimodal with negative skew, where
most particles are measured as travelling faster than the mean velocity. In fact, the mode
of the particle velocity distribution coincided roughly with the velocity of the near-wall,
high-speed streaks, although the particle velocities are broadly distributed.
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Figure 8. (a) Distribution of overall fluid velocity, u (blue) and particle velocities, up (red). (b) Distribution
of particle velocities in-clusters (solid) and out-of-clusters (dashed) for the Voronoi method. (c) In-cluster and
out-of-cluster particle velocities for the wavelet method.

In the hairpin paradigm, Tomkins & Adrian (2003) argued that the high-speed streaks
are associated with the forward flow induction produced by aligned hairpin legs. Dennis
& Nickels (2011) provided additional experimental evidence in support of this view, via
conditional averaging, showing that the high-speed regions appear adjacent to the hairpin
legs, due to the forward flow induction. However, this does not necessarily mean that the
particles are dynamically associated with the high-speed streaks themselves. They could
just as easily be associated with the sweeping events induced along the backbone of the
hairpin packet, as argued by Zhu et al. (2021), and still obtain a similar velocity distribution
due to the same induction process.

The overall particle velocity distribution was then conditioned on whether the particles
in question were part of a cluster or not. For the Voronoi technique, shown in figure 8(b),
the difference between the in-cluster and out-of-cluster particle velocity distributions was
very subtle, with in-cluster particles exhibiting a slightly higher average velocity. For the
wavelet technique, shown in figure 8(c), the difference was a bit more pronounced, again
with in-cluster particles travelling faster. In both cases, the differences were not significant
enough to drawn any inference about the relative position of the in-cluster particles with
respect to coherent motions in the momentum field.

5.2. Particle clusters convection scaling
In order to establish the physical orientation of the particle clusters in the turbulent
boundary layer with respect to the coherent structures, conditional averaging of the
momentum field was attempted. However, as Zhu et al. (2021) previously reported, such
averaging is impractical when dealing with very low particle concentrations in the flow.
Therefore, they employed other inferential techniques, including quadrant analysis in the
vicinity of particles, as well as conditional spectral techniques, in order to argue that
particles tended to collect along the sweep and ejection events that demarcate the outer
envelope of hairpin packets (or, equivalently, uniform momentum zones). Here, we take
a different approach towards inferring the particle orientation by exploiting the trend of
particle velocities with respect to their cluster size. The convection velocity of coherent
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Figure 9. (a) Contour map of mean particle velocity for each Voronoi cluster as a function of Lmaj and Lmin
calculated via objective mapping interpolation. (b) Grey scatter points correspond to the mean particle velocity
for each Voronoi cluster; the red line is a 0.06δ-wide, rectangular moving-average of the scattered clusters;
the black line is the average trend calculated from the contour map. The blue triangle represents the slope of
coherent structure convection velocities, uc, with respect to their streamwise wavelength, λx.

structures varies with their size, as has been known since the early work of Wills (1964),
and thus so too should the velocity of particle clusters being convected by those structures.

In order to establish a relationship between cluster size and particle convection
velocity, ideally we seek a unique convection velocity for each cluster size, ignoring
the superposition effect. Thus, in this section, we focus on only the unique clusters
identified by the Voronoi analysis. Then, to obtain the relationship between the particle
velocities and the large-scale clustering, we averaged the particle velocities conditioned
on the size of their associated Voronoi clusters in order to construct a map of the average
particle velocities as a function of the cluster axis lengths. However, because the variation
in particle velocities across different clusters was high, the averaging was performed
using the ‘objective mapping interpolation’ technique, as described by McIntosh (1990),
to obtain a smooth representation of the particle velocity trends. The maps of average
particle velocities are shown in figure 9 for the Voronoi technique. Overlapping the
particle velocities are the contour lines associated with the cluster size distribution from
figure 3(b). A general trend of increasing particle velocity with cluster size is visible in
both maps, with greater sensitivity to the variation in the ellipse minor axes compared
with the major axes.

To observe the trends in more details, we plot the average variation in particle velocity
with respect to the major and minor axes separately (averaging over the respective axes)
in figure 9(b). These plots indicate the high variability in particle velocities per cluster by
the cloud of grey points in the background (each point representing the average velocity of
particles in a specific cluster), and then show the moving-average smoothing of the cluster
velocities in red, and the average trends obtained by the ‘objective mapping interpolation’
technique in black. Both smoothing techniques resulted in a robust trend of increasing
average particle velocity with cluster size.

Adrian et al. (2000) provided a conceptual model for the convection velocity of different
sized hairpin packets. Smaller packets exist closer to the wall and induce more intense
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Figure 10. (a) Normalized convection velocity varying with streamwise (λx) and spanwise wavelength (λz)
in the log layer. (b) The convection velocity profile averaged over λz/δ = 0–2. The triangle displayed here
and in figure 9(b) was calculated from the range of coherent motions λx/δ = 4–6. Here δ corresponds to the
half-channel height in the calculation of Del Alamo & Jimenez (2009).

backward velocity than larger packets, which reach farther from the wall, meaning that
larger packets advect downstream faster. Del Alamo & Jimenez (2009) quantified how the
advection velocity of eddies increases with size as the attached eddies reach farther into the
high-speed outer flow. They employed a ‘correlation height’ for the large-scale coherent
structures and deduced the corresponding convection velocity from a convolution of the
mean velocity profile of the flow in the vicinity of the correlation height.

The approximate convection velocity of different scale coherent motions was calculated
following the approach of Del Alamo & Jimenez (2009) and is shown in figure 10 as
a function of streamwise and spanwise wavelengths of the motions, denoted λx and λz,
respectively. The mean velocity profile used in the calculation was a channel flow reported
by Hoyas & Jiménez (2008). The convection velocity averaged over spanwise wavelength
is shown in figure 10(b), where the slope of the convection velocity with respect to the
streamwise wavelength, λx (for motions with λx/δ � 3.5) is illustrated by a blue triangle.
This slope triangle has also been inset in figure 9(b) for comparison with the slope of the
particle advection velocity with respect to particle cluster size.

In figure 9(b), particle velocities and coherent motion convective velocities exhibit a
similar trend, providing further evidence to support the notion that particle clusters collect
on the back of coherent motions like hairpin packets, as proposed by Zhu et al. (2021).
However, in this slope comparison, the scale of the coherent motions was assumed much
larger than that of the particle clusters. This discrepancy between the sizes of momentum
and particle clusters may be the result of slicing the three-dimensional particle clusters
in the wall-parallel measurement plane. The discrepancy might also be attributed to the
hairpin thickness/height aspect ratio (see the attached eddy modelling of Perry & Chong
(1982) and Marusic & Monty (2019)) under the assumption that the particles are localized
narrowly in the region of highest intensity straining flow adjacent to the vortex cores.
Additional evidence that the particle clusters are associated with self-similar attached
eddies can be found in the joint-distribution of the cluster shapes themselves, shown above
in figure 3(b). Tracing along the peaks of the joint p.d.f. reveals that the most probable
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Figure 11. (a) Wall-parallel illustration of the particle field with two particle clusters labelled in green.
(b) The streamwise/wall-normal inference of the particle clusters illustrated within the outer envelope of a
hairpin packet (yellow), as proposed originally by Zhu et al. (2021), but now taking into account the differential
convection velocities of the particles due to two different size hairpin packets. The hairpins are illustrated in
purple, the induced low-speed region beneath their legs in blue, and the high-speed fluid being swept in is
shown in red. The vector, ūp reflects the relative convection velocity of the particles and coherent structures
compared with the mean flow, ū, as a function of the two hairpin packet sizes.

clusters have a roughly constant aspect ratio, independent of their size, which indicates
wall-parallel slices through self-similar attached eddies that are involved in the transport
of the particle clusters.

The particle cluster advection process, combining the previous report of Zhu et al.
(2021) with the convective velocity scaling of Del Alamo & Jimenez (2009), and the
current experiments, is illustrated schematically in figure 11. Figure 11(a) indicates the
wall-parallel view of two particle clusters of different streamwise dimensions. Figure 11(b)
shows the inference of the streamwise/wall-normal view of the particle clusters with
respect to a hairpin packet. The particle clusters are shown in the yellow region indicating
the outer interface of the hairpin packet which is illustrated as discrete, purple hairpins.
The slice of the clusters in the measurement plane is shown in green. The sweep (Q4)
and ejection (Q2) events are marked about the hairpin heads. Beneath the hairpin legs is
a region of low-momentum fluid caused by the backward vortex induction described by
Adrian et al. (2000). Above the hairpin backbone is a region of higher momentum fluid
being swept in towards the wall. The average particle velocity is denoted with a vector ūp
exceeding that of the local mean flow in the measurement plane, ū, consistent with figure 9.

6. Conclusions

The large-scale clustering of inertial particles of modest Stokes number in a TBL was
studied experimentally by two-colour, simultaneous PIV and PTV measurements in the
wall-parallel plane of the log layer. Particle clusters were educed using two techniques: a
standard Voronoi tessellation and a new implementation of the spatial wavelet transform.
The wavelet approach was designed to detect the large-scale superposition of particle
clusters that Voronoi tessellation misses by utilizing a wide range of wavelet scales and
aspect ratios, up to the size of LSMs. The wavelet detection employed significance testing
to determine statistically significant clusters based on the wavelet transformations of
synthetic, random particle fields.
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Both Voronoi and wavelet approaches identified the most common clusters at
small-scales. For the Voronoi technique, the dominant cluster size was characterized by
a bounding ellipse with major and minor axes: (Lmaj/δ, Lmin/δ) = (0.29, 0.18). For the
wavelet technique the dominant cluster was a bit smaller, (Lmaj/δ, Lmin/δ) = (0.1, 0.1).
However, whereas the Voronoi technique detected very few clusters larger than the
boundary layer thickness, the wavelet technique detected a significant number of clusters
at the scale of the LSMs (2–3δ). These large-scale clusters were shown to be the result
of superpositions of smaller scale clusters, by using conditional averaging of the cluster
size p.d.f. In particular, the large-scale clusters were composed of long, thin (anisotropic)
clusters, as well as very small, nearly isotropic clusters. The wavelet technique was thus
found to successfully identify superpositions of particle clusters at a wide range of scales,
including the scales of LSMs, but the Voronoi technique was better suited to identify
unique clusters for the purpose of understanding cluster dynamics.

The dynamics of the clusters were studied indirectly by examining the velocities of
the particles contained within them. The Voronoi detection technique, which identifies
unique clusters, indicated an increase in the particle velocities as their corresponding
cluster sizes increased, suggesting that the particles were being convected by coherent
momentum structures moving faster than the local mean flow. The variation of convection
velocity with cluster size was compared with the same variation reported for coherent
momentum structures. Despite the noise in the data (due to local particle concentrations),
the variations in convection velocity appeared consistent between particle clusters and
coherent structures, adding support to previous reports that particle clusters tend to be
advected on the backbones of hairpin packets.
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Appendix A. Streamwise/wall-normal statistics of the boundary layer

The mean velocity profile and premultiplied energy spectral density for the
streamwise/wall-normal measurements of the flow without particles are shown in
figure 12(a,b). The spatial resolution for the streamwise/wall-normal plane was
0.056 mm pixel−1, which means that for each velocity vector the spatial resolution was
41.2 wall units and 0.019δ in outer units.

Appendix B. Anisotropic Mexican hat properties

The anisotropic Mexican hat wavelet is written in different forms in a variety of texts
and software packages, and therefore some care must be taken to avoid wavelets with
side lobes in physical space, as is observed in the standard Mexican hat implementation,
‘mexh’ in MATLAB which is described in Misiti et al. (2013). The formula for ‘mexh’,
in spectral space, can be obtained by the command ‘cwtftinfo2(‘mexh’)’, where the
aspect ratio ε = (σx/σy) and the wavenumbers (ωx, ωy) are non-dimensionalized by the
scale of the wavelet, which is taken to be equal to σy. (Thus large aspect ratios refer to
wavelets stretched in the x̂-direction, and small aspect ratio refer to wavelets stretched in
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Figure 12. (a) The premultiplied, streamwise energy spectrum for the streamwise/wall-normal plane in the
present study. Black crosses correspond to standard locations of the near wall cycle (y+ = 15, λ+x = 1000) and
outer peak (y/δ ≈ 0.06, λx/δ = 6). (b) Mean velocity profile (blue circles) and turbulence intensity profile (red
triangles) for the present experiment at Reθ = 5520; black solid and dashed lines correspond to velocity and
turbulence profiles from Fernholz & Finley (1996) (Reθ = 7140). The grey rectangle represents the laser plane
in the log layer (y = 2.5–3.3 mm), with inner unit y+ = 229–302.

the ŷ-direction.) Fourier-transforming the spectral wavelet formula back to physical space
yields

ψmexh(x, y) = 2π

σxσ 5
y

(
x2

σ 4
x

+ y2

σ 4
y

− σ 2
y

σ 2
x

− 1

)
exp

[
− 1

2σ 2
y

(
x2

σ 2
x

+ y2

σ 2
y

)]
. (B1)

However, the reference cited by the MATLAB documentation reports a different
formulation in physical space, which does not correspond to the spatial transformation
of their spectral definition. This physical space formulation is described by Antoine et al.
(2004) as

ψ(x, y) = 1
σxσy

(
x2

σ 2
x

+ y2

σ 2
y

− 2

)
exp

[
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

)]
, (B2)

and also matches (to within a prefactor of 2π) the form reported more generally in the
research literature, e.g. Freeman et al. (2002). The MATLAB formulation produces a
wavelet with two discrete side lobes, whose contour levels do not form ellipses, and thus
behaves significantly differently from the standard, anisotropic Mexican hat wavelets, as
shown in figure 13.
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Figure 13. (a) The non-normalized ‘mexh’ wavelet with σx = 3 and σy = 1 as described in (B1). The dashed
line represents the bound of the negative (blue) tails, which form two distinct lobes about the positive (red)
core. (b) The non-normalized ‘gabmexh’ wavelet with the same scaling, absent any lobe structure, as described
in (B3), which is used throughout the study.

However, MATLAB offers a second anisotropic implementation of the Mexican hat
wavelet under the name ‘gabmexh’, which has the following formulation in physical space:

ψgabmexh(x, y) =
(

x2

σ 2
x

+ y2

σ 2
y

− 2

)
exp

[
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

)]
(B3)

and this reproduces the elliptical, anisotropic Mexican hat wavelet generally seen
in the literature, (B2), to within a scaling factor, which is compensated for by the
appropriate normalization. Thus we adopt the ‘gabmexh’ throughout this study, with a
σxσy normalization factor, to match the general anisotropic wavelet literature and to avoid
the side lobes.

In order to include the orientation angle, θ , in the definition of the wavelet (B3), the
unrotated x′–y′ coordinates should be transformed to x–y coordinates which are rotated by
angle θ using the two-dimensional rotation matrix.

Appendix C. Wavelet threshold model properties

The shape of the p.d.f. of the extrema coefficients, C∗, from the continuous wavelet
transform of synthetic particle fields varies for different combinations of wavelet
parameters and coverage ratios. For small wavelets relative to the features of the binary
field at low coverage ratios, the p.d.f. is discontinuous, with a left-hand side that appears
normal, representing partial overlap of the wavelets, rising to a maximum for perfect
overlap, and then on the right-hand side a nearly uniform distribution of low probability
representing overlap of multiple features within individual wavelets. As the wavelets
become larger and the coverage ratio increases, the p.d.f. becomes bimodal and then
eventually appears to converge to a beta distribution. Because the shape of the p.d.f.
varies across wavelets, we employ an empirical percentile measure to determine the
probability thresholds instead of trying to fit the shape of the p.d.f. to one of the canonical
distributions. This empirical percentile technique works so long as the p.d.f. is sufficiently
converged at the percentile of interest. More than 2.5 × 106 extrema for all cases were used
to calculate the histogram and verify its convergence.
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Figure 14. Cumulative probability distribution function (CDF) of the true, empirical percentile values, Q,
corresponding to the Ĉ95 values produced by (3.1).

Figure 14 displays the true (empirical) percentile values corresponding to the Ĉ95 values
produced by (3.1). For a perfect model, the cumulative probability distribution function
would appear as a step function at 0.95. In reality, 96.2 % of the empirical percentiles are
higher than 0.9, i.e. the vast majority of empirical percentiles are within ±5 % of the model
assumption, indicating that the power-law model does a reasonable job of replicating the
empirical percentile values.
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