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ABSTRACT. Laboratory creep deformation experiments have been conducted on initially isotropic
laboratory-made samples of polycrystalline ice. Steady-state tertiary creep rates, ε̇εter, were determined at
strains exceeding 10% in either uniaxial-compression or simple-shear experiments. Isotropic minimum
strain rates, ε̇εmin, determined at ∼∼1% strain, provide a reference for comparing the relative magnitude
of tertiary creep rates in shear and compression through the use of strain-rate enhancement factors, E,
defined as the ratio of corresponding tertiary and isotropic minimum creep rates, i.e. E= ε̇εter/ε̇εmin. The
magnitude of strain-rate enhancement in simple shear was found to exceed that in uniaxial compression
by a constant factor of 2.3. Results of experiments conducted at octahedral shear stresses of ττo =0.04–
0.80 MPa indicate a creep power-law stress exponent of n=3 for isotropic minimum creep rates and
n=3.5 for tertiary creep rates. The difference in stress exponents for minimum and tertiary creep
regimes can be interpreted as a ττo stress-dependent level of strain-rate enhancement, i.e. E ∝∝ ττ

1/2
o . The

implications of these results for deformation in complex multicomponent stress configurations and at
stresses below those used in the current experiments are discussed.

INTRODUCTION
The development of a realistic description of polycrystalline
ice rheology is one of the keys to improving the accuracy
of models used to study polar ice-sheet dynamics and to
constrain the depth–age models for ice-core palaeoclimate
records (Solomon and others, 2007). The pioneering work
of Glen (1955) provided the basis for early numerical
descriptions of polycrystalline ice flow. Based on a series
of compression experiments on isotropic polycrystalline ice
at stresses from 0.1 to 1.0MPa and temperatures between
approximately −13 and −0.02◦C, Glen (1955) proposed
an empirical power-law flow relation, based on secondary
(minimum) creep rates, where

ε̇ ≈ koσn ,
ko = β0 exp

(
− Q
RT

)
, (1)

ε̇ is the strain rate (s−1), σ is the stress (MPa) and the exponent
n = 3. The flow parameter, ko, is a function of the activation
energy for creep, Q (kJ mol−1), the universal gas constant,
R = 8.314 Jmol−1 K−1, and the absolute temperature,
T (K). The term β0 is assumed to be dependent upon
material-specific factors, including ice density, crystal size
and the concentration of soluble and insoluble impurities
(e.g. Budd and Jacka, 1989; Cuffey and Paterson, 2010).
Following the work of Glen (1955), Nye (1957) proposed a
generalized flow relation to relate the minimum (secondary)
creep data of Glen (1955) from compression experiments
to other stress configurations relevant to the flow of ice.
Assuming ice to be an incompressible, isotropic material
Nye (1957) proposed a relation between the second-
order strain-rate (ε̇ij ) and deviatoric-stress (Sij ) tensors. To a
first approximation, polycrystalline ice can be considered
incompressible, provided the ice temperature is expressed
in terms of its difference from the in situ pressure-melting

point (Rigsby, 1958). Under this assumption, strain rates are
not influenced by the hydrostatic pressure, and Glen (1958)
further generalized the flow relation for secondary creep of
isotropic polycrystalline ice to

ε̇ij = B
(
ko, J2

)
Sij , (2)

where the constant B is a function of the flow parameter, ko,
and the scalar second invariant of the deviatoric stress tensor,

J2 =
1
2

∑
SijSij . (3)

As Eqn (2) broadly accounts for the effects of deviatoric
stresses and temperature on ice deformation it has been
applied widely in modelling ice dynamics (e.g. Pattyn and
others, 2008) and is often referred to as the Glen (1958)
flow relation. A small J2-independent residual stress is often
incorporated into the definition of B(ko, J2) to avoid a
singularity and numerical errors associated with prescription
of infinite viscosities as strain rates approach zero (Hutter
and others, 1981; Greve and others, 2009; Calov and
others, 2010). Equation (2) defines an isotropic flow relation
since B(ko, J2) is a scalar, and under conditions of constant
temperature and stress the proportionality between ε̇ij and
Sij is constant for all orientations and stress configurations.
Extensive experiments of Steinemann (1954, 1958a) to

strains of ε >10% were among the first to indicate the
importance of tertiary creep and the development of
preferred patterns of crystallographic c-axis orientations
(crystal orientation fabrics) to ice dynamics. Subsequent
field observations (Budd, 1972) and experimental work
(Kamb, 1972) provided further early descriptions of how
the development of crystal orientation fabrics and textures
(grain size and shape) in natural ice masses induces large-
scale visco-plastic anisotropy, which cannot be described
by the Glen (1958) flow relation for secondary creep. In
this work we concentrate our discussion on the dynamics
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Fig. 1. Typical creep curves illustrating the difference in strain
required to develop stable tertiary strain rates for samples with
initially isotropic and compatible initially anisotropic crystal
orientation fabrics. For initially isotropic polycrystalline samples the
strain rate decreases to a minimum value, ε̇min, prior to increasing
to the stable tertiary creep rate, ε̇ter. In the case of unconfined
vertical compression, the compatible crystal orientation fabric that
develops during tertiary creep, as depicted here, is a small-circle
girdle. Illustration based on the laboratory deformation experiments
of Gao and Jacka (1987).

of polycrystalline ice within large polar ice sheets. The
importance of microstructural changes, including the de-
velopment of crystal orientation fabrics, to the dynamics of
polycrystalline ice has been highlighted by numerous field,
laboratory and model studies (e.g. Gow and Williamson,
1976; Lile, 1978; Russell-Head and Budd, 1979; Duval
and others, 1983; Azuma and Higashi, 1984; Pimienta and
Duval, 1987; Budd and Jacka, 1989; Alley, 1992; Tison and
others, 1994; Morgan and others, 1998; Wang and others,
2002; DiPrinzio and others, 2005; Durand and others, 2007).
Laboratory ice-deformation experiments provide a con-

venient means of investigating microstructural and strain-
rate evolution as a function of strain (or time). The lower
curve in Figure 1 provides a schematic representation of
the strain-rate vs strain behaviour for a constant stress
and temperature creep deformation experiment on initially
isotropic polycrystalline ice. During primary creep the strain
rate decreases rapidly and the strain is recoverable with both
elastic and anelastic components (Budd and Jacka, 1989).
The minimum in strain rate, ε̇min, at an octahedral shear strain
of εo = 0.5–2.0% is characteristic of the creep deformation
of initially isotropic polycrystalline ice, and can be consid-
ered the point where microstructural processes controlling
recoverable creep and strain hardening are balanced by the
onset of dynamic recovery and recrystallization processes
(Jacka, 1984; Budd and Jacka, 1989; Montagnat and others,
2009; Schulson and Duval, 2009). During primary creep,
deformation predominantly occurs by the movement of
dislocations on the basal planes of grains (Montagnat and
others, 2009), so that the crystal orientation fabric and texture
of initially isotropic polycrystalline ice remain unchanged at
the strain corresponding to ε̇min (which is often referred to as
the isotropic minimum strain rate).
During the transition from secondary (minimum) to tertiary

creep, dynamic recovery processes are activated, resulting
in accelerating strain rates (Poirier, 1985; Budd and Jacka,

1989; Montagnat and others, 2009; Cuffey and Paterson,
2010). At strains of ∼10% a dynamic balance between strain
hardening andmicrostructural recovery processes (e.g. grain-
boundary migration, rotation and recrystallization) develops
and is associated with the development of crystal orientation
fabrics and a steady-state tertiary creep strain rate (Poirier,
1985; Budd and Jacka, 1989; Montagnat and others, 2009;
Schulson and Duval, 2009). With the exception of the
uppermost regions of polar ice masses, large strains are
generally prevalent, so steady-state tertiary creep, indicated
by ε̇ter in Figure 1, is the deformation mode relevant to their
flow. Factors controlling the difference between ε̇min and
ε̇ter in Figure 1 include the initial crystal orientation fabric
and the stress configuration. For experiments conducted
at a constant stress and temperature on initially isotropic
polycrystalline ice, the ratio of the strain rates, ε̇ter and ε̇min,
gives the strain-rate enhancement, E (Lile, 1978), where

E =
ε̇ter
ε̇min

. (4)

As isotropic polycrystalline ice for experimental creep
studies can be readily produced in the laboratory (Jacka and
Lile, 1984), ε̇min values determined at ∼1% strain provide
a reference for normalizing tertiary creep strain rates and
making comparisons over a range of temperature and stress
regimes.

The deformation of polycrystalline ice in shear and
compression
In addition to the effects of temperature and stress, the
development of crystal orientation fabrics during tertiary
creep also strongly influences ice dynamic properties: strain
rates for anisotropic polycrystalline ice may be up to an
order of magnitude higher than corresponding values for
isotropic ice under similar conditions. Enhancement values
ranging from ∼3 to 12 have been reported for simple shear
deformation experiments (Duval, 1981; Lile, 1984; Li and
others, 1996). Enhancement values within this range have
also been estimated for the high-shear zones that exist at
depth in ice sheets, by logging the deformation of boreholes
or conducting deformation experiments on ice-core samples
retrieved from depths where high shear strain rates occur
(Russell-Head and Budd, 1979; Azuma and Higashi, 1984;
Dahl-Jensen and Gundestrup, 1987; Morgan and others,
1998; Thorsteinsson and others, 1999).
The crystal orientation fabric that evolves in simple shear

is a cluster of near-vertical c-axes, referred to as a single
maximum (Gow and Williamson, 1976; Russell-Head and
Budd, 1979; Azuma and Higashi, 1984; Tison and others,
1994; Gow and others, 1997; Morgan and others, 1997;
Thorsteinsson and others, 1997; Azuma and others, 1999;
DiPrinzio and others, 2005; Durand and others, 2007).
In this orientation the basal planes of individual grains
are favourably aligned with the macroscopic shear plane,
leading to high resolved basal shear stresses and enhanced
rates of macroscopic deformation.
Some laboratory deformation experiments and ice-core

records indicate a transient two-maxima fabric occurs
in simple shear, where the maxima are aligned along
the direction of flow. Horizontal simple-shear experiments
conducted in a torsion apparatus indicate the second
maximum, initially oriented perpendicular to the dominant
vertical maximum, becomes weaker and rotates towards the
vertical with accumulating shear strain, resulting in a single
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maximum normal to the plane of maximum resolved shear
stress; also referred to as the permanent or non-rotating
shear plane (Budd, 1972; Kamb, 1972; Duval, 1979, 1981;
Bouchez and Duval, 1982).
The crystal orientation fabric that develops at high strains

in unconfined vertical compression is characterized by a
clustering of c-axes about a conical surface. There are
few grains in near-vertical or near-horizontal orientations,
so the c-axes form a small-circle girdle pattern about the
compression axis. During compression, many c-axes rotate
towards the compression axis (Budd, 1972; Alley, 1992).
Nucleation, grain rotation, boundary migration and other
recrystallization processes contribute to the formation of a
small-circle girdle pattern with a mean c-axis colatitude of
25–30◦ (Jacka and Maccagnan, 1984). Small-circle girdle
fabrics have been recorded in the upper third of Law and
Siple Domes, where the stress configuration is dominated by
compression (Russell-Head and Budd, 1979; Thwaites and
others, 1984; Gow and Engelhardt, 2000). Similar patterns
have also been observed in regions of the Ross (Gow
and Williamson, 1976) and Amery (Wakahama, 1974) ice
shelves, where nearly equivalent longitudinal and transverse
strain rates lead to an unconfined vertical compression stress
configuration. Laboratory compression experiments of Jacka
and Li (2000) suggest that fabric evolution rates as a function
of strain might be reduced at lower temperatures and stresses.
In comparison with simple shear, enhancements are lower
for uniaxial compression, with typical values E =1–4 (Jacka
and Maccagnan, 1984; Gao and Jacka, 1987; Jacka and
Li, 2000). Similar values have been predicted by the grain-
scale polycrystalline flow relations of Lile (1978), Azuma and
Goto-Azuma (1996) and Thorsteinsson (2001).

Anisotropic flow relations for polycrystalline ice
While steady-state tertiary flow is the deformation mode of
most relevance to natural ice masses, the empirically based
and well-established Glen (1958) flow relation, derived
from isotropic minimum strain rates, continues to be widely
applied in model studies. To help alleviate this inconsistency,
values of E selected from the literature can be used as
a multiplication factor (Eqn (5)) to incorporate a simple
parameterization of polycrystalline anisotropy and other
microstructural factors, including impurities and grain size,
into strain-rate predictions (e.g. Hooke, 2005; Greve and
Blatter, 2009),

ε̇ij = koEτ
n−1
o Sij . (5)

A diverse range of flow relations incorporating a more
physically based treatment of polycrystalline anisotropy
have also been proposed. In homogenization models, the
macroscopic deformation is derived from the volume-
averaged response of individual grains or aggregates of
neighbouring grains. Flow relations defined at the scale
of individual grains include descriptions of intragranular
deformation processes and intergranular interactions (Lile,
1978; Van der Veen and Whillans, 1994; Azuma and Goto-
Azuma, 1996; Castelnau and others, 1996; Thorsteinsson,
2001, 2002; Gillet-Chaulet and others, 2005; Martı́n and
others, 2009). Some other polycrystal-scale flow relations
are less physically based, and the effects of anisotropy
are parameterized based on the crystal orientation fabric
and stress configuration or deformation (Placidi and Hutter,
2006; Seddik and others, 2008; Placidi and others, 2010).
For flow relations where crystal orientation fabrics are an
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Fig. 2. Schematic diagram of the combined shear and compression
deformation apparatus (figure adapted from Li and others, 2000).

input variable, a scheme describing fabric evolution as
a function of stress configuration and strain is required
when modelling ice-sheet evolution, which adds greatly to
the computational complexity. A further subclass of flow
relations includes phenomenological descriptions in which
the anisotropic rheology is derived from a parameterization
of the stress configuration alone, or the crystal orientation
fabric and stress configuration (Warner and others, 1999;
Wang and others, 2002; Morland and Staroszczyk, 2003;
Pettit and Waddington, 2003; Pettit and others, 2011). A
full discussion on the current state of anisotropic flow
relation development is beyond the scope of the present
work: recent reviews by Marshall (2005), Placidi and others
(2006), Gagliardini and others (2009), Greve and Blatter
(2009) and Schulson and Duval (2009) provide further
details. Key constraints in flow relation development include
achieving an acceptable balance between physical accuracy,
computational efficiency and the ability to be coupled
with or incorporated into regional- to continental-scale ice
dynamic models.
In this work we present data from uniaxial-compression

and simple-shear ice deformation experiments, conducted
with the aim of providing further insight into the rheology
of polycrystalline ice that may be applied to flow relation
development and validation.

EXPERIMENTAL METHOD
Deformation experiments were conducted using the ap-
paratus described by Li and others (1996, 2000), which
can accommodate a range of sample geometries and stress
configurations (Fig. 2). Isotropic polycrystalline ice was
produced using a method similar to that of Jacka and
Lile (1984) (Table 1; Fig. 3). By producing polycrystalline
ice using ultraclean deionized and filtered water, with a
minimum resistivity of 18.2MΩcm, the interrelated lower-
order effects of grain size and impurities (Li and others,
1998; Thorsteinsson and others, 1999) on experimental flow
rates were minimized, since concentrations of trace ion
species are below those considered necessary to significantly
influence deformation processes.
To maintain stable experimental temperatures the de-

formation apparatus is placed in a recirculating silicone
oil bath with thermistor-controlled heating elements. The
maximum error in bath temperatures due to circulation
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Table 1. Trace ion species contained in laboratory-made initially
isotropic polycrystalline ice measured using a DIONEX DX500 ion
chromatograph. Methanesulphonic acid (MSA) levels were below
the instrument detection limits

Species Mean concentration Standard deviation

μmol L−1 μmol L−1

Na+ 0.26 0.27
Mg2+ 0.01 0.01
Ca2+ 0.08 0.08
Cl− 0.47 0.54
MSA nd nd
NO−

3 0.10 0.05
SO2−4 0.03 0.02

effects and measurement uncertainty is ±0.075◦C. Sample
displacements used to determine strain rates were recorded
using digital dial indicators with a maximum error of
±6μm. The maximum total error in strain rates due to
measurement uncertainties and experimental control is 3%
(Treverrow, 2009). The difference in strain rates recorded
for otherwise identical deformation experiments may be
significantly higher; in the order of 10–30% (Gao and others,
1989; Treverrow, 2009). Due to an inverse relationship
between stress and the steady-state tertiary creep grain
size, the ratio between sample dimensions and grain size
decreases at low stress, leading to individual grains having a
disproportionate influence on strain rate at low stress which
introduces variability (Jones and Chew, 1983; Poirier, 1985;
Jacka and Li, 1994).

Uniaxial compression experiments
A series of 12 unconfined uniaxial compression experiments
was conducted on cylindrical samples of the laboratory-
made initially isotropic polycrystalline ice. The samples were
machined to a nominal diameter, D = 25.4mm, using a
lathe, had initial heights z0 = 70–80mm and a mean grain
area of ∼4mm2. The experiments were conducted at three
constant octahedral shear stresses, τo = 0.20, 0.40 and
0.80MPa at −2.0◦C. Stresses and strain rates are expressed
in terms of the octahedral shear stress, τo, and strain rate, ε̇o,
which are defined in the Appendix.
Transverse extension of cylindrical samples during vertical

compression leads to barrelling at large strains (Poisson
effect), which increases the sample cross-sectional area and
reduces τo. To minimize variations in τo the load was
periodically increased during experiments at τo = 0.20
and 0.40MPa, based on the accumulated vertical strain.
The additional load necessary to maintain τo was estimated
by assuming incompressibility and that transverse strains
are uniform along the sample length, leading to a uniform
increase in sample cross-sectional area. Despite the use of
this technique, the potential for errors in τo increases as
strains exceed 10%. To further reduce uncertainty in τo the
samples were removed from the apparatus and machined
back to a nominal diameter ofD = 25.4mm, which allowed
the load to be accurately reset prior to recommencing the
experiment. A similar two-stage experimental procedure was
used by Gao and Jacka (1987) to provide more accurate
control of τo when total strains exceed∼20%. This procedure
takes less than an hour, was conducted at−18◦C tominimize
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Fig. 3. Crystal orientation fabric data for experimental samples prior
to deformation. simple-shear experiment samples from the Dome
Summit South (DSS) ice core: (a) DSS 107 (146m), (b) small-circle
girdle fabric from DSS521 (550m) and (c) single-maximum fabric
DSS 1012 (963m). Laboratory-made, initially isotropic material
(d) was also used in uniaxial compression and horizontal shear
experiments. Data include: eigenvalues, ai , of the second-order
orientation tensor; the mean grain area, ga (mm2); the cone angle
containing the first quartile of c-axis colatitudes, φ1/4; the median
c-axis colatitude, φ1/2; and the number of grains within the thin
section, N.

microstructural modification due to stress relaxation and
provides the opportunity to cut a horizontal thin section from
themiddle of the sample for mid-experiment crystallographic
examination. Following removal of a thin section, precision
machining of the end-faces with a lathe enabled the two
sections of the original sample to be easily rejoined.
Tertiary creep strain rates at strains εo > 10% were

determined for the 12 experiments commenced on initially
isotropic samples. Following the sectioning and machining
procedure (only for experiments at τo = 0.20 and 0.40MPa)
a further eight tertiary creep rates were determined at
strains exceeding 10%. These particular experiments were
commenced on samples with initially anisotropic small-
circle girdle crystal orientation fabrics, which are compatible
with the uniaxial compression stress configuration.

Simple-shear experiments
Horizontal shear experiments were conducted on samples
with initially anisotropic crystal orientation fabrics obtained
from the 1196m Dome Summit South (DSS) ice core, drilled
4.7 km from the summit of Law Dome, East Antarctica
(Morgan and others, 1997). Additional initially isotropic
samples were prepared from laboratory-made material.
All shear experiment samples were prepared using a
bandsaw, and dimensions varied according to the amount
of material available from the selected ice-core sections.
Typically, samples were 85–100mm long and 15–20mm
wide and high.
Russell-Head and Budd (1979) and Gao and Jacka (1987)

have shown experimentally that where deformation samples
have an initial crystal orientation fabric compatible with the
applied stress configuration, the strain rate decreases directly
to the steady-state value, ε̇ter, i.e. the minimum strain rate for
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samples with the compatible fabric is the steady-state tertiary
rate. This creep behaviour is illustrated schematically by the
upper curve in Figure 1. We used a similar experimental
technique to obtain pseudo-tertiary-creep rates at strains of
1–3% for DSS ice-core samples with pre-existing anisotropic
crystal orientation fabrics.
Individual samples from three distinct depth zones within

the DSS core (DSS 107 (146m), DSS 521 (550m) and
DSS 1012 (963m) – depths are from the surface to the top
of the core sections) were used to investigate the influence
of crystal orientation fabric strength on the magnitude of
strain-rate enhancement at τo = 0.1MPa. Crystal orientation
fabrics measured prior to deformation are presented in Fig-
ure 3. Repeat measurements of the DSS borehole inclination
(Morgan and others, 1998) and flow modelling of the drill
site (Wang and others, 2002) confirm the DSS 1012 sample
is from a high-shear region, ∼230m above bedrock. This
sample was selected to provide an estimate of the maximum
strain-rate enhancement resulting from simple shear on the
compatible strong single-maximum crystal orientation fabric.
Based on surface deformation measurements, compression
at the DSS borehole site is nearly uniaxial: the longitudinal
(in the line of flow) strain rate of 3.2 × 10−4 a−1 is slightly
lower than the transverse strain rate of 4.5×10−4 a−1 (Mor-
gan and others, 1998). Modelling by Wang and others
(2002) suggests a vertical compression-dominated stress
configuration at 146m for DSS 107 and a combined shear
and compression configuration at 550m for DSS 521.
Thus, unlike the DSS 1012 sample, the experimental
simple-shear stress configuration does not match the in
situ stress configuration for the DSS 107 and DSS 521
samples. Strain rates for these samples will indicate the
relative magnitude of crystal orientation fabric strength on
strain-rate enhancement.
Experiments by Gao and Jacka (1987) and Li and

Jacka (1998) on samples with initially anisotropic crystal
orientation fabrics not compatible with the applied stress
configuration show that the minimum strain rate at ∼1%
strain differs from the value for initially isotropic samples. For
the majority of high-strain deformation in polar ice masses
a dynamic balance exists between deviatoric stress, strain
rate and fabric evolution. Therefore, while incompatible
combinations of anisotropy and stress configuration do
not replicate in situ conditions within natural ice masses,
deformation experiments involving such combinations allow
the influence of fabric on strain-rate enhancement to
be assessed.
Uniaxial-compression (Jacka and Maccagnan, 1984) and

simple-shear (Gao and others, 1989) experiments on initially
isotropic polycrystalline ice samples have shown that at
strains below εo ≈2–3% microstructural and strain-rate
changes relative to the minimum isotropic state are minimal.
Based on these results, the total accumulated strain for
experiments where the samples had a pre-existing anisotropy
was restricted to 1–3%, in order to limit microstructural
evolution and ensure the measured strain rates correspond
to the initial fabric.
A series of seven simple-shear experiments at τo = 0.075,

0.10 and 0.20MPa on isotropic laboratory-made ice were
used to determine control values for the isotropic minimum
strain rate. For these experiments and those on DSS ice-core
samples, a temperature-cycling procedure was used to obtain
strain-rate estimates at various temperatures. Experiments
were commenced at −5◦C. Once the minimum strain rate

had been reached, at εo ≈ 1%, the temperature was
cycled down through −10 and −15◦C before cycling in
reverse through the same temperatures and −2◦C. Once the
samples had equilibrated to each new temperature set point,
it was found that a minimum accumulated strain of 0.1%
was adequate to achieve a stable strain rate prior to the
next temperature step. Russell-Head (1979) has shown that
for a given temperature, minimum strain rates determined
while stepping down through a range of temperatures are
equivalent to those when stepping up through a temperature
range, and are also equivalent to those determined in
experiments conducted at a single constant temperature. A
further two simple-shear experiments were conducted on
initially isotropic laboratory-made ice at τo = 0.4MPa and
−2.0◦C where the total accumulated strain exceeded 10%,
allowing development of stable tertiary creep strain rates.
At the conclusion of all experiments, horizontal thin

sections were cut from the samples for mean grain area
and crystal orientation fabric analysis. Crystal orientation
fabrics were measured using a Russell-Head Instruments G-
50 automated ice crystal fabric analyser. Fabric data are
presented for a horizontal reference frame using lower-
hemisphere projection Schmidt equal-area plots. The mean
grain area was determined from the total number of
grains within a thin section and the thin-section area.
The total number of grains was determined during crystal
orientation fabric measurement, and the pixel count for the
corresponding thin-section bitmap image (produced by the
automated fabric analyser) was determined via digital image
analysis. The bitmap pixel dimensions are 43μm×43μm.

RESULTS
Uniaxial compression experiments
Representative creep curves for uniaxial compression exper-
iments at τo = 0.20, 0.40 and 0.80MPa are presented in
Figure 4. Distinct minima in ε̇o for experiments commenced
on initially isotropic ice are visible at ∼1% strain. In the
two-stage experiments at τo = 0.20 and 0.40MPa, ε̇o
decreases directly to the tertiary creep rate during the second
stage, as samples have pre-existing small-circle girdle crystal
orientation fabrics. Crystal orientation fabrics measured at
the conclusion of uniaxial compression experiments at τo =
0.20 and 0.40MPa, where the total accumulated strain was
εo > 20%, are presented in Figure 5.
The effect on strain rates of increasing the compression

load to account for sample barrelling is most apparent
in experiments at τo = 0.40MPa (Fig. 4). Distinct step
increases in strain rates at strains �3% indicate where the
load adjustments were made. A gradual decline in strain
rates, due to a continued decrease in τo with accumulating
strain, is evident between load adjustments. Step changes in
strain rates are smaller for experiments at τo = 0.20MPa,
as the required load increments are smaller than those for
τo = 0.40MPa and the lower strain rates allowmore frequent
load adjustments as a function of strain.
Isotropic minimum and steady-state tertiary creep strain

rates for all compression experiments are shown in Figure 6.
From linear regression of the log ε̇o–log τo data, 95%
confidence intervals were determined for the creep power-
law stress exponent (n in Eqn (2)); n = 3.8± 0.3 for steady-
state tertiary strain rates and n = 3.3 ± 0.3 for isotropic
minimum strain rates. The higher value of n for tertiary
creep compared with that for (secondary) minimum creep
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Fig. 4. Octahedral shear strain rate as a function of octahedral shear
strain for uniaxial compression experiments at τo = 0.20, 0.40
and 0.80MPa and −2◦C. Representative data from experiments
on initially isotropic samples and those with an initial small-circle
girdle crystal orientation fabric are presented. A distinct minimum
in strain rates occurs for initially isotropic samples. For experiments
commenced at τo = 0.20 and 0.40MPa, on samples with an initially
anisotropic small-circle girdle crystal orientation fabric, strain rates
decrease directly towards the steady-state tertiary value.

can be interpreted as a stress-dependent level of strain-rate
enhancement, where E ∝ τ

1/2
o , such that enhancement

increases from E ≈ 2.8 at τo = 0.20MPa to E ≈ 6.3 at
τo = 0.80MPa.
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Fig. 5. Crystal orientation fabric data measured after the completion
of uniaxial compression experiments at −2◦C. (a) τo = 0.20MPa,
(b) τo = 0.40MPa. (Crystal orientation fabric data as Fig. 3.)
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Fig. 6. Isotropic minimum and steady-state tertiary creep octahedral
shear strain rates for uniaxial compression experiments at τo =
0.20, 0.40 and 0.80MPa and −2◦C. Strain-rate enhancement, E =
ε̇o,ter/ε̇o,min, increases as a function of τo. Limits of the creep power-
law stress exponent, n, are 95% confidence intervals. The dotted
lines illustrate the small difference in the isotropic minimum and
tertiary creep rates when adjusted to stress exponents of n = 3.0
and n = 3.5, respectively. The widely accepted stress exponent of
n = 3 for the minimum creep rate of isotropic polycrystalline ice is
discussed in the text, while n = 3.5 for steady-state tertiary creep is
based on simple-shear experiments (Fig. 9) conducted over a wider
range of stresses.

Simple-shear experiments
Minimum strain rates for the simple-shear experiments
on initially isotropic ice at temperatures from −2 to
−20◦C (Fig. 7) illustrate the significant effects of stress
and temperature on isotropic polycrystalline ice flow.
Minimum isotropic strain rates from the similar simple-shear
experiments of Russell-Head and Budd (1979) have been
included to provide additional data at each temperature, and
to extend coverage down to shear stresses τo = 0.022MPa.
Creep power-law stress exponents of n ≈ 3.0 determined
from the minimum isotropic strain-rate data are consistent
with other compilations of minimum isotropic strain rates
(e.g. Budd and Jacka, 1989).
Theminimum strain rates determined for DSS samples with

initially anisotropic crystal orientation fabrics at strains of
εo =1–3% vary according to the nature of the pre-existing
fabric (Fig. 8). These strain rates can be compared via
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Fig. 7. Minimum octahedral shear strain rates for simple-shear
experiments on initially isotropic laboratory-made polycrystalline
ice. Additional data are from Russell-Head and Budd (1979). Solid
lines indicate a least-squares fit to log ε̇o–log τo data for each
temperature. Limits of n, the creep power-law stress exponent, for
each dataset are 95% confidence intervals. Alternating black and
grey symbols and lines distinguish adjacent datasets at different
temperatures.

enhancement factors calculated using isotropic minimum
strain rates from the control experiments (Fig. 7) as a
reference. In general, enhancement decreased for increasing
φ1/4 values, where φ1/4 is the cone angle containing
the first quartile of c-axis colatitudes. The highest mean
enhancement, E = 5.2, occurs for the DSS 1012 (963m)
ice-core sample obtained from the high-shear layer identified
in the DSS borehole (Morgan and others, 1998). As simple
shear is the in situ stress configuration for this sample,
E = 5.2 provides an estimate of the maximum strain-rate
enhancement for shear on a strong single-maximum crystal
orientation fabric at τo = 0.10MPa and temperatures from
−2 to −15◦C. The crystal orientation fabrics for the DSS 521
and DSS 107 samples are only partially compatible with the
experimental simple-shear stress configuration. The lower
mean E values for these samples are related to their reduced
proportion of near-vertical c-axes in comparison with the
DSS 1012 sample (Fig. 3), which is indicated by generally
higher φ1/2 and φ1/4 values. Unlike the effect of stress
on enhancement, Figure 8 indicates temperature does not
influence the level of strain-rate enhancement.
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Fig. 8. Octahedral shear strain rates for horizontal simple-shear
experiments on initially isotropic laboratory-made polycrystalline
ice and initially anisotropic samples from the DSS ice core
conducted at τo = 0.10MPa. Additional isotropic minimum strain-
rate data are from Russell-Head and Budd (1979). Lower values of
φ1/4 indicate fabrics that are more strongly vertically clustered.

As the simple-shear tertiary creep data from the current
study are limited, results from previous experiments con-
ducted using the same or similar apparatus have been in-
cluded to further illustrate differences in isotropic minimum
and steady-state tertiary creep rates as a function of stress
at −2◦C. The sources of additional data are indicated in
Figure 9. Due to the scarcity of low-stress tertiary creep
data, additional data from experiments by Lile (1984) at
−6◦C have been included after rescaling to −2◦C based on
strain-rate, stress and temperature relationships determined
from the isotropic minimum creep data of Figure 7. For
stresses between τo = 0.04 and 0.40MPa the tertiary creep
power-law stress exponent in simple shear (n = 3.5 ±
0.5) is higher than that for isotropic minimum strain rates
(n = 3.0 ± 0.2). These data suggest the enhancement–
stress proportionality of E ∝ τ

1/2
o , determined from uniaxial

compression experiments, also applies to simple shear;
however, the magnitude of E is greater for simple shear.
Analysis of the log τo–log ε̇o data in Figure 9 indicates
enhancement increases from E = 2.9 at τo = 0.04MPa to
E = 9.1 at τo = 0.40MPa.
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Fig. 9. Tertiary creep octahedral shear strain rate, ε̇o (open symbols),
vs octahedral shear stress, τo, for simple-shear experiments. The
corresponding isotropic minimum strain rates (filled symbols) are
presented for comparison. All experiments were conducted at
−2◦C using the same or similar apparatus. Sources of additional
experimental data are listed in the legend. Limits for the creep
power-law stress exponents, n, for isotropic minimum and steady-
state tertiary creep are 95% confidence intervals.

DISCUSSION
Our experimental results clearly indicate consistent differ-
ences in the creep rate power-law stress exponents for
isotropic minimum and steady-state tertiary creep. From the
simple-shear deformation experiments a power-law stress
exponent of n = 3 was determined for isotropic minimum
strain rates. This value agrees with previous compilations
of laboratory and field studies (e.g. reviews by Budd and
Jacka, 1989; Cuffey and Paterson, 2010). At strains exceeding
10%, when crystal orientation fabrics compatible with the
applied stress have developed during tertiary steady-state
creep, the data indicate a higher stress exponent of n =
3.5. In comparison with isotropic minimum strain rates,
tertiary creep rate data from experiments conducted over a
sufficiently broad range of stresses to enable calculation of
n are sparse, despite the importance of steady-state tertiary
creep to the flow of polar ice masses. In previous laboratory
studies where tertiary creep rates have been observed,
Steinemann (1958b) found n increased with stress up to n≈4
at 8MPa and Kirby and others (1987) found n = 4.0±0.6 for
experiments at stresses up to 10MPa. While these n values
exceed those reported here, they are associated with higher-
stress experiments. As such, they are compatible with the
tertiary creep stress exponent of n = 3.5 for experiments at
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Fig. 10. Octahedral shear strain rate, ε̇o, in tertiary creep vs
octahedral shear stress, τo, for unconfined compression and simple-
shear ice deformation experiments. Minimum strain rates for
isotropic polycrystalline ice are based on the data presented
in Figure 9. All experiments were conducted at −2◦C. The
compression data from Figure 6 have been referred to a tertiary
creep stress exponent of n = 3.5 and an isotropic minimum creep
stress exponent of n = 3.0. For stresses between τo = 0.04 and
0.40MPa the simple-shear enhancement increases from E = 2.9 to
9.1 and for uniaxial compression from E = 1.3 to 4.0.

stresses between τo = 0.04 and 0.40MPa, which are more
relevant to polar ice dynamics.
The simple-shear and uniaxial compression strain-rate data

indicate that a similar proportionality of E ∝ τ
1/2
o exists

between strain-rate enhancement and the octahedral shear
stress in both stress configurations. For simple shear this
proportionality was determined over stresses from τo = 0.04
to 0.40MPa; for uniaxial compression strain rate, data are
from a narrower range of higher-magnitude stresses from
τo = 0.20 to 0.80MPa. To enable direct comparison of the
simple-shear and uniaxial compression steady-state tertiary
creep rates (Fig. 10), the uniaxial compression strain-rate
data have been extrapolated down to τo = 0.04MPa, the
minimum stress within the simple-shear tertiary creep data
compilation. As a steady-state tertiary creep stress exponent
of n = 3.5 applies down to τo = 0.04MPa at −2◦C for
simple shear, we assume this is also the case for unconfined
compression and rescale the data appropriately. Similarly,
we assume a stress exponent of n = 3 for isotropic minimum
creep rates in compression.
The isotropic minimum and tertiary strain rates from both

uniaxial-compression and simple-shear experiments at−2◦C
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are summarized in Figure 10, which clearly illustrates the
difference in shear and compression tertiary creep strain rates
and their relation to isotropic minimum strain rates.

Flow relations for shear and compression
The relationship between stress and tertiary creep rate for
simple-shear and unconfined compression alone (Fig. 10)
provides the basis for flow relations in these single-
component stress configurations. The tertiary creep stress
exponent of n = 3.5 may be interpreted in the context of
a flow relation with a cubic dependence on τo and a stress-
dependent level of enhancement, where E ∝ τ

1/2
o . Based

on Eqn (5) and Figure 6, a suitable expression for ε̇o in
compression alone is

ε̇o = koEcτ3o , with Ec = ecτ
1/2
o , (6)

where Ec is the stress-dependent uniaxial compression strain-
rate enhancement. The constant, ec, is an enhancement scale
factor for compression, and ec = 6.3 (MPa)−1/2 when τo has
units of MPa. Similarly for shear alone,

ε̇o = koEsτ
3
o , with Es = esτ

1/2
o . (7)

The shear strain-rate enhancement, Es (Fig. 9), is de-
termined by the shear enhancement scale factor, es =
14.4 (MPa)−1/2. The ratio es : ec = 2.3 describes the rela-
tive magnitude of simple-shear and uniaxial-compression
strain rates and is similar to values determined in other
experimental studies (e.g. Budd and Jacka, 1989). Modelling
using grain-scale anisotropic flow relations (Azuma and
Goto-Azuma, 1996; Thorsteinsson, 2001) has shown that
where crystal orientation fabrics compatible with simple
shear (single maximum) and unconfined compression (small-
circle girdle) exist, the higher levels of shear strain-rate
enhancement in shear have a geometric origin. For an
aggregate of grains, the mean resolved shear stress on the
basal planes of the individual grains is higher for simple shear
on a single-maximum fabric where the mean orientation of
c-axes is approximately normal to the plane of shear.

Flow relations for combined stress configurations
The stress configurations in natural ice masses are invariably
a complex combination of compression, extension and
shear components, which should all be considered when
describing the flow. The laboratory deformation experiments
in combined vertical compression and horizontal simple
shear of Li and others (1996) and Warner and others (1999)
led to the development of flow relations for combined
simple shear and confined compression. These experiments
showed that a transition in enhancement occurs when stress
configurations vary from compression alone to shear alone.
Our results add to this previous knowledge by refining values
of Ec and Es and describing their dependence on τo. Since
Ec and Es display a similar proportionality to τo we propose
a development of the flow relation of Warner and others
(1999), on the basis that a similar dependence of E on τo
exists in combined stress configurations. From the current
experimental stress configurations, we define an orthogonal
coordinate system, where the shear stress, τ , is applied in the
x-direction, compression, σ, in the vertical z-coordinate and
the y-coordinate is normal to the xz-plane. In this reference
frame, the deviatoric stress tensor, Sij , for simple shear and

unconfined compression is

Sij =

⎛
⎝

σ
3 0 τ
0 σ

3 0
τ 0 − 2σ

3

⎞
⎠ =

⎛
⎝

Szz
2 0 Sxz
0 Szz

2 0
Sxz 0 −Szz

⎞
⎠ , (8)

where Sxz = τ and Szz = 2σ/3 are the shear
and compression deviators and the magnitude of the
corresponding octahedral shear stress is

τo =

√
2
3

(
S2xz +

3
4
S2zz

)
1/2

. (9)

In combined unconfined compression and simple shear
(Eqn (8)), the proportions of the deviatoric components can
be described by the shear fraction, λs (Li and others, 1996),

λs =
Sxz√

S2xz + 3
4S

2
zz

, (10)

where for unconfined compression alone λs = 0 and in shear
alone λs = 1.
Under similar conditions the shear-alone enhancement,

Es, is greater than that in compression alone, i.e. Es/Ec = 2.3,
which suggests that in combined stress configurations there
may not be a direct relation between ε̇o and τo and the
components of Sij should be weighted by the appropriate
component enhancements. Accordingly, we introduce the
weighted anisotropic mean shear stress, To, of Warner and
others (1999),

T 2o =
2
3

(
α2S2xz +

3
4
β2S2zz

)
, (11)

where α = E1/3s and β = E1/3c . Following Warner and others
(1999), the corresponding shear (ε̇xz ) and compression (ε̇zz )
component strain rates in combined shear and compression
are

ε̇zz = 2
3koβ

(
α2S2xz + 3

4β
2S2zz

)
Szz , (12)

ε̇xz = 2
3koα

(
α2S2xz + 3

4β
2S2zz

)
Sxz . (13)

The octahedral shear strain rate for tertiary creep, defined in
terms of To, is (Warner and others, 1999)

ε̇o = koT
3
o . (14)

By substitution of Eqns (9–11) into Eqn (14) the stress
dependence of component strain-rate enhancement during
tertiary creep is explicitly incorporated into the octahedral
shear strain rate:

ε̇o = ko
[
β2 + λ2s

(
α2 − β2

)] 3
2
τ3o . (15)

When λs = 0 or 1, Eqn (15) reduces to the corresponding
relations for ε̇o in compression or shear alone (Eqns (6) and
(7)). In combined stress configurations where 0 < λs < 1 the
octahedral shear strain-rate enhancement, Eo, is given by

Eo =
[
β2 + λ2s

(
α2 − β2

)] 3
2
. (16)

By making the substitutions α = E1/3s and β = E1/3c ,
and recalling that Es = esτ

1/2
o and Ec = ecτ

1/2
o , Eqn (16)

provides a description of enhancement factor Eo as a function
of both stress configuration and magnitude. The family of
curves in Figure 11 is based on this relation, and presents
a hypothetical interpolation of enhancement in combined
uniaxial compression and simple shear (Eqn (8)), for stresses
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Fig. 11. Tertiary creep octahedral shear strain-rate enhancement,
Eo, as a function the shear fraction, λs, in combined unconfined
compression and simple-shear stress configurations. As λs→ 0 the
shear deviatoric stress Sxz → 0, while as λs→ 1 the compression
deviatoric stress Szz → 0. The Eo–λs relationship (Eqn (16)) is
plotted for a range of octahedral shear stresses, τo (MPa). The
strain-rate enhancement for shear alone (λs = 1) is ∼2.3 times the
corresponding value in compression alone (λs = 0) for all values
of τo.

from τo = 0.025 to 0.40MPa. In developing their flow
relation for combined shear and compression, Warner and
others (1999) assumed a ratio of shear to compression
enhancement factors of Es/Ec ≈ 4. Our compilation of
unconfined compression and simple-shear experimental
data over a broader range of stresses provides a refinement of
this ratio to Es/Ec ≈ 2.3. Additionally, Eqn (16) builds on this
previous work by providing a simple parameterization of the
effect of stress magnitude, τo, on enhancement that can be
easily incorporated into other anisotropic flow relations that
relate the strain-rate and deviatoric stress tensors. Examples
include the phenomenological flow relation of Warner and
others (1999) and the grain-scale crystal orientation fabric
based flow relations of Azuma and Goto-Azuma (1996),
Castelnau and others (1996), Thorsteinsson (2001), Gillet-
Chaulet and others (2005) and Placidi and others (2010).
Our results provide a clear illustration of the influence

of stress configuration and magnitude on tertiary strain
rates. Additional experiments over a broader range of
temperatures and stresses are required to further describe
flow in combined stress configurations relevant to the
dynamics of large polar ice masses. Equation (15) has been
developed from strain-rate data for stress configurations
incorporating unconfined compression and/or simple shear:

the limited availability of tertiary creep data from deform-
ation experiments in other stress configurations currently
precludes a broader description of Eo. We have recently
completed a series of experiments that will assist with
flow relation development by providing further data on
individual component strain rates and their stress-dependent
enhancement in combined shear and confined compression.

Low-stress tertiary creep behaviour
Unlike isotropic minimum strain rates, which are associated
with a transient stage of secondary creep at ∼1% total
strain, steady-state tertiary creep rates are controlled by a
dynamic balance between deformation processes, which
increase the dislocation density, and recovery processes
involving grain-boundary migration and the formation of
strain-free nuclei. Other processes, including non-basal slip,
grain-boundary sliding and diffusion, are considered to
provide a minor contribution to recovery (Montagnat and
others, 2009; Schulson and Duval, 2009). Differences in
the stress dependence of tertiary and isotropic minimum
strain rates (Fig. 10) may be due to differences in rate-
controlling processes for the two creep regimes (Schulson
and Duval, 2009). The convergence of tertiary and isotropic
minimum strain rates at low stresses due to differences in
their stress dependence (Fig. 10) raises the question of what,
if any, changes to the stress dependence of steady-state
tertiary creep occur at very low stresses. The availability of
laboratory data to validate the low-stress creep behaviour
is limited by the difficulties associated with conducting the
long-running experiments necessary to determine very low
tertiary creep rates.
The uniaxial compression experiments of Jacka and Li

(2000) at stresses from τo = 0.10 to 0.80MPa and
temperatures of −5 to −45◦C support the observed stress-
dependent levels of strain-rate enhancement during steady-
state tertiary creep and the resulting convergence of tertiary
and minimum isotropic strain rates with decreasing stress.
Jacka and Li (2000) conclude this behaviour reflects a
temperature-dependent shift in rate-controlling processes: at
higher stresses and temperatures, migration recrystallization
is dominant. As temperature and stress decrease, migration
recrystallization becomes less influential, with other deform-
ation modes, including rotation recrystallization and poly-
gonization, controlling strain rates (Montagnat and others,
2009; Schulson and Duval, 2009). In general, Jacka and Li
(2000) report lower enhancements than those determined
from the current experiments, including E ≈ 1 at τo = 0.10–
0.20MPa for experiments at −15 and −19◦C. Two factors
may have contributed to these low enhancement values.
Firstly, the applied load was not periodically increased to
offset the reduction in τo resulting from sample barrelling.
If no load adjustments are made during unconfined vertical
compression, by 10% strain the strain rate will be reduced to
∼70% of the anticipated value. Secondly, in the experiments
at τo = 0.10MPa the total accumulated strains may have
been insufficient to develop a steady-state tertiary creep rate
(e.g. total strains were <5% for experiments at −15 and
−19◦C). In comparison, an enhancement of E = 2.8 was
determined from the current experiments at τo = 0.20MPa
and −2◦C when εo > 15% (Fig. 6). A single experiment at
−45◦C with τo = 0.20MPa by Jacka and Li (2000), in which
two-stage experimental procedures were used to maintain
a stable load, provides better agreement with the current
results. The resulting enhancement of E = 1.7 determined at
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εo = 6% is an estimate of the minimum enhancement at τo =
0.20MPa and −45◦C, as the experiment was incomplete
and the strain rate still accelerating when the results were
published (Jacka and Li, 2000). These observations suggest
that while a low-stress reduction in enhancement to E ≈ 1
is possible, such a transition is likely to occur at a stress
below the τo ≈ 0.1MPa suggested by the data of Jacka
and Li (2000) and therefore at a stress below which there
are currently sufficient field and laboratory data to enable
accurate quantification.
A range of experimental studies indicate a shift in the

stress dependence of the creep power law to n < 3
at stresses of 0.1–0.3MPa (e.g. Steinemann, 1958b; Jacka,
1984; Pimienta and Duval, 1987; De La Chapelle and
others, 1999; Song and others, 2005). These data must be
applied cautiously to steady-state tertiary creep as, with
the exception of Steinemann (1958b), they relate to either
isotropic minimum (secondary) strain rates or estimates of
isotropic minimum strain rates determined by extrapolation
of experimental data where total strains were significantly
less than 1% (e.g. Pimienta and Duval, 1987). In uniaxial
compression experiments where minimum creep rates were
clearly determined, indications of a stress-dependent shift
in creep behaviour are variable: De La Chapelle and others
(1999) report a transition to n = 1.8 ± 0.2 at axial stresses
below ∼0.1MPa (τo < 0.05MPa); the data of Jacka (1984)
indicate n ≈ 2 for τo < 0.1MPa, and Song and others (2005)
found n = 1 below 0.3MPa (τo = 0.14MPa). Song and
others (2005) attribute their relatively high-stress transition
in n to sample preparation techniques.
The derivation of robust estimates of n from field

observations has proven difficult. As the stresses driving
borehole closure are related to the overburden pressure,
the Paterson (1977) estimates of n = 3 from the closure of
five polar boreholes generally correspond to stresses greater
than 0.1MPa, and the measured deformation is not steady-
state, since primary, secondary and tertiary creep of the
ice adjacent to the boreholes contributes to their closure.
Dahl-Jensen and Gundestrup (1987) obtained n = 2–3
from several different analyses of Dye-3 borehole tilt data;
however, the derivation of robust estimates of n from in-
clinometer measurements is confounded by the requirement
that all factors that influence the viscosity (temperature,
polycrystalline anisotropy, impurities) be quantified in order
to accurately determine the stress.
Despite a lack of conclusive laboratory and field data

indicating a transition in the power-law stress dependence
of tertiary creep, if one assumes that tertiary creep rates are
always greater than or equal to the corresponding isotropic
minimum values, then indications of a transition to n < 3
for isotropic minimum creep necessitate a transition to a
similar or lower value of n during tertiary creep. Based on
experimental indications of a transition to n < 3 for isotropic
minimum creep rates at stresses below τo = 0.1MPa, a
transition from n = 3.5 to n < 3 during tertiary creep may
occur at a similar or lower stress. Figure 9 indicates that for
simple shear any transition in nmust occur at τo < 0.04MPa.
In modelling flow in low deviatoric stress environments,

such as ice divides, Pettit and Waddington (2003) proposed
a multicomponent flow relation with n = 1, 3 and 5 terms.
The linear term was found to be dominant at low stresses,
and Pettit and Waddington (2003) define the crossover stress
as the deviatoric stress where the n = 1 and n = 3
components of the flow relation contribute equally to the

total deformation. Using a combination of modelling and
observations at Siple Dome, West Antarctica, Pettit and
others (2011) reported a crossover stress equivalent to τo =
(1.5× 10−2)± (2.0× 10−3)MPa.
Extrapolation of the experimental log ε̇o–log τo data for

tertiary and isotropic minimum creep strain rates (Fig. 10)
to low stresses allows calculation of a critical stress τ co
at which the tertiary (n = 3.5) and isotropic minimum
(n = 3) strain rates will be equivalent, resulting in E =
1. No physical significance is attached to τ co ; it merely
provides a reference for assessing differences in tertiary and
isotropic minimum creep rates. For uniaxial compression
τ co = (2.5 × 10−2) ± (5.0 × 10−3)MPa and τ co = (4.8 ×
10−3)± (2.0× 10−3)MPa for simple shear. It is noteworthy
that the crossover stress of Pettit and others (2011) is
similar to τ co = (2.5 × 10−2) ± (5.0 × 10−3)MPa for
uniaxial compression, as τ co provides a lower bound for
any transition from a tertiary creep regime with n = 3.5
to one with n < 3. While the occurrence of a transition in
the tertiary creep regime is not excluded by the observed
differences in n for tertiary and isotropic minimum creep,
the mechanisms responsible plus the combined influence of
factors including stress configuration, stress magnitude and
temperature remain unclear. These uncertainties highlight
the need for additional laboratory and field observations of
low-stress steady-state tertiary creep behaviour. Conducting
well-controlled laboratory experiments under the low-stress
and -temperature conditions necessary to address these
uncertainties is not trivial: depending upon experimental
variables and techniques, 5 years or more may be required
to obtain steady-state tertiary creep rates.

SUMMARY
The high strain creep that predominates in polar ice
masses can be considered similar to the steady-state tertiary
creep strain rates determined in laboratory deformation
experiments. Isotropicminimum strain rates, which are easily
measured in the laboratory, provide a useful, reproducible
reference for investigating tertiary strain rates in shear and
compression stress configurations. Strain-rate enhancement,
defined as the ratio of corresponding tertiary and isotropic
minimum strain rates, E = ε̇ter/ε̇min, has been used to
compare steady-state tertiary creep rates in shear and
compression. The results presented here help to clarify the
wide range of enhancement factors for tertiary creep by
showing there is a systematic increase in enhancement with
stress in both simple shear and unconfined compression.
Based on unconfined compression and simple-shear creep

deformation experiments at stresses ranging from τo = 0.02
to 0.80MPa the creep power-law stress exponent for isotropic
minimum strain rates is n = 3. This value agrees with those
found in many previous experimental studies of isotropic
minimum strain rates. Uniaxial-compression and simple-
shear tertiary creep data at stresses from τo = 0.04 to
0.80MPa are best described by a power law where n = 3.5.
Various studies (e.g. Pettit and others, 2011) have suggested
the existence of a low-stress linear (n = 1) creep regime.
Based on experiments at −2◦C in this study, any transition
to a n = 1 creep regime would occur at τo < 0.04MPa.
The difference in n for isotropic minimum and steady-state

tertiary creep rates can be interpreted as a stress-dependent
level of strain-rate enhancement where E ∝ τ

1/2
o . Under

similar conditions of temperature and stress, the shear and
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compression enhancement factors are related as Es/Ec ≈ 2.3.
Experimental results show that for stresses from τo = 0.04 to
0.50MPa the shear strain-rate enhancement increases from
Es = 2.8 to 10.2, while in compression at τo = 0.20–
0.80MPa the enhancement increases from Ec = 2.8 to
5.6. Extrapolation of the compression data down to τo =
0.04MPa gives an enhancement of E = 1.3.
Based on a compilation of experimental data and the

flow relation of Warner and others (1999) we have
provided a simple example of how the stress dependence
of enhancement identified for shear and compression alone
might be propagated into more complex deformations. At
present, there are limited experimental data from combined
shear and compression deformation, and a systematic series
of experiments in complex stress configurations relevant
to the flow of polar ice masses, combined with field
observations of strain rates and crystallography, is required
to further develop and validate the necessary flow relations.
Similarly, description of the low-stress and -temperature
rheology of polycrystalline ice is incomplete and requires
further investigation. In particular, details of a low-stress
transition to a creep regime with a power law stress exponent
of n < 3 remain unclear.
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APPENDIX
Jaeger (1962) describes a plane whose normal has direction
cosines l = m = n = 1/

√
3 relative to the principal axes

and is thus equally inclined to the principal axes. This plane
is referred to as the octahedral plane, as there are a total of
eight planes which can be defined with direction cosines of
|1/√3| relative to the principal axes. The shear stress acting
on this plane is known as the octahedral shear stress, τo, and
is a function of only the second invariant of the deviatoric
stress tensor, J2 = 1

2

∑
SijSij . The octahedral shear stress,

τo, is the root mean square of the principal stress deviators,

making it a useful quantity for comparing the magnitude of
stresses in different configurations,

τo =
(
1
3

∑
SijSij

)
1/2

=
(
2J2/3

)
1/2 . (A1)

Similarly, the octahedral shear strain rate, ε̇o (Eqn (A2)), is
the shear strain rate on the octahedral plane and provides a
useful measure of generalized strain-rate magnitude,

ε̇o =
(
1
3

∑
ε̇ij ε̇ij

)
1/2

=
(
2E2/3

)
1/2 , (A2)

where E2 is the second invariant of the second-order strain-
rate tensor, ε̇ij . The effective shear stress,

τe =

√
3
2
τo, (A3)

and effective strain rate,

ε̇e =

√
3
2
ε̇o, (A4)

defined by Nye (1957) are also functions of J2 and E2 and
provide alternative, less physically relevant measures of stress
and strain rate, particularly when comparisons between
stress configurations are being made.
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