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We investigate the route to dissipation in strongly stratified and rotating systems
through high-resolution numerical simulations of the Boussinesq equations (BQs) and
the primitive equations (PEs) in a triply periodic domain forced at large scales. By
applying geostrophic scaling to the BQs and using the same horizontal length scale
in defining the Rossby and the Froude numbers, Ro and Fr , we show that the PEs
can be obtained from the BQs by taking the limit Fr2/Ro2→ 0. When Fr2/Ro2 is
small the difference between the results from the BQ and the PE simulations is shown
to be small. For large rotation rates, quasi-geostrophic dynamics are recovered with
a forward enstrophy cascade and an inverse energy cascade. As the rotation rate is
reduced, a fraction of the energy starts to cascade towards smaller scales, leading
to a shallowing of the horizontal spectra from k−3

h to k−5/3
h at the small-scale end.

The vertical spectra show a similar transition as the horizontal spectra and we find
that Charney isotropy is approximately valid also at larger wavenumbers than the
transition wavenumber. The high resolutions employed allow us to capture both ranges
within the same simulation. At the transition scale, kinetic energy in the rotational
and in the horizontally divergent modes attain comparable values. The divergent
energy is several orders of magnitude larger than the quasi-geostrophic divergent
energy given by the Ω-equation. The amount of energy cascading downscale is mainly
controlled by the rotation rate, with a weaker dependence on the stratification. A larger
degree of stratification favours a downscale energy cascade. For intermediate degrees
of rotation and stratification, a constant energy flux and a constant enstrophy flux
coexist within the same range of scales. In this range, the enstrophy flux is a result
of triad interactions involving three geostrophic modes, while the energy flux is a
result of triad interactions involving at least one ageostrophic mode, with a dominant
contribution from interactions involving two ageostrophic and one geostrophic mode.
Dividing the ageostrophic motions into two classes depending on the sign of the linear
wave frequency, we show that the energy transfer is for the largest part supported
by interactions within the same class, ruling out the wave–wave–vortex resonant triad
interaction as a mean of the downscale energy transfer. The role of inertia-gravity
waves is studied through analyses of time-frequency spectra of single Fourier modes.
At large scales, distinct peaks at frequencies predicted for linear waves are observed,
whereas at small scales no clear wave activity is observed. Triad interactions show
a behaviour which is consistent with turbulent dynamics, with a large exchange of
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energy in triads with one small and two large comparable wavenumbers. The exchange
of energy is mainly between the modes with two comparable wavenumbers.

Key words: geostrophic turbulence, rotating turbulence, stratified turbulence

1. Introduction
Flows in the atmosphere and in the oceans develop over an extremely wide range

of scales, both in time and space. The atmosphere is largely forced at scales of
the order of 1000 km, where baroclinic instability converts available potential energy,
related to the meridional temperature gradient, to kinetic energy. Similarly, the general
circulation of the oceans is mainly driven by surface fluxes of momentum at scales
as large as 1000 km. On the other hand, the dissipation of energy can only be
achieved by molecular friction and diffusion. As opposed to the large-scale forcing,
viscosity and diffusivity act at very small scales, which can be estimated to be of the
order of centimetres. How energy can cascade from the largest to the smallest scales,
over a range of about eight orders of magnitude, is not fully understood (Muller,
McWilliams & Molemaker 2005). Even though the nonlinearities in the Navier–Stokes
(NS) equations provide a mechanism for energy transfer between scales, the routes
to dissipation are presently not clear. The general problem of how energy can be
transferred from the very largest to the very smallest scales in geophysical flows has
recently been the subject of several studies (Muller et al. 2005; Waite & Bartello 2006;
Molemaker, McWilliams & Capet 2010).

At synoptic scales, of the order of 1000 km, atmospheric dynamics are highly
affected by both rotation and stratification. The relative importance of Coriolis forces
and buoyancy forces as compared with inertial forces are often quantified by the
Rossby and the Froude numbers, defined as

Ro= U

f l
, Fr = U

Nl
. (1.1)

Here, U is a characteristic velocity, l a characteristic length, f = 2Ω sin θ is the
Coriolis parameter, with Ω being the rotation rate and θ the latitude, and N is the
Brunt–Väisälä frequency. Note that we have not used a vertical length scale in the
definition of Fr , as is common practise, but rather the same horizontal length scale l
as in the definition of Ro. With these definitions we have Fr/Ro= f /N. In the limit of
very strong rotation and stratification, the NS equations can be reduced to the so-called
quasi-geostrophic (QG) equation, stating that the potential vorticity, q, is materially
conserved (Charney 1971). Therefore, the QG equation conserves independently two
quadratic invariants: total energy, which is the sum of potential and kinetic energy,
and potential enstrophy, defined as q2/2. In this limit there is an inverse cascade of
energy dominating the large scales and a forward cascade of enstrophy dominating
the small scales, just as in two-dimensional turbulent flows (Kraichnan 1967). The
energy spectrum scales as k−5/3 in the energy inertial range and as k−3 in the enstrophy
inertial range. Recent high-resolution numerical simulations (Scott 2007; Boffetta &
Musacchio 2010; Vallgren & Lindborg 2011) have mainly confirmed this picture,
although some anomalous effects due to large-scale vortices have also been reported
(Scott 2007; Vallgren 2011).
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68 E. Deusebio, A. Vallgren and E. Lindborg

Cambon, Mansour & Godeferd (1997) studied the effect of system rotation on the
downscale energy transfer. As the rotation rate is increased, the energy cascade is
inhibited and the forward energy transfer terms are damped, leading to a reduction of
the small-scale dissipation. Indeed, the inverse-cascade dynamic of strongly rotating
and stratified systems seems to be inconsistent with small-scale energy dissipation,
posing the intriguing question of how and where the transfer might take place
(Wunsch & Ferrari 2004; Muller et al. 2005; Ferrari & Wunsch 2009). Interaction
between preexisting inertia gravity waves and large mesoscale motions may provide
a possible mechanism (Nikurashin & Ferrari 2011). Indeed, also boundary effects as
top and bottom turbulent boundary layer and internal waves produced by topography
can lead to small-scale dissipation (Ferrari & Wunsch 2009). This route may be
important in the oceans where most of the energy injected by the surface wind
stresses is dissipated close to the sea surface. However, there is also ‘a direct route
to dissipation in the ocean interior by a forward energy cascade’ (Molemaker et al.
2010). An interesting perspective is offered by the hypothesis that finite rotation rates
lead to a transfer of energy from balanced, geostrophic motions to unbalanced motions
(Bartello 1995; Waite & Bartello 2006; Bartello 2010; McWilliams 2010; Molemaker
et al. 2010). Possible mechanisms underlying this transfer may be frontogenetic and
frontal instabilities, mixed-layer instabilities, localized diapycnal mixing and surface
filamentogenesis (McWilliams 2010). The QG equation is not able to capture this
process. Therefore, the primitive equations (PEs) or the Boussinesq equations (BQs)
should rather be considered. The BQs with hydrostasy assumed in the vertical
direction is often referred as PEs. Stability analysis of a non-geostrophic and non-
hydrostatic Eady problem shows the appearance of new kind of instabilities apart from
the classical baroclinic instability. Such instability may lead to a transfer of energy
from geostrophic to ageostrophic motions (Molemaker, McWilliams & Yavneh 2005).
Viúdez & Dritschel (2006) studied the breakdown of a baroclinic geostrophic jet,
finding the emission of unbalanced wave motions with frequencies close to the inertial
frequency. Moreover, it has recently been shown that forced Eady flows can relax
to statistically stationary states only if ageostrophic motions are taken into account
(Molemaker & McWilliams 2010). That is to say, QG flows cannot establish efficient
and steady routes to dissipation.

Numerical simulations of strongly stratified flows (Riley & deBruynKops 2003;
Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007) have shown that
a forward energy cascade can develop and that a steady route to dissipations can
be maintained, also in weakly rotating systems (Lindborg 2006; Waite & Bartello
2006). Using an eddy-damped quasinormal Markovian (EDQNM) closure, Godeferd
& Cambon (1994) argued that a stable stratification may create a strongly anisotropic
structure which prevents the development of an inverse cascade of energy. As already
noted by Lilly (1983), stratification results in a decoupling of the dynamics into layers,
leading to large gradients in the vertical direction. The resulting Kelvin–Helmholtz
(KH) instabilities provide a mechanism for a downscale energy cascade. Whereas
the horizontal Froude number, Fr = U/Nl, is very small, KH instabilities keep the
vertical Froude number, Frv = U/Nh, of the order of unity (Billant & Chomaz 2001;
Riley & deBruynKops 2003), naturally setting the flow layers thickness. Here, l and
h are the characteristic horizontal and vertical length scale, respectively. The ratio
α = h/l = Fr/Frv is a very small quantity in strongly stratified flows, which means
that flow structures are highly elongated in the horizontal direction and very confined
in the vertical. Such structures are often referred to as pancake structures. Waite &
Bartello (2006) studied the vertical length scales for stratified and rotating geostrophic
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The route to dissipation in strongly stratified and rotating flows 69

turbulence. For small Ro, they found that the scaling suggested by Charney (1971),
h ∼ lf /N, applies. On the other hand, for Ro > 0.1, Frv became of the order of
unity and independent of Ro and Fr , in agreement with the prediction of Billant
& Chomaz (2001) for stratified turbulence. As in three-dimensional turbulence, both
kinetic and potential horizontal wavenumber energy spectra of strongly stratified flows
scale as k−5/3

h . Lindborg & Brethouwer (2007) showed that in this range, rotational
and divergent modes, often referred to as wave and vortical modes, have comparable
magnitude. In contrast to what has been suggested in many studies (e.g. Lelong &
Riley 1991), they showed that there is no strict dynamic decoupling between these two
types of modes. The reason for this is that they develop on comparable time scales, as
suggested by the analysis of Billant & Chomaz (2001).

Observations in the oceans and in the atmosphere support the hypothesis that
there is a downscale energy cascade over a wide range of scales. In the oceans,
Ménesguen et al. (2009) studied the structure of long-lived anticyclonic lens-shaped
vortices known as Meddies through fine-resolution geoseismic sections and high-
resolution numerical simulations. They were able to demonstrate the presence of a
downscale energy cascade over roughly one decade, extending up to scales of the
order of 3 km. In the atmosphere, wind and potential temperature spectra calculated
from aircraft measurements (Nastrom & Gage 1985; Cho & Lindborg 2001) show
two distinct range of scales. At synoptic scales, between 500 and 1000 km, a k−3

h
spectrum is found, consistent with a two-dimensional-like turbulent dynamics within
the enstrophy range. In the mesoscale range, below 500 km, the spectra shallow
significantly, attaining scaling exponents close to −5/3. Third-order structure function
analysis has revealed that there is a downscale energy flux in this range (Cho &
Lindborg 2001).

The transition from a k−3
h to a k−5/3

h spectrum have been simulated both in idealized
numerical simulations (Kitamura & Matsuda 2006; Bartello 2010; Vallgren, Deusebio
& Lindborg 2011) and atmospheric models (Skamarock 2004; Takahashi, Hamilton &
Ohfuchi 2006; Hamilton, Takahashi & Ohfuchi 2008; Waite & Snyder 2009). Bartello
(2010) simulated a strongly stratified and rotating flows in a triply periodic domain
forced only at large scales. Vallgren et al. (2011) considered instead the PEs and
showed that the ratio between the energy going downscale and upscale increases with
Ro and small-scale dissipation scales as Ro3/2. The increasing amount of energy going
downscale as Ro was increased led to a shallowing of the energy spectra to k−5/3

h in
both studies, consistent with observations.

At the present point, it is not entirely clear whether the forward energy cascade is
a result of stratified turbulence or resonant interacting waves. Several theories based
on the assumption that waves play a central role in the route to dissipation have
been proposed. In the atmosphere, Waite & Snyder (2009) simulated an idealized
baroclinic wave life cycle, finding a shallowing of the kinetic energy spectra due to
the divergent contributions. The authors argued that waves spontaneously emitted in
the dynamics propagate vertically and lead to the shallowing of the energy spectra. In
the ocean, spectra show remarkable similarities from place to place, as described by
Garrett & Munk (1979), who proposed a model (later improved by Munk (1981)) for
describing the frequency and vertical wavenumber spectra (hereafter referred to as GM
spectra). A k−2

z spectrum down to scales of roughly 10 m is predicted and is usually
interpreted as the result of the superposition of saturated waves. At smaller scales, the
GM spectrum is followed by a steepening to k−3

z (Gargett et al. 1981). This transition
is assumed to be set by the onset of wave instabilities, i.e. waves reaching the critical
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steepness urms/cx > 1, where urms is the velocity fluctuation and cx is the phase velocity
of the wave, such that overturning and breaking processes are allowed. Nevertheless,
it must be noted that vertical spectra of the form N2k−3

z is also predicted by theories
of stratified turbulence (Billant & Chomaz 2001). Such a prediction has recently
been confirmed by direct numerical simulations (Augier, Chomaz & Billant 2012) of
strongly stratified flows at scales larger than the Ozmidov length scale without the
presence of any clear strong wave signals. That stratified turbulence may also be an
important dynamical process in the oceans is supported by the observations and the
simulations of Ménesguen et al. (2009).

The nonlinear terms in the NS equations allow energy to be transferred among the
different modes, involving triads in spectral space. Through resonant interaction, waves
can support an energy transfer towards small scales without involving any turbulent-
like motions (Bellet et al. 2006; Polzin & Lvov 2011). Phillips (1981) and Staquet
& Sommeria (2002) reviewed the condition and the mechanism for subharmonic
parametric instability (SPI) for which a long wave (k0) resonantly interacts with two
high wavenumber secondary waves (k1, k2 � k0) which have half the frequency with
respect to the primary wave (ω1 = ω2 = −ω0/2). The transfer of energy is mainly
directed from the long wave to the short waves, feeding their growth. The resonant
scatter of energy between two high-wavenumber high-frequency waves due to a large-
scale low-frequency wave is often referred to as induced diffusion (ID) (McComas
& Bretherton 1977; Staquet & Sommeria 2002; Polzin & Lvov 2011). McComas
& Bretherton (1977) have interpreted the GM spectrum as the result of weakly
interacting resonant waves. However, Lvov, Polzin & Yokoyama (2013) warn about the
possibility that one of the assumptions, namely the stationarity of the GM spectrum
with respect to the resonant interactions, may not be satisfied and that near-resonant
interactions must be taken into account. Resonance could possibly occur also between
two waves with similar frequency and a vortical mode with zero frequency (Lelong
& Riley 1991; Bartello 1995). As predicted by statistical equilibrium analysis, energy
is expected to flow from large-scale to small-scale inertia-gravity waves. According
to the analysis of Bartello (1995), resonance interactions between three waves are of
secondary importance. Ageostrophic energy can instead cascade downscale thanks to
the wave–wave–vortex interactions.

Within the context of turbulence theory, triad interactions have historically been the
subject of a great number of modelling efforts (see for instance Leith & Kraichnan
1972). Ohkitani & Kida (1992) carried out the first detailed numerical study of triad
interactions in forced isotropic turbulence. Similar analyses were also carried out in
the context of two-dimensional turbulence, covering both the enstrophy and the energy
ranges (Ohkitani 1990; Maltrud & Vallis 1993; Vallgren 2011). The main question
addressed in these studies is whether the transfer of energy is local in wavenumber
space. Somewhat surprisingly, all of the aforementioned studies showed that turbulence
is an intimately non-local process, involving large exchange of energy in triads with
two large comparable wavenumbers and one small wavenumber. Despite the high
non-locality, energy exchange is mainly between the two large wavenumbers, whereas
the small one only acts as a catalyser.

In this paper, we will mainly address two issues. First, we aim at extending
some recent results by Vallgren et al. (2011), obtained within the framework of
the PEs, by considering the full BQs where no hydrostatic balance is assumed in
the vertical direction. The main focus is to understand whether and how the route
to dissipation is modified by a non-zero horizontal Froude number. Comparisons
with the PEs are made, mainly focusing on energy and enstrophy spectra and fluxes.
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The simulations we have carried out give a good picture of the dynamics which take
place for several Ro and Fr , spanning reasonable values for large-scale atmospheric
flows. Second, we study the possible influence of wave motions in the forward energy
cascade. To do this, the BQs is the appropriate set of equations. In fact, the PEs do
not correctly represent wave modes that have a long vertical and a short horizontal
wavelength, which have fast frequencies and for which the hydrostatic approximation
holds to a smaller degree. Nevertheless, as we will show in the following, the
dynamics appear to be very similar in the two cases, indicating that these modes may
be of minor importance in the overall dynamics. Frequency analyses of time series
from both geostrophically balanced modes and ageostrophic modes are carried out in
order to find signatures of wave motions. We also study triad interactions in order
to understand which modes contribute the most to the energy transfer towards small
scales and whether resonant wave interactions or turbulent-like process are dominant.

The paper is organized as follows: § 2 gives the theoretical background and
the formulation of the problem; in § 3 the numerical details and parameters are
summarized; in § 4 we present some flow fields in physical space; in § 5, energy
spectra and fluxes are presented with comparisons between the PEs and the BQs;
§ 6 focuses on analysing wave motions and frequency spectra; in § 7 the transfer
of energy among wavenumbers through triad interactions is studied. Conclusions are
finally given in § 8.

2. Theoretical formulation
We start from the inviscid three-dimensional NS equations within the Boussinesq

approximation in a rotating frame for an incompressible flow,

Duh

Dt
=−∇hp

ρ0
− f ez × uh, (2.1a)

Dw

Dt
=−∂p

∂z
+ b, (2.1b)

Db

Dt
=−N2w, (2.1c)

∇ ·u= 0, (2.1d)

where δi3 is the Kronecker’s delta, u is the velocity vector, the subscript h indicates
the horizonal (x–y) component, w is the vertical velocity component, ez is the vertical
unit vector, p is the pressure, b = gρ/(ρ0) is the buoyancy, where ρ and ρ0 are the
fluctuating and background densities, respectively. In atmospheric and oceanographic
applications, potential density is used in place of ρ (Vallis 2006).

The system (2.1) can be rewritten introducing the Charney potential vorticity q and
the two ageostrophic components, a1 and a2:

q=−∂u

∂y
+ ∂v
∂x
+ f

N2

∂b

∂z
, (2.2a)

a1 =− f

N

∂v

∂z
+ 1

N

∂b

∂x
, (2.2b)

a2 = f

N

∂u

∂z
+ 1

N

∂b

∂y
, (2.2c)
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where a1 and a2 measure the departure from the thermal wind balance (Vallis 2006).
With periodic boundary conditions in the horizontal and rigid lid or no-slip boundary
conditions in the vertical, the whole flow field can be inverted from q, a1 and
a2. However, if periodic boundary conditions are applied also in the vertical, the
barotropic modes of the vertical velocity, that are Fourier modes for which the vertical
wavenumber is zero, need to be solved explicitly. Note that the decomposition of the
flow in a geostrophic and ageostrophic parts is similar but not equivalent to that used
by Gill (1982) and Viúdez & Dritschel (2006). It may be shown (appendix B) that
the decomposition in q, a1, a2 and the normal modes (Bartello 1995) are related by a
linear transformation. Even though some important properties of the Charney potential
vorticity are lost within the BQs, e.g. its material conservation, we nevertheless retain
its use rather than considering other nonlinear (but conserved) quantities such as the
Ertel potential vorticity. In contrast, the Charney potential vorticity is linear in u, v
and b, therefore making the potential enstrophy q2/2 quadratic when expressed in
basic flow quantities. In the following, when not otherwise stated, we will refer to the
Charney potential vorticity simply as ‘potential vorticity’ q.

We make system (2.1) and (2.2) dimensionless by introducing the following
definitions

x̂= x/l, ŷ= y/l, ẑ= z/h, t̂ = tU/l, (2.3a)

û= u/U, v̂ = v/U, ŵ= wNl/U2, b̂= b/NU, p̂= p/fUl. (2.3b)

Note that two different length scales are used in the horizontal and in the vertical
direction, l and h, respectively. The estimate for the pressure follows from the fact
that, for flows close to geostrophy, the horizontal pressure gradient is mainly balanced
by the Coriolis force. The scaling for the buoyancy b follows from the assumption
that the potential energy is of the same order of magnitude as the kinetic energy.
Indeed, this has been confirmed by a number of studies in QG (Vallgren & Lindborg
2010) and stratified (Lindborg 2006; Brethouwer et al. 2007; Lindborg & Brethouwer
2007) turbulence. From U, f , N, l and h, three independent dimensionless groups can
be formed: the Rossby number Ro, the Froude number Fr and the Burger number
Bu= Nh/fl. The dimensionless counterparts of q, a1 and a2 are

q̂= ql/U, â1 = a1l/URo, â2 = a2l/URo. (2.4)

In order to simplify the notation, we will from now and on drop the hats when
referring to dimensionless quantities. Using the definitions (2.2), we recast (2.1) into
the three prognostic dimensionless equations

∂q

∂t
= ∂

∂y

(
∂u2

∂x
+ ∂uv

∂y
+ Ro

Bu

∂uw

∂z

)
− ∂

∂x

(
∂uv

∂x
+ ∂v

2

∂y
+ Ro

Bu

∂vw

∂z

)

− 1
Bu

∂

∂z

(
∂ub

∂x
+ ∂vb

∂y
+ Ro

Bu

∂wb

∂z

)
+ νS∇8q− νLq, (2.5a)
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Ro
∂

∂t

(
a1 + Fr2

Ro2

∂w

∂y

)
= a2 − ∂w

∂x
+ 1

Bu

∂

∂z

(
∂uv

∂x
+ ∂v

2

∂y
+ Ro

Bu

∂vw

∂z

)
− ∂

∂x

(
∂ub

∂x
+ ∂vb

∂y
+ Ro

Bu

∂wb

∂z

)
− Fr2

Ro

∂

∂y

(
∂uw

∂x
+ ∂vw

∂y
+ Ro

Bu

∂ww

∂z

)
+RoνS∇8a1 − RoνLa1, (2.5b)

Ro
∂

∂t

(
a2 − Fr2

Ro2

∂w

∂x

)
=−a1 − ∂w

∂y
− 1

Bu

∂

∂z

(
∂u2

∂x
+ ∂uv

∂y
+ Ro

Bu

∂uw

∂z

)
− ∂

∂y

(
∂ub

∂x
+ ∂vb

∂y
+ Ro

Bu

∂wb

∂z

)
+ Fr2

Ro

∂

∂x

(
∂uw

∂x
+ ∂vw

∂y
+ Ro

Bu

∂ww

∂z

)
+RoνS∇8a2 − RoνLa2. (2.5c)

The buoyancy and the velocity components can be calculated from q, a1 and a2 using
the relations (

∂2

∂x2
+ ∂2

∂y2
+ 1

Bu2

∂2

∂z2

)
b= 1

Bu

∂q

∂z
+ Ro

(
∂a1

∂x
+ ∂a2

∂y

)
, (2.6a)

1
Bu

∂u

∂z
=−∂b

∂y
+ Roa2, (2.6b)

1
Bu

∂v

∂z
= ∂b

∂x
− Roa1, (2.6c)

1

Bu2

∂2w

∂2z
= ∂a1

∂y
− ∂a2

∂x
. (2.6d)

The system (2.5)–(2.6) constitutes a complete closed set which contains the three
dimensionless parameters Ro, Fr and Bu. However, we note that Bu and z always
appear together. If the characteristic aspect ratio, α = h/l, is not determined by initial
or boundary conditions, but rather by the dynamics itself, then it may be argued that
Bu = αRo/Fr ∼ 1 in the limit of small Ro and Fr , since a maximum number of
terms will stay of leading order in the system (2.5). This is a similar argument as
developed by Billant & Chomaz (2001) who found that α ∼ Fr in strongly stratified
turbulence . That Bu ∼ 1 in the strongly stratified and rotating regime was already
argued by Charney (1971). Thus, in the following we assume Bu = 1 in the system
(2.5)–(2.6). Both a small-scale hyperviscosity, associated with a fourth-order Laplacian,
and large-scale linear drag have been employed in order to provide a mean to dissipate
energy at small and large scales. The use of hyperviscosity allows us to reduce
the range of small scales at which viscosity plays a dominant role. Note that the
dissipation operator is isotropic in the space where the vertical coordinate has been
stretched. This means that it is anisotropic in the real space where the vertical
coordinate is unstretched. Large-scale friction is needed in order to avoid that an
energy condensate develops at large scales as a result of the inverse energy cascade.
Note that for simplicity, the set of (2.5) has been derived assuming that there is a
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large-scale and a small-scale diffusivity associated with the buoyancy which is equal to
the corresponding large-scale and small-scale viscosity νL and νS, respectively.

Taking the scalar product of (2.1a) and u, multiplying (2.1c) by b, and summing the
resulting equations, we can derive the total energy equation in a periodic frame

d
dt

∫
u2 + v2 + Fr2w2 + b2

2
dx dy dz=−ε, (2.7)

where ε is the sum of the small-scale and large-scale energy dissipation, εS and
εL, respectively. The total energy of the system is the sum of kinetic energy,
(u2 + v2 + Fr2w2)/2, and potential energy, b2/2.

With Ro ∼ 1, the geostrophically scaled version of the PEs is obtained by taking
the limit Fr2 → 0 in (2.5a)–(2.5c). PEs is the set of equations that is obtained by
assuming hydrostatic balance in (2.1b) and the condition Fr2 = Fr2

v (h/l)
2 � 1 is the

same condition for hydrostatic balance as is given in textbooks on geophysical fluid
dynamics (e.g. Vallis 2006). However, with a small but finite Rossby number, the
condition for neglecting the second term on the right-hand side of (2.5b) and (2.5c),
while keeping the first term, is (Fr/Ro)2� 1, which is a stronger condition.

Interestingly, the potential vorticity (2.5a) does not depend on Fr and therefore has
the same expression both in the PEs and in the BQs. Neglecting the viscous terms and
using the definitions (2.2) and (2.5a) can be rewritten as

Dq

Dt
= Ro

(
a1
∂b

∂y
− a2

∂b

∂x
+ q

∂w

∂z
− ∂b

∂y

∂w

∂y
− ∂b

∂x

∂w

∂x
− 2

∂b

∂z

∂w

∂z

)
+Ro2

(
a1
∂w

∂x
+ a2

∂w

∂y

)
. (2.8)

Note that whereas the Ertel potential vorticity (e.g. Pedlosky 1987) is a conserved
quantity also in PEs and BQs, the same does not apply to the Charney potential
vorticity which we consider here. However, in the limit Ro→ 0, the above expression
reduces to

Dq

Dt
= 0, (2.9)

stating that q is a materially conserved quantity (Charney 1971). In the limit Ro→ 0
and Fr2/Ro2 → 0, the (2.5b) and (2.5c) lose their time derivative and reduce to
algebraic equations from which the ageostrophic wind may be directly computed from
geostrophically balanced fields (see e.g. Gill 1982).

Retaining only the linear terms in (2.5b) and (2.5c) and using (2.1d), we can derive
the well-known wave equation for inertia-gravity waves (Gill 1982; Pedlosky 1987;
Vallis 2006). The corresponding dispersion relation reads

ω2
d =

k2
x + k2

y + k2
z

Fr2(k2
x + k2

y)+ Ro2k2
z

. (2.10)

Note that the dimensional counterpart of (2.10) would read

ω̃2
d =

N2(k̃2
x + k̃2

y)+ f 2k̃2
z

k̃2
x + k̃2

y + k̃2
z

, (2.11)
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which is the common expression which may be found in any geophysical fluid
dynamic book (Gill 1982; Pedlosky 1987; Vallis 2006). The tilde, ·̃, now refers to
dimensional quantities.

In the limit of zero Fr , the dispersion relation (2.10) becomes singular for small kz,
i.e. for vertically long, barotropic waves. Infinitely fast wave motions may therefore
appear in the PEs. On the other hand, in the BQs wave frequencies are bounded
between Ro−1 and Fr−1, as is clear from (2.10).

The total energy spectrum

E(k)= û(k)û∗(k)+ v̂(k)v̂∗(k)+ Fr2ŵ(k)ŵ∗(k)+ b̂(k)b̂∗(k)
2

, (2.12)

decouples into a geostrophic part associated with q and an ageostrophic part associated
with a1 and a2. We find that

E(k)=
∑
k

q̂(k)q̂∗(k)
2k2

+
{

â1(k)
â2(k)

}[
E22 E23

E23 E33

]{
â1(k)
â2(k)

}∗
, (2.13)

where k =
√

k2
x + k2

y + k2
z . The decomposition (2.13) is valid for baroclinic modes. For

barotropic modes the energy spectrum can be divided into a part which is associated
with q and is equal to the contribution from the two horizontal velocity components
and a part which is equal to the contribution from w and b. The total energy
can therefore be divided into a geostrophic and an ageostrophic part, EG and EA,
respectively. In the appendix A, the explicit form of the matrix E is given. Following
Bartello (1995), we will now classify the nonlinear interactions involving geostrophic
and ageostrophic modes. According to (2.13), the rate of change of the geostrophic
energy, EG, can be rewritten as

∂EG

∂t
=
∑
k

1
2k2

(
∂ q̂(k)
∂t

q̂∗(k)+ ∂ q̂∗(k)
∂t

q̂(k)
)
, (2.14)

where the rate of change of q due to nonlinear terms can be separated into three
contributions

∂ q̂(k)
∂t
= NLGG(k)+ NLGA(k)+ NLAA(k), (2.15)

with the subscripts standing for the nonlinear terms arising from the interaction of the
two classes of motions: geostrophic (G) and ageostrophic (A). Explicitly,

NLGG(k)=
∑
p,q

k=p+q

ΓGG(k, p, q)q̂(p)q̂(q), (2.16a)

NLGA(k)=
∑
p,q

k=p+q

∑
i

ΓGAi(k, p, q)
[
q̂(p)âi(q)+ âi(p)q̂(q)

]
, (2.16b)

NLAA(k)=
∑
p,q

k=p+q

∑
i,j

ΓAjAi(k, p, q)
[
âi(p)âj(q)+ âj(p)âi(q)

]
, (2.16c)

where the explicit expression of the coefficients Γi,j(k, p, q) can be found from the
nonlinear terms in (2.5). The interaction terms including barotropic modes have to be
treated separately, since we decompose the flow field into q, w and b for these modes.
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Multiplying (2.15) by q̂∗(k)/2k2, we obtain the geostrophic energy budget

∂EG(k)
∂t

= TGGG(k)+ TGGA(k)+ TGAA(k), (2.17)

where TGGG, TGGA and TGAA represent the transfers into geostrophic energy due to
nonlinear interactions involving two geostrophic, one geostrophic and one ageostrophic
and two ageostrophic modes, respectively. In a similar way we arrive at an expression
for EA,

∂EA(k)
∂t
= TAGG(k)+ TAGA(k)+ TAAA(k). (2.18)

The transfer functions satisfy the following conservation relations∑
k

TGGG(k)= 0, (2.19a)

∑
k

TGGA(k)+ TAGG(k)= 0, (2.19b)

∑
k

TAGA(k)+ TGAA(k)= 0, (2.19c)

∑
k

TAAA(k)= 0, (2.19d)

∑
k

k2TGGG(k)= 0, (2.19e)

where the last relation is an expression of the fact that potential vorticity is conserved
by interaction involving only geostrophic modes. From the energy transfer functions, it
is also straightforward to define the enstrophy transfer functions. Since the enstrophy
spectrum is given by

Q(k)= q̂(k)q̂∗(k)
2

, (2.20)

the enstrophy transfer functions can easily be found from (2.17) as

TηGGG(k)= k2TGGG(k), TηGGA(k)= k2TGGA(k), TηGAA(k)= k2TGAA(k). (2.21)

The transfer functions give information about the amount of energy/enstrophy
flowing into or out of a certain mode. Nevertheless, they do not preserve the
information about where such energy comes from and which wavenumbers are
involved in the exchange. In order to shed some light on the dynamics physical
process, such kind of information is however crucial. Therefore we will also consider
the triad interaction terms as functions of k = |k|, p = |p| and q = |q|. For example,
we denote by TGGG(k, p, q) the transfer function which is calculated by averaging the
relevant triad interactions over k, p and q. Note that according to the definitions, such
transfer functions are symmetric with respect to p and q.

The energy/enstrophy flux

Π(k)=−
|k|=k∑
|k|=0

T(k) and Πη(k)=−
|k|=k∑
|k|=0

Tη(k) (2.22)
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are often used in place of their generic transfer function T(k) and Tη(k). It is therefore
quite natural to classify the fluxes in a similar manner as done for the transfer terms.
In particular, a special attention will be paid to the energy and enstrophy fluxes due to
the geostrophic interactions only,

ΠG(k)=−
|k|=k∑
|k|=0

TGGG(k) and Π
η

G(k)=−
|k|=k∑
|k|=0

TηGGG(k). (2.23)

A large amount of literature has recently focused on the relative importance
of horizontally divergent and rotational motions, both in the context of stratified
turbulence (Lelong & Riley 1991; Lindborg & Brethouwer 2007) and mesoscale
dynamics (Lindborg 2007; Hamilton et al. 2008; Waite & Snyder 2009; Molemaker
et al. 2010). Even though it is not clear how meaningful the rotational/divergent
decomposition is for geophysical dynamics, its importance indeed relies on the
fact that it can be applied to observational data (Lindborg 2007). Also, such
a decomposition is often used to present results from global circulating models
(Hamilton et al. 2008). Following Lelong & Riley (1991), we may rewrite the velocity
as

u= ez ×∇hψ + {∇hφ + wez}, (2.24)

where the first term is horizontally non-divergent whereas the second carries all of the
horizontal divergence of the velocity field. The rotational part of the velocity field has
two contributions, one which is associated with q and another which is associated with
a1 and a2, whereas the divergent part of the velocity field is only associated with a1

and a2.

3. Simulations
3.1. Numerical methodology

The system (2.5) is discretized in a triply-periodic (the adjective triply is referred
to periodic not to the domain) isotropic domain, allowing for Fourier representation
of the variables in all three spatial directions. Observe that the box is cubic in
a space where the vertical coordinate is stretched by a factor of N/f . A pseudo-
spectral method is used, providing an exponential convergence of the numerical
solution. Nonlinear terms in (2.5) are advanced in time using a low-storage fourth-
order Runge–Kutta scheme. Linear terms are instead separately solved using an exact
implicit procedure (Canuto et al. 1988). In order to prevent aliasing errors, the 2/3-
dealiasing rule was applied to nonlinear terms (2.5).

Velocities and buoyancy are recovered from q, a1 and a2, using the inversion
relations (2.6). However, for kz = 0, the inversion relations (2.6) becomes singular
and, as shown by (2.2b) and (2.2c), a1 and a2 are not independent, i.e. a1,y = a2,x.
For the mode kz = 0 we instead solve for q, w and b, using the (2.5a), (2.1b) and
(2.1c), respectively. The horizontal velocity components can then be recovered from
the potential vorticity inversion

∇2uh =−∇ × qez, (3.1)

whereas a1 and a2 are calculated from their definitions, (2.2b) and (2.2c), respectively.
A random forcing is introduced in the q equation only, i.e. no ageostrophic motions

are directly forced. The forcing scheme is the same as used by Vallgren & Lindborg
(2011). The scheme is white noise in time, so that no particular time scale is forced.
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Run Ro Fr νL νS × 1018 εL/P εS/P 1tTS TTS

PE2 0.2 0 0.012 6.2 0.30 0.36 — —
PE1 0.1 0 0.012 4.0 0.43 0.14 — —
PE05 0.05 0 0.012 4.0 0.46 0.05 — —
PE025 0.025 0 0.012 4.0 0.25 7.5× 10−3 — —
PE0 0 0 0.012 4.0 0.43 5.4× 10−4 — —

aBQ2 0.2 0.01 0.012 6.2 0.43 0.27 — —
aBQ1 0.1 0.01 0.012 4.0 0.76 0.08 — —
aBQ05 0.05 0.01 0.012 4.0 0.70 5.9× 10−3 — —

bBQ001 0.1 0.001 0.012 6.2 0.72 0.086 1.4× 10−3 3.20
bBQ01 0.1 0.01 0.012 4.0 0.76 0.08 1.9× 10−2 18.3
bBQ1 0.1 0.1 0.012 4.0 0.86 0.064 1.8× 10−2 20.3

ST — — 0.012 20 0.06 0.90 — —

TABLE 1. Summary of the simulations. The physical parameters have been calculated after
a steady direct cascade was established. Large- and small-scale dissipation have been made
dimensionless with respect to the energy injection rate P. Note that for most of the runs,
energy was still growing due to the inverse cascade.

The forcing is perfectly decorrelated to the velocity field, allowing us to exactly
control the enstrophy and the energy injection rates into the system. The enstrophy
injection rate, η, is set to unity in all of the simulations, which means that we
can regard time as non-dimensionalized using η1/3. The forcing is isotropic in the
vertically-stretched (vertically is referred to stretched) space and is applied to large
scales only, corresponding to the wavenumber band k ∈ [3, 5]. The forcing has a
Gaussian distribution over this range. The simulations are initialized with random flow
fields and they are run long enough for a steady energy cascade to develop.

To allow for very high-resolution simulations, the numerical code was parallelized
with the use of the message passing instratified turbulence terface (MPI) and run on
up to 4096 processors, resulting in a linear scalability. Inviscid energy conservation
tests, in agreement with (2.7), have been carried out without applying any forcing
and providing an increasing conservation of energy up to machine precision as time
step was progressively reduced. In the limit of zero Ro, results in agreement with QG
numerical simulations (Vallgren & Lindborg 2011) were obtained.

3.2. Choice of the numerical parameters
The numerical and physical parameters used in the simulations are listed in table 1.
The box is chosen as (Lx × Ly × Lz) = (2π × 2π × 2π), using 1024 modes in each
direction. The physical parameters in table 1 were extracted from the simulations
after a steady direct energy cascade was obtained. The values of Ro and Fr were
chosen to span a realistic range representative for atmospheric applications. Boer &
Shepherd (1983) estimated the enstrophy flux from global FGGE data, giving a value
of the order of 10−15 s−3. Cho & Lindborg (2001) made a similar estimate using
the third-order structure functions measured in the lower stratosphere. Such a value
gives a Rossby number, Ro = η1/3/f , of the order of 0.1 for midlatitude dynamics.
A realistic value of N is of the order of 10−2 s−2 (Vallis 2006), corresponding to
a ratio, f /N, of ∼0.01. With the aim of reproducing dynamics representative of the
atmosphere, we have carried out simulations with f /N = Fr/Ro ∈ [0, 1]. As shown
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FIGURE 1. Potential vorticity q (a,b) and the second ageostrophic component a2 (c) cuts for
the aBQ1 run. (a,c) Horizontal cuts at z = 3.14; (b) vertical cut at y = 2.4, corresponding to
the location of the large-scale vortex. Dark helping lines show the position of the vertical and
horizontal cut planes.

by Vallgren et al. (2011), in the limit of zero Fr , an increasing amount of energy
cascades towards small scales as Ro is increased. Therefore, in order to keep the
dissipation range well-resolved, the small-scale viscosity has to be somewhat increased
with increasing Ro.

We divide the simulations into four sets called PE, aBQ, bBQ and ST. Each run is
named accordingly, followed by a number x. In the PE simulations, Fr is set to zero
and x refers to the Rossby number which is varied between 0 and 0.2. In the aBQ
runs, Fr is set to 0.01 and the Rossby number, indicated by the suffix x, is varied in
the same way as in the PE set. In the bBQ, Ro is instead kept fixed to 0.1, whereas
the Froude number, indicated by x, is varied from 0.001 to 0.1. Finally, a non-rotating
simulation of the PEs has also been run and named ST in order to investigate the
vertical spectrum, as discussed in § 5. For the ST runs, the grid spacing is stretched
by a factor Fr−1 in accordance to the scaling proposed by Billant & Chomaz (2001)
for stratified flows. The computational grid is isotropic in the space where the vertical
coordinate has been stretched. In order to investigate the role of gravity waves and
inertial waves, time series of individual Fourier modes are collected for the bBQ set
after that a forward cascade is established. The sampling time step 1tTS and the
covered time interval TTS are given in table 1.

4. Flow fields
We start by presenting some snapshots from the simulations in order to give a

feeling of the physical process that we investigate. In figure 1(a), a horizontal cut
of the q flow field is shown for the aBQ1 run, i.e. Ro = 0.1 and Fr = 0.01. The
overall dynamics at large-scales resemble the QG dynamics (see for instance figure 9
of Vallgren & Lindborg (2010)) with a large-scale vortex surrounded by small-scale
filaments. Figure 1(b) displays a vertical cut of the large-scale vortex. Interestingly,
this structure shows a large degree of coherence in the vertical direction, displaying
similarities with the large-scales vortices found by Vallgren & Lindborg (2010) and
the related barotropization of the flow. Nevertheless, some differences can also be
observed. Unlike the QG simulation results, the core of the vortex is dominated by
small-scale structures which can be observed both in the horizontal and in the vertical
cuts. Moreover, patches of small-scale turbulence can also be observed all over the
flow. A particularly intense small-scale chaotic region is found in the top right corner
of the horizontal q cut in figure 1(a). As shown by the horizontal cut of a2 in
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FIGURE 2. Close-up of the turbulent patch in the right top corner of figure 1(a) (aBQ1 r).
(a,c) Potential vorticity. (b,d) Local Froude number FrL. (a,b) Horizontal cuts. (c,d) Vertical
cuts. The colourmap of the local Froude number ranges from 0 (blue) to 1.8 (red).

figure 1(c), in such a region the ageostrophic motions become more intense than in
other regions, increasing of about one order of magnitude.

Molemaker et al. (2010) reported snapshots of their non-hydrostatic non-geostrophic
forced Eady flow, where characteristic structures of QG dynamics as filaments and
small-scale three-dimensional turbulence were both observed. They argued that a
forward energy cascade is needed for the system to reach a balanced state when
a constant energy input is introduced into the flow. They showed that dissipative
turbulent patches arise as the result of instabilities developing along potential vorticity
fronts. The horizontal and vertical structures of the turbulent patches in figures 1(a)
and 1(b) are illustrated in the close-up shown in figure 2, where both the q-field and
the local vertical Froude number, defined as

FrL =
√
ω2

x + ω2
y

2N
, (4.1)

are shown in an horizontal (parallel to the x-direction) and vertical plane. In (4.1), ωx

and ωy represent the dimensional horizontal vorticities. In the horizontal plane, q and
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FIGURE 3. (Colour online) (a) Time evolution for the energy and (b) the small-scale energy
dissipation for the aPE1 run: , total; , kinetic; , potential. Time is made
dimensionless with the enstrophy injection rate η. Energy is made dimensionless with η2/3/k2

0.

FrL show small-scale structures which follow very similar patterns. More importantly,
FrL attains values of the order of unity, which is required for KH instabilities to
develop (Billant & Chomaz 2001). Very similar observations can also be made in
the vertical plane. It is also worth noting how confined the structures in the vertical
direction are as compared with the horizontal direction (figure 2c,d).

5. Energy spectra and spectral fluxes
5.1. Horizontal spectra

Simulations were run long enough to allow for the formation of a steady downscale
energy cascade with a nearly constant small-scale dissipation. Figure 3(a) shows the
time evolution of both kinetic and potential energy in the run aPE1. Qualitatively, the
same picture was obtained in all of the other runs. To start with, the kinetic energy
grows twice as fast as the potential energy, as an effect of the Charney isotropic
forcing (Vallgren & Lindborg 2010). However, whereas potential energy saturates
quickly at very early stages, kinetic energy continues to increase and levels off only at
a later stage. In the quasi-steady state, there is considerably more kinetic energy than
potential energy. Similar results were also obtained by Vallgren & Lindborg (2011)
in QG simulations. However, kinetic energy tends to level off at earlier times as Ro
is increased. In spite of the fact that the kinetic energy is still growing, small-scale
dissipation attains nearly constant values rather soon (figure 3b), at times comparable
to the time required by the potential energy to saturate. For the Ro considered in
figure 3, the kinetic energy dissipation is observed to be larger than potential energy
dissipation.

We begin by examining the horizontal two-dimensional energy spectra, shown in
figure 4, both for the PE (a) and aBQ (b) sets. The spectra were calculated by

averaging over circles with constant kh =
√

k2
x + k2

y . The curves in figure 4(a) compare

well with the results of Vallgren et al. (2011), who studied the one-dimensional
horizontal spectra. The spectra at low Ro scale as k−3

h for a large span of wavenumbers.
As Ro is increased, departures from the k−3

h dependence are observed at the large
wavenumber end and slopes close to −5/3 at small scales are attained (Bartello 2010).
Consistent with the results of Vallgren et al. (2011), spectra for both PE and BQ sets
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FIGURE 4. (Colour online) Comparison of the two-dimensional horizontal total energy
spectra for (a) PE and (b) aBQ runs for several Ro numbers: , Ro= 0.2; , Ro= 0.1;

, Ro = 0.05; −·−, Ro = 0.025; · · · · · ·, Ro = 0.0 (only PE runs). The are helping
lines with k−5/3

h and k−3
h .

10–5

(a)

kh

(b)

kh

100

10–10

10–5

100

10–10
100 101 102 100 101 102

FIGURE 5. (Colour online) Kinetic and potential energy spectra for the (a) PE and (b) aBQ
runs with Ro= 0.1: , total energy; , kinetic energy; , potential energy.

smoothly tend to the QG limit as Ro is reduced, with the transition to k−5/3 being
pushed towards larger wavenumbers. This is a direct consequence of the increasing
amount of energy which cascades downscale with increasing Ro. As we will see (in
figure 10b), in the PE simulations the energy cascade is somewhat stronger for a given
Ro than in the BQ simulations. For a given Ro the transition wavenumber is therefore
smaller in the PE simulations as compared with the BQ simulations, even though a
qualitatively similar behaviour can be observed for PE and BQ simulations.

As shown by figure 5, at large scales kinetic energy dominates over the potential
energy and it accounts almost completely for the total energy content. Similar
results were also found in numerical simulations of the QG equation (Vallgren &
Lindborg 2011). However, it should also be noted that the gap between kinetic and
potential energy tends to increase in the BQ runs as compared with the PE runs and
equipartition occurs only at small scales.
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FIGURE 6. (Colour online) Comparison of the one-dimensional vertical total energy spectra
for (a) PE and (b) aBQ runs for several Ro numbers: , Ro = 0.2; , Ro = 0.1; ,
Ro= 0.05; · · · · · ·, Ro= 0.0 (only PE runs). The are helping lines with k−5/3

h and k−3
h .

5.2. Vertical spectra
We now turn to the vertical spectra, shown in figure 6. In a similar way as the
horizontal spectra, the vertical spectra display many similarities between PE and BQ
runs as Ro is increased. As reported in QG literature, also in our simulations the
inverse cascade of energy leads to an accumulation of energy in the barotropic mode,
i.e. kz = 0. The amount of energy which is contained in this mode is quite significant,
especially for BQ runs where it varies from 60 to 80 % of the total, increasing as
Ro reduces. In QG dynamics, the vertical spectrum has a similar form, ∼η2/3k−3

z , as
the horizontal spectrum. In the current simulations, the slopes are found to increase
with Ro from −3 to −5/3. We find it somewhat surprising that the vertical spectra
also show such a transition. In contrast to this result, the vertical spectra of strongly
stratified turbulence which is not affected by system rotation is expected to scale as
k−3

z (Billant & Chomaz 2001). In order to investigate whether this is the case, we
carried out an additional simulation of stratified turbulence (the ST run). In order to
recover the purely stratified regime the linear terms pertaining to the Coriolis forces in
(2.1) are set to zero. Moreover, setting Ro to unity in (2.3) allows us to retrieve the
scaling for strongly stratified flows suggested by Billant & Chomaz (2001). Hydrostasy
was assumed in the vertical by imposing Fr equal to zero. In figure 7(a) the vertical
spectrum for this simulation is shown together with the vertical spectrum pertaining to
the PE1 run. In agreement with previous studies in the field of stratified turbulence, a
spectrum of the form

E(k̃z)= CN2k̃−3
z (5.1)

is recovered, with C ≈ 1. Here k̃z is the dimensional vertical wavenumber. This result
suggests that the shallowing of the vertical spectrum is an effect of the system
rotation.

Vallgren & Lindborg (2011) tested the validity of Charney isotropy (Charney 1971)
in high-resolution numerical simulations of QG turbulence. They found that the
ratio between the one-dimensional vertical spectrum and the corresponding horizontal
spectrum

R(k)= Ez(k)

Eh(k)
, (5.2)
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FIGURE 7. (Colour online) (a) Comparison of vertical spectra for PEs with rotation Ro= 0.1
PE1 ( ) and without rotation ST ( ). (b) Measure of the Charney isotropy according
to (5.2) for several Ro for the aBQ runs: , Ro= 0.2; , Ro= 0.1; , Ro= 0.05.

is approximately equal to unity, except at the forcing and dissipating scales. In (5.2),
Eh(k) is the one-dimensional horizontal spectrum and Ez(k) is the one-dimensional
vertical spectrum, where k in the vertical spectrum is the vertical wavenumber
stretched by a factor of f /N. As Ro is increased, Charney isotropy is expected to
apply to a smaller degree. In figure 7(b), R(k) is plotted for several Ro. The peak at
k = 4 is an artefact of the forcing. For larger wavenumber, a plateau is observed in all
cases. Comparing figure 7(a) and (b), we see that the plateau, in fact, extends into the
range where the spectrum scales as k−5/3. This is a quite unexpected results. However,
the width of the plateau seems to decrease with increasing Ro, whereas its magnitude
increases with Ro.

5.3. Rotational and divergent contributions
Since the results of the PE and BQ simulations are qualitatively very similar as Ro
is changed, henceforth in this subsection we focus only on PE runs. Results from
BQx runs do not differ qualitatively, and analogous conclusions would therefore apply.
A question yet to be answered regarding the atmospheric kinetic energy spectrum
and its transition from k−3

h to k−5/3
h at scales of ∼500 km concerns the importance

of rotational and divergent motions. In the QG limit, the divergent part vanishes
due to the incompressibility condition (2.1d). At large scales, where QG is a good
approximation, the rotational part should therefore be dominant. Lindborg (2007)
calculated the rotational and divergent energy spectra from measurements in the
upper troposphere and lower stratosphere and found that rotational modes are totally
dominant at synoptic scales but the contributions from the two types of modes are
of the same order of magnitude at mesoscales. Lindborg & Brethouwer (2007) found
that energy is equipartitioned between rotational and divergent modes in the turbulent
cascade of strongly stratified flows. In figure 8(a), the kinetic energy spectrum is
shown together with the rotational and divergent contributions. At large scales, the
rotational part dominates, whereas the divergent part is several orders of magnitude
smaller. The rotational spectrum scales as k−3

h in this range. On the other hand,
the divergent energy spectrum is rather flat, a little shallower than k−5/3

h . Owing to
the different slopes, rotational and divergent energy spectra are doomed to meet at
a transition wavenumber ktr. As this scale is approached, the rotational spectrum
shallows whereas the divergent spectrum steepens slightly and both tend to ∼k−5/3

h .
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FIGURE 8. (Colour online) (a) Divergent ( ) and rotational ( ) part of the kinetic
energy ( ) for the PE2 run. The QG divergent energy, given by (5.3), is shown as well
for reference (· · · · · ·). The are helping lines with k−5/3

h and k−3
h . (b) Divergent energy for

several Ro for the PE runs: , Ro = 0.2; , Ro = 0.1; , Ro = 0.05. The are
helping lines with k−5/3

h .

For higher wavenumbers, the energy content in rotational and divergent modes is of
the same order of magnitude, consistent with the results on stratified turbulence of
Lindborg (2007) and Lindborg & Brethouwer (2007). The ratio between the divergent
and the rotational energy ED/ER is small at large scales and attains a value of the order
of two after the transition of the spectrum.

Setting Ro = 0 and Fr = 0 in (2.5b) and (2.5c), one may derive the so-called
Ω-equation for the vertical velocity (e.g. Gill 1982),

∇2w=− ∂2

∂y∂z

(
∂u2

∂x
+ ∂uv

∂y

)
+ ∂2

∂x∂z

(
∂uv

∂x
+ ∂v

2

∂y

)
−
(
∂2

∂x2
+ ∂2

∂y2

)(
∂ub

∂x
+ ∂vb

∂y

)
. (5.3)

An interesting question is whether the divergent spectrum which is obtained by solving
the Ω-equation is comparable to the total divergent spectrum. In figure 8(a) we
investigate this. The divergent spectrum which is obtained from (5.3) is several
orders of magnitude smaller than the total divergent spectrum. This clearly shows
that the transition from ∼k−3

h to ∼k−5/3
h cannot be explained within a higher-order

QG model. Whether this is also the case in the atmosphere is, to the best of the
authors’ knowledge, not clear. Unfortunately, the data used by Lindborg (2007) did not
allow the geostrophic divergent part to be computed. Notwithstanding, the fact that at
these scales rotational and divergent parts are of the same order of magnitude suggests
indeed that QG dynamics is not the only dominant one.

The Rossby number dependence of the divergent energy spectrum is investigated in
figure 8(b). As is clear from the plot, an increase of Ro leads to a larger amount of
divergent energy. It can be argued that this energy is directly linked to the forward
energy cascade whose strength increases with Ro. Note that for small Ro the slopes
are somewhat shallower than −5/3 at small wavenumbers but tend to steepen with
increasing wavenumber.

It can be of interest to compare the divergent/rotational decomposition with the
geostrophic/ageostrophic decomposition. As pointed out in § 2, the two decompositions
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FIGURE 9. (Colour online) (a) Geostrophic ( ) and ageostrophic ( ) part of the total
energy spectrum ( ) for the PE2 run. The are helping lines with k−5/3

h and k−3
h . (b)

Ageostrophic energy for several Ro for the PE runs: , Ro = 0.2; , Ro = 0.1; ,
Ro= 0.05. The are helping lines with k−5/3

h .

are not equivalent. If conditions are reasonably close to QG dynamics, the contribution
of ageostrophic modes to the rotational part is of the order Ro smaller. On the
other hand, larger differences should be expected at scales at which the geostrophic
scaling (2.3) is not valid. In figure 9(a) the total energy spectrum pertaining to the
PE2 run is decomposed into its geostrophic and ageostrophic parts. Consistent with
the results of Bartello (1995, 2010), at large scales the dominant contribution comes
from the geostrophic component whereas at small scales the ageostrophic energy is
the largest. The ageostrophic spectrum attains a constant scaling (close to −5/3) over
the whole range of scales. Interestingly, this holds to a slightly lesser extent also
for the geostrophic energy spectrum which shows a k−3 dependence over a wide
range. Indeed, the k−3 scaling is remarkably attained at wavenumbers larger than
the transition wavenumber. In figure 9(b) the ageostrophic spectrum is shown for
the PE set. By comparing figure 8(b) with figure 9(b) two differences can mainly
be observed. First, the large-scale divergent spectrum shows a somewhat shallower
behaviour. Second, the Ro dependence of the magnitude of the spectrum is stronger for
divergent energy as compared with ageostrophic energy.

5.4. Energy and enstrophy fluxes
Vallgren et al. (2011) showed that within the PE framework, the amount of energy
cascading towards small scales is a function of Ro. In particular, they found that the
small-scale dissipation scaled as εS ∼ Ro3/2 P, where P is the energy injection. Here,
we extend their analysis and investigate the influence of a non-zero Fr . The total
energy flux (2.22) is plotted in figure 10(a) for the aBQx runs. In agreement with
the observations of Vallgren et al. (2011), the amount of energy cascading towards
small-scales increases with Ro. Notwithstanding, the quantitative magnitude and the
Ro dependence are different. In figure 11 the small-scale dissipation εS is shown for
PE and aBQ sets, spanning values of Ro between 0.025 and 0.2. The QG energy flux
is found to be several orders of magnitude smaller (Vallgren et al. 2011). Despite
the rather small values of Ro considered in the study, a consistent fraction of energy
is found to cascade towards small scales. At Ro = 0.1, ε is almost 10 % of the
total injection of energy P (see table 1). As can be clearly seen, the departure from
the hydrostatic approximation lead to somewhat smaller energy fluxes towards small

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.611


The route to dissipation in strongly stratified and rotating flows 87

10–2

10–4

10–6

(a)

101 102

k

(b)

101 102

k

100

10–8

10–2

10–4

10–6

FIGURE 10. (Colour online) Total energy flux function of the wavenumber k for (a) aBQ and
(b) bBQ runs: (a) , Ro = 0.2; , Ro = 0.1; , Ro = 0.05; (b) , Fr = 0; ,
Fr = 0.001; , Fr = 0.01; · · · · · ·, Fr = 0.1.
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FIGURE 11. (Colour online) Small-scale dissipation function of the Ro, both for PE (©) and
aBQ ( ) runs. For the aBQ runs the Fr number has been kept constant and equal to 0.01.

scales. This is also confirmed in figure 5, where a larger amount of kinetic energy is
found at large scales. For large Ro, the difference between PEs and BQs is relatively
small. In particular, at Ro = 0.2, the hydrostatic approximation leads to an increase of
dissipation of roughly 30 %. On the other hand, larger differences, of about one order
of magnitude, are found at smaller Ro. However, it is worth pointing out that Fr was
kept constant at 0.01 in the aBQ runs. When Ro∼ Fr , the PEs are not expected to be
a good approximation of the dynamics, as seen from (2.5b) and (2.5c).

The convergence of the BQs to the PEs for Fr approaching zero is illustrated in
figure 10(b) where the energy flux for the bBQ runs is shown. The Rossby number
is kept fix to 0.1, whereas Fr is varied from 0.001 to 0.1. The PE limit is plotted as
well, for reference. The fact that an increased degree of stratification leads to a larger
energy flux towards small scales seems inconsistent with the idea that stratification
suppresses the vertical velocity and increases the two-dimensionality of the system,
which according to several studies (e.g. Lilly 1983) should lead to an inverse cascade
of energy. However, this result is in agreement with a number of recent studies on
stratified turbulence (Riley & deBruynKops 2003; Lindborg 2006; Brethouwer et al.
2007), showing that stratification favours a downscale energy cascade. It should be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.611


88 E. Deusebio, A. Vallgren and E. Lindborg

10–2

10–4

10–6

(a)

101 102

k

10–2

10–4

10–6

(b)

101 102

k

100

10–8

100

10–8

FIGURE 12. (Colour online) (a) Kinetic and (b) potential energy flux function of the
wavenumber k for aBQ runs: , Ro= 0.2; , Ro= 0.1; , Ro= 0.05.
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FIGURE 13. (a) Kinetic to potential buoyancy energy transfer given by (5.4). For the positive
part: red curve, Ro = 0.2; blue curve, Ro = 0.1; green curve, Ro = 0.05. Negative part in
dashed lines for all the curves. (b) Ratio between kinetic and potential energy fluxes for the
aBQ set: red curve, Ro= 0.2; blue curve, Ro= 0.1; green curve, Ro= 0.05

noted, however, that the Froude number dependence of the energy flux is weak as
compared with the Rossby number dependence, as seen in figure 10.

Figure 12 shows the spectral flux of potential and kinetic energy, respectively, for
the aBQx runs. The fact that the total energy fluxes exhibit a constant range indicates
that large-scale dissipation and small-scale dissipation are negligible at these scales.
Indeed, large-scale dissipation is found to be two or three orders of magnitude smaller
than the downscale energy transfer ε. Note that separate fluxes do not attain constant
values to the same degree as the total flux shown in figure 10. This implies that there
is a kinetic to potential energy transfer. In figure 13(a), the transfer of energy from
kinetic to potential energy

TKP(k)=
∑
|k|=k

Re(ŵb̂∗) (5.4)

is shown. At large scales there is a net transfer from potential to kinetic energy, as
is also seen in figure 12. This is consistent with atmospheric dynamics where energy
at large scales is fed by the baroclinic instability which converts potential energy
to kinetic energy. Interestingly, this transfer does not depend on Ro. However, at
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FIGURE 14. (Colour online) (a) Geostrophic energy flux ΠG ( ) and its complement to
the total energy flux Π − ΠG ( ) for the bBQ1 run. (b) Geostrophic enstrophy flux Πη

G
( ) and its complement to the total enstrophy flux Πη −Πη

G ( ) for the bBQ1 run.

smaller scales, the transfer changes sign (dotted lines being the negative part) which
means that there is a net transfer from kinetic energy to potential energy. This is
also seen in figure 12(b), where, within the turbulent forward cascade, ΠP is seen
to slightly increase. This result is in agreement with the numerical simulations of
Molemaker et al. (2010). Figure 12 indicates that the ratio between kinetic energy
and potential energy fluxes varies with Ro. We investigate this in figure 13(b), where
the ratio ΠK/ΠP is shown for the aBQ set. The ratio is not constant and increases
with Ro. Moreover, due to the small but consistent transfer of energy from kinetic
to potential energy, this quantity is expected to slightly decrease in the cascade. It
could be speculated that at small Ro large part of the kinetic energy undergoes an
inverse cascade and, as an effect, reduces the amount of downscale kinetic energy. At
Ro = 0.05, the downscale cascade of total energy is roughly equipartitioned between
kinetic and potential energy.

In order to better understand the role of ageostrophic motions, we separate the
contribution of purely geostrophic motions from the total energy flux. In figure 14(a),
the geostrophic energy flux is shown together with its complement to the total
flux, Π − ΠG. The geostrophic energy flux attains negative values over the whole
range, with large contributions only at large scales. Here, it accounts for almost the
entire flux, with its complement being one order of magnitude smaller and positive.
Clearly, geostrophic interactions support the inverse cascade, whereas ageostrophic
motions allow for a drain of energy downscale. At wavenumbers larger than 10, the
geostrophic flux becomes negligible and its complement Π − ΠG accounts for the
entire downscale energy transfer. A further decomposition of the complement energy
flux to the geostrophic energy flux, Π − ΠG, shows that its dominant contribution is
from the interactions between two ageostrophic modes and one geostrophic mode.

Similar conclusions apply also to the potential enstrophy fluxes which are shown
in figure 14(b). In QG turbulence, potential enstrophy is a conserved quantity. Unlike
energy, it cascades downscale and is finally dissipated at small scales where viscosity
dominates. However, within the framework of the PEs and the BQs it is not a
conserved quantity and therefore its flux, Πη, does not generally go to zero as k→∞.
Nevertheless, the geostrophic counterpart of the potential enstrophy flux, Πη

G, goes to
zero, as shown by the conservation relations (2.19). At large scales, the geostrophic
potential enstrophy flux is the dominant contribution and attains a value of the order

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

61
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.611


90 E. Deusebio, A. Vallgren and E. Lindborg

k

101 102

100

10–2

FIGURE 15. (Colour online) Energy (——) and enstrophy (- - - - -) fluxes scaled with the
enstrophy and energy injection rates as a function of the wavenumber k for the aBQ runs with
Ro = 0.1 (thick lines, shown in blue online) and Ro = 0.05 (thin lines, shown in red online).
Constant enstrophy and energy fluxes can be observed over the same range of wavenumbers.

of unity, showing that the injected enstrophy cascades downscale. The complement to
the total potential enstrophy flux is two orders of magnitude smaller in this range, but
increases with wavenumbers. At the transition wavenumber, it attains values as large
as the geostrophic part. At these scales, departures from the QG prediction can be
observed also for the geostrophic counterpart which shows a small bump located at
large wavenumbers. Nevertheless, its magnitude stays on the order of unity.

A major finding of this study is that at non-zero but small Ro and Fr the forward
enstrophy cascade and the forward energy cascade may coexist in the same range
of scales. This is clearly shown in figure 15 where the total potential enstrophy
flux (dashed lines) and the total energy flux (solid lines) are shown together for the
aBQ05 and aBQ1 runs. This is remarkably true for the lower Ro where both fluxes
attain constant values for the whole span of scales. Nevertheless, whereas all of the
enstrophy cascades downscale, only a small portion of energy cascades towards small
scales, the rest being transferred upscale in the inverse energy cascade. It is worth
noting that despite the fact that there is a reasonably clean enstrophy downscale
cascade, energy spectra deviates from the QG limit, as shown by figure 4.

6. Wave motions
We now investigate the role of inertia-gravity waves in the dynamics. Owing to the

singularity which is present for barotropic modes in the PEs, only runs from the BQs
will be considered in the following. It should be pointed out that the random forcing
we introduce in the flow excites gravity waves, since all of the frequencies are forced.
The waves are, however, not directly forced since the forcing is only applied to the q
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FIGURE 16. (Colour online) Examples of the time-frequency spectrum for (a) a large-scale
(kh = 10, kv = 2) and (b) a small-scale (kh = 50, kv = 50) Fourier mode. ——, geostrophic
spectrum EG; - - - - -, ageostrophic spectrum EA. Vertical helping dashed lines represent the
inertial frequency f , the dispersion relation frequency ωd and the Brunt–Väisälä frequency N
(from left to right).

equation. The excitement of gravity waves at the forcing scale is crucial in order to be
able to investigate the possible role of gravity waves in the downscale energy cascade.

Wave motions are studied through frequency analyses. Owing to storage limitations
together with the high resolutions employed, time series of only a limited number of
spectral components were collected. A logarithmically spaced span of 40 wavenumbers
between 1 and 330 were considered both in the horizontal and in the vertical
directions. In each horizontal circle, 15 equally spaced wavenumbers were collected.
Frequency spectra were computed from time series collected from each individual
mode and the spectra were averaged over the horizontal circles. From (2.10), it is easy
to see that wave frequencies can just lie between Ro−1 and Fr−1. Therefore, if one
aims at resolving all of the possible waves in time, time resolutions of at least πFr
as well as time spans of 4πRo are required. As the separation between Ro and Fr
increases, this poses severe requirements on storage capabilities.

Equation (2.13) shows that the total energy can be separated into two components:
EG, the geostrophic part which is only associated with q; and EA, the ageostrophic part
which is only associated with the ageostrophic components a1 and a2. In particular, no
mixed geostrophic/ageostrophic terms, products of q and ai, appear in the expression
of the total energy. Waves are periodic motions, with ω = ωd, which only pertain to
a1 and a2. Therefore, their signatures, if present, are expected to be observed only in
EA. Nevertheless, ageostrophic components may also include other type of motions,
e.g. turbulent dynamics and/or balanced ageostrophic dynamics. Wave activity is
particularly intense in two regions: barotropic modes and shear modes, corresponding
to pure gravity waves and pure inertial waves, respectively. As Fr is increased from
0.001 to 0.1, the importance of gravity waves on the overall ageostrophic spectrum
becomes smaller. Moreover, also the range of wavenumbers largely affected decreases
as Fr becomes comparable to Ro. On the other hand, the extent of the region
pertaining to inertial waves is not very affected by changes in Fr . It is worth noticing
that the region where wave motions are most important does not coincide with the
forcing wavenumbers.

We start by analysing frequency energy spectra of single Fourier coefficients in
order to look for possible signature of gravity waves. In figure 16 the frequency
energy spectra for two particular modes, a large-scale mode, (kh, kz) = (10, 2), and a
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small-scale mode, (kh, kz) = (50, 50), are shown for Ro = 0.1 and Fr = 0.01. In the
large-scale mode, geostrophic energy dominates at low frequencies, attaining values
that are about two orders of magnitude larger than the ageostrophic counterpart. At the
inertial frequency, the geostrophic spectrum starts to decay, whereas the ageostrophic
spectrum stays rather flat and peaks in a range between Ro−1 and Fr−1. The distinct
peak corresponds to motions with a particular frequency, i.e. waves, which closely
match with the frequency ωd of the dispersion relation (2.10). For this frequency,
ageostrophic energy dominates over the geostrophic energy, thanks to the contribution
of the wave motions. When we turn to the small-scale mode, we note that no distinct
peak can be observed and both the geostrophic and the ageostrophic spectra show a
rather flat behaviour with comparable magnitude, indicating the absence of noticeable
wave motions at this scale.

In order to give a more quantitative estimate of the role of inertia-gravity
waves, we now consider spectra averaged over several modes. According to
(2.10), the dispersion frequency ωd is constant along straight lines in a kh–kz

plane. In order to investigate whether waves with a particular frequency can
be observed, the geostrophic energy spectrum, EG(kh, kz, ω), and the ageostrophic
energy spectrum, EA(kh, kz, ω), have been averaged over modes that have similar ωd.
Seven frequency bands were chosen, logarithmically ranging from Ro−1 up to Fr−1:
ωband = [10, 12, 18, 27, 39, 57, 84, 100]. In order to separate contributions from
large-scale and small-scale motions, the averaged spectra were divided into large-scale

spectra, with k =
√

k2
h + k2

z < 10, and small-scale spectra, with k > 10. In figure 17
the averaged spectra are shown. The large-scale geostrophic part shows a rather flat
behaviour at high frequencies. This is clearly due to the forcing that is prescribed to
be white noise in time, i.e. all of the frequencies are excited. Notwithstanding, the
small-scale geostrophic spectra (shown in figure 17b) do not conserve the memory of
the forcing and large decaying rates are found at high frequencies, with EG(ω) ≈ ω−4.
The cut-off frequency at which the small-scale spectrum starts to decay is of the order
of the rotation rate f , showing that most of the energy is concentrated at frequencies
smaller than or comparable to f .

In figure 17(c), the large-scale ageostrophic frequency spectra are plotted. The
distinct peaks at ω = ωd show that wave activity is important in this range of
wavenumbers. Note that both the geostrophic and ageostrophic large-scale spectra
show a small but distinct peak at ωd = Fr−1. This is a spurious effect of an
accumulation of energy in the barotropic mode, kz = 0, which leads to the formations
of a strong wave signature at ωd(kz = 0) = Fr−1, contaminating all modes through
nonlinear interactions, both in the geostrophic and ageostrophic part. Nevertheless, for
the collected modes, the amount of energy around ω = Fr−1 is very small, around
10−6 times smaller than the total. We therefore conclude that these motions are
not dynamically important. When we turn to the small-scale ageostrophic spectra
in figure 17(d), distinct peaks cannot be observed. Instead, spectra show a rather flat
behaviour on a relatively large range of frequencies. Our general conclusion is thus
that wave activity is important at large scales, corresponding to wavenumbers close to
the forcing scale, but is negligible at the small scale.

7. Triad interactions
We start by analysing the exchange of energy between geostrophic and ageostrophic

modes. The quantities in the following were computed from individual flow fields and
then averaged individual realizations of the aBQ set. In figure 18(a,b), the transfer into
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FIGURE 17. (a,b) Averaged time frequency geostrophic power energy spectra. (c,d)
Averaged time frequency ageostrophic power energy spectra. Parts (a,c) refer to the large-
scales modes, whereas (b,d) refer to the small-scale modes. Note that in (c), the frequency
axis has been rescaled with the dispersion relation frequency ωd, which differs from curve to
curve, in order to highlight peaks due to wave motions. The data pertain to the aBQ1 run.

geostrophic energy separated in its three different contributions, as given by (2.17), is
shown. Despite the averaging, curves still show a somewhat spiky behaviour. Low-pass
filtered counterparts characterized by smoother trends are also shown in thicker lines.
At large scales, the contribution from TGGG dominates, leading to an upscale cascade
of energy. At smaller scales, the three parts attain comparable magnitudes with TGGG

being preferentially negative and TGAA preferentially positive.
On the other hand, the large-scale transfer of energy into ageostrophic energy

is mainly due to positive contributions of TAGG. This result is consistent with the
statistical mechanical analysis of Bartello (1995), suggesting that this term is mainly
responsible for the transfer of energy from geostrophic motions to ageostrophic
motions in the so-called process of ‘geostrophic adjustment’. In figure 20, the transfer
of energy into the ageostrophic motions due to geostrophic interactions, TAGG, is
investigated for the aBQ set. The largest contributions are found at large-scales where
this term accounts for the conversion from geostrophic energy to ageostrophic energy.
Its contribution varies with the Ro, increasing with Ro. Our analysis also shows
that there is another term of comparable magnitude, namely TAGA. It attains negative
values, removing energy from the large-scales and producing a downscale transfer of
energy. Note that if q were a conserved quantity, the interaction term TAGA would only
allow energy exchange between two ageostrophic modes, leaving the geostrophic mode
unchanged, and the corresponding interaction term TGAA would therefore be zero. This
is not the case in our simulations, as can be seen in figure 18(a,b). However, TGAA
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FIGURE 18. Transfer of energy into the geostrophic modes at (a) large scales and (b) small
scales: blue curve, TGGG(k); red curve, TGGA(k); black curve, TGAA(k). Transfer of energy into
the ageostrophic modes at (c) large scales and (d) small scales: blue curve, TAGG(k); red curve,
TAGA(k); black curve, TAAA(k). Thick lines represent low-pass filtered counterparts.

is one order of magnitude smaller than TAGA, consistent with the analysis of Bartello
(1995).

The total energy transfer at small scales is dominated by two contributions, TAGA

and TAAA. It should be noted that the scales in figure 18(b,d) are different. The
magnitude of the ageostrophic energy transfer terms at small scales is one order
of magnitude larger than their geostrophic counterparts. In the ocean, interactions
among waves are thought to have a central role in the transfer of energy among
scales. How much of TAGA and TAAA is accounted for by wave dynamics is surely an
interesting question. Indeed, both TAGA and TAAA present the possibility of involving
resonant wave interactions. With respect to the term TAGA, if resonance were to
happen, the interaction would have to involve two waves with equal but opposite
frequencies (Bartello 1995). As shown in appendix B, wave motions can be classified
according to the two eigenmodes of the linear part of (2.5b) and (2.5c). Resonance
must occur between one wave of the first class (pertaining to the first eigenmodes)
and one of the second class of waves (pertaining to the second eigenmodes). In
figure 19(c,d), the term TAGA has been further decomposed into the terms pertaining to
the interaction T±G± within the same class and the terms pertaining to the interaction
T±G∓ between the two different classes. Resonant wave interactions can only make
contributions to T±G∓ and not to T±G±. The interaction within the same class accounts
for almost the whole TAGA term, with T±G∓ being two orders of magnitude smaller
than T±G±. This clearly shows that resonant wave–wave interactions cannot explain the
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FIGURE 19. (a,b) Transfer of energy into the geostrophic modes due to the interaction
between one geostrophic mode and two ageostrophic modes, (a) at large-scales and (b) at
small-scales. Black curve, total interaction TGAA(k); blue curve, interaction within the same
class TG±±(k); red curve, interaction between the different class TG±∓(k). (c,d) Transfer
of energy into the ageostrophic modes due to the interaction between one geostrophic
mode and two ageostrophic modes, (c) at large-scales and (d) at small-scales. Black curve,
total interaction TAGA(k); blue curve, interaction within the same class T±G±(k); red curve,
interaction between the different class T±G∓(k). Thick lines represent low-pass filtered
counterparts.

downscale transfer of energy. At large scales, the interactions within the same class
and the interaction between the classes show comparable magnitude, with the former
being preferentially negative and the latter being preferentially positive. An analogous
decomposition of TGAA is also shown in figure 19(a,b). Interactions within and between
classes show similar behaviour with comparable magnitude over the whole range of
scales, suggesting that there is no preferable type of interaction.

In order to further study how energy is exchanged among wavenumbers as well as
the locality of the energy transfer in wavenumber space, we consider the triadic energy
transfer integrated over spherical shells in wavenumber space, T(k, p, q). Roughly
100 shells were chosen, logarithmically spanning the interval [1, 300]. In figure 21,
TAGA(k, p, q) is shown in a p–q plane at k = 110, i.e. within the downscale energy
cascade. At this location, the effect of viscosity is negligible and the term TAGA

constitutes the largest contribution, as shown in figure 18. As in turbulent flows, the
energy transfer term TAGA in a p–q plane concentrates in two regions, corresponding
to one wavenumber of comparable magnitude with respect to k and the other
wavenumber being very small, i.e. strongly non-local triads. In agreement with the
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FIGURE 20. Transfer of energy into ageostrophic motions due to geostrophic interactions,
TAGG: red curve, Ro= 0.2; blue curve, Ro= 0.1; green curve, Ro= 0.05.
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FIGURE 21. (a) Absolute value of the energy transfer function TAGA(k, p, q) in a p–q plane at
k = 110. Note that p and q are rescaled with k. The colour axis has a logarithmic scale. (b)
Example of a dominant triad interaction, corresponding to the red spot in (a).

results of Ohkitani & Kida (1992) and Maltrud & Vallis (1993), the transfer of energy,
however, is between the two comparable wavenumbers, whereas the small wavenumber
does not exchange energy within the triad but rather acts as a catalyser. It is worth
pointing out that such triads may satisfy the resonant condition. Simple geometrical
considerations reveal that the three wavenumbers involved in such triads lay along the
same line in wavenumber space. From the dispersion relation (2.10), it is therefore
evident that waves in these modes possess the same frequencies. However, Lelong &
Riley (1991) showed that the transfer of energy in a vortex–wave–wave interaction
between the two waves tends to zero when the horizontal projection of the wave
wavenumbers are parallel to each other, as in this case. Thus, also the spectral transfer
of energy strongly supports the conjecture that transfer of energy between scales is a
result of turbulent dynamics rather than wave dynamics.
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FIGURE 22. (a) Absolute value of the energy transfer function TAAA(k, p, q) in a p–q plane at
k = 110. Note that p and q are rescaled with k. The colour axis has a logarithmic scale. (b,c)
Examples of two dominant triad interactions corresponding to the red spots in (a).

We now turn to the transfer of energy at small scales among ageostrophic modes
represented by TAAA. Despite being smaller in magnitude, this term is of leading
order at very small scales, as shown by figure 18. According to (2.19), such a
term is conservative and thus only moves energy among scales. Its role mainly
consists of extracting energy from the middle range of wavenumbers to feed the
dissipation range, in agreement with the finding of Waite & Bartello (2004). In order
to obtain some insight in the dynamics of such a process, we investigate the quantity
TAAA(k, p, q) in figure 22. As before, the p–q plane at k = 110 is displayed. Triad
interactions show a somewhat more sparse behaviour as compared with figure 21.
Also in this case, regions pertaining to one large wavenumber (comparable to k) and
one small wavenumber show intense transfer which is local and mainly between the
two large wavenumbers of the triad. Such transfer is downscale and consistent with
a turbulent dynamics. In addition, large energy transfers are also obtained in regions
corresponding to interactions with wavenumbers larger than k, which lead to the net
transfer of energy towards large wavenumbers seen in figure 18. Interestingly, most
of the energy transfers is found in regions for which p ≈ k + q or q ≈ k + p, i.e.
nearly parallel vectors in a wavenumber space. Figure 22 shows the transfer of energy
in such a triad. As opposed to a typical turbulent cascade, transfer of energy is
highly non-local, with energy flowing out of the two smaller wavenumbers and into
the largest wavenumber. Since the wavenumber vectors are aligned, waves possess all
similar frequencies. The resonance condition is therefore hardly satisfied, suggesting
that wave–wave–wave resonant interactions are of minor importance also in this type
of energy transfer.

8. Conclusions
We have studied the route to dissipation in strongly stratified and rotating flows,

covering a range of values of Ro and Fr , representative for large-scale atmospheric
flows. As expected, the BQs and PEs show similar dynamics when Fr2/Ro2 � 1,
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although some interesting differences also are observed. In agreement with the
simulations of Vallgren et al. (2011), finite rotation rates led to departures from the
QG dynamics. As Ro is increased, the amount of energy cascading upscale decreases
and a fraction of the injected energy starts to cascade downscale. Thus, a non-zero
Rossby number may reconcile the apparent paradox that energy dissipation should be
absent in flows conforming to QG dynamics to lowest order. However, whether the
ageostrophic downscale cascade of energy or other possible pathways to dissipation
(as solid boundaries, wave cascade, wave breaking, etc.) are those that dominate
geophysical flows is a question yet to be answered. Interestingly, the forward energy
cascade towards small scales leads to a shallowing of the energy spectra, from ∼k−3

h

to ∼k−5/3
h , in agreement with the observations of Nastrom & Gage (1985). Following

Vallgren et al. (2011), the large-scale part of the spectrum can be described as the
enstrophy range of a QG cascade, E(k) ∼ η2/3k−3. On the other hand, at smaller
scales the spectrum is of the form E(k) ∼ ε2/3k−5/3 where ε is the small-scale energy
dissipation. Simple algebra shows that the transition wavenumber can be estimated as
kt ∼√η/ε. A model of how kt varies with Ro can be obtained if one assumes that the
ratio between the small-scale dissipation and the energy injection varies as ε/P ∼ Ron.
Figure 11 indicated that n ∼ 3/2 for PEs and n ∼ 2 for BQs. The enstrophy injection
rate and the energy injection rate are related as η ∼ Pk2

f , where kf is the forcing
wavenumber. By combining these relations we find that the transition wavenumber
varies as kt ∼ kf Ro

−n/2. Our results are in general agreement with this estimate. For
Ro = 0.1, Vallgren et al. (2011) estimated the transition scale in their simulations of
the PEs at ∼700 km. By applying similar arguments, a transition scale at ∼300 km is
found when non-zero Frh is considered (aBQ1). On the other hand, the vertical energy
spectra are somewhat more obscure and show a strong non-monotonic behaviour. Both
in the QG and in the strongly stratified limit, a k−3 dependence is recovered. However,
for intermediate Ro, spectra show a k−5/3 range of scales. At large scales, the rotational
spectrum scales as ∼k−3

h , in agreement with QG dynamics, whereas the divergent
spectrum is several orders of magnitude smaller and is somewhat more shallow than
k−5/3

h . At the wavenumber where the magnitudes of the rotational and divergent spectra
become comparable, the rotational spectrum shallows and both spectra approximately
scale as k−5/3

h .
Spectral fluxes indicate the existence of an inertial range of scale where the energy

is inviscidly transferred from the large scales to the very smallest scales. The amount
of energy cascading downscale strongly increases with Ro for both BQs and PEs and
weakly decreases with Fr . For a fixed Ro the forward cascade is therefore strongest
in the PEs, where Fr = 0. Most general circulation models use the PEs and they
should therefore be able to reproduce a forward energy cascade if a sufficiently high
resolution is used. This is consistent with the hypothesis that strong rotation leads
to an inverse energy cascade, whereas strong stratification favours a forward energy
cascade. The PE set therefore represents the limiting case for strongly stratified flows,
for which the related small-scale dissipation is the upper limit. The separate kinetic
and potential energy fluxes show that there is a transfer of energy from potential to
kinetic energy at large scales and a kinetic to potential energy transfer at smaller scales
where the energy cascade is dominant.
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Despite the fact that potential enstrophy is not a conserved quantity in PEs and
BQs, intermediate Rossby number simulations show a range of scales in which both
the enstrophy and the energy flux are constant. A forward cascade of energy and
potential enstrophy coexist. For Ro = 0.05 and Fr = 0.01, such a range extends
over a decade. Enstrophy cascades downscale by triad interactions involving three
geostrophic modes while energy is cascading downscale by interactions involving at
least one ageostrophic mode, with a dominant contribution from interactions involving
two ageostrophic and one geostrophic mode.

Structures characteristic of QG dynamics as filamentation and large-scale baroclinic
vortices are observed in the flow. However, small-scale turbulent patches can also be
found where the dissipation of energy is particularly intense. The local Froude number
in the turbulent patches is of the order of unity, suggesting that KH instability is a
potentially important mechanism supporting a direct energy cascade.

The role of internal gravity waves was investigated through time frequency
analyses of time series from single Fourier modes. Frequency spectra from low
wavenumber modes, k < 10, of ageostrophic motions show distinct peaks at the
characteristic wave frequency. At higher wavenumbers, k > 10, no such peaks could be
observed, indicating that waves become less important at scales where the energy
cascade becomes dominant. That the downscale energy cascade is dominated by
turbulent motions rather than waves is also confirmed by the investigation of triad
interactions. Energy is mainly transferred by interactions between two ageostrophic
and one geostrophic mode. If these interactions had been the result of resonant
wave interactions the two ageostrophic modes would correspond to two waves with
frequencies of equal magnitude but opposite signs. Our analysis clearly shows that this
cannot be the case. The contribution to the energy transfer from interactions involving
such motions is at least two orders of magnitude smaller that the total transfer. We
therefore conclude that the motions of the downscale energy cascade in strongly
stratified and rotating systems are genuinely turbulent.
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Appendix A

According to (2.12), the energy content in spectral space can be written in the
quadratic form

E(k)= 1
2


û(k)
v̂(k)
ŵ(k)
b̂(k)


H 

1 0 0 0
0 1 0 0
0 0 Fr2 0
0 0 0 1




û(k)
v̂(k)
ŵ(k)
b̂(k)

 . (A 1)

Here, the superscript ·H refers to the Hermitian transpose. Using the inversion relations
(2.6), we can express the primitive variable û(k), v̂(k), ŵ(k) and b̂(k) from the
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prognostic variable q̂(k), â1(k) and â2(k) as


û(k)
v̂(k)
ŵ(k)
b̂(k)

=



iky

k2

iRo kxky

k2kz

−iRo
(
kx

2 + kz
2
)

k2kz

−ikx

k2

iRo
(
ky

2 + kz
2
)

k2kz

−iRo kxky

k2kz

0 − iky

k2
z

ikx

k2
z

kz

k2
Ro

kx

k2
Ro

ky

k2




q̂(k)
â1(k)
â2(k)

 . (A 2)

Energy can therefore be written as

E(k)= ũHEũ (A 3)

where ũ= {q̂, â1, â2} and E is given by

1
2


k−2 0 0

0
Ro2k2

z (k
2
x k2

y + k2
x k2

z + k4
y + 2k2

y k2
z + k4

z )+ Fr2k4k2
y

k4k4
z

− kxky(Ro
2k2

z + Fr2k2)

k4
z k2

0 − kxky(Ro
2k2

z + Fr2k2)

k4
z k2

Ro2k2
z (k

2
x k2

y + k2
y k2

z + k4
x + 2k2

x k2
z + k4

z )+ Fr2k4k2
x

k4
z k4

 .

(A 4)

For barotropic modes (A 3) can still be used by replacing ũ with {q̂, ŵ, b̂} and E with

1
2

k−2 0 0
0 Fr2 0
0 0 1

 . (A 5)

The explicit expression of E shows the decoupling between geostrophic and
ageostrophic modes.

Appendix B
By retaining only the linear part, (2.5b) and (2.5c) can be written ask2

z + k2
y

Fr2

Ro2 −Fr2

Ro2 kxky

−Fr2

Ro2 kxky k2
z + k2

x

Fr2

Ro2

 ∂

∂t

{
â1

â2

}
= 1

Ro

[
−kxky k2

z + k2
x

−k2
z − k2

y +kxky

]{
â1

â2

}
, (B 1)

which can be recast in an eigenvalue problem for the complex frequency λ

(B − λA) a= 0 (B 2)

where a = [â1, â2]T. The discriminant of (B 2) gives the dispersion relation (2.10), i.e.
λ1,2 = ±iωd. The matrix M whose columns are the eigenvectors of (B 1) is a linear
operator which allows to project a on the eigenvector basis

a= Me e= M−1a (B 3)

where e is the projection of a in the eigenvector basis. The first component of
e pertains to waves with positive frequency whereas the second component of e
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pertains to waves with negative frequencies. After projecting, the normal modes used
by Bartello (1995) are recovered.

We divide the transfer term TAGA into two parts, T±G± and T±G∓, where the first part
contains contributions involving the same eigenvectors and the second part contains
contributions involving two different eigenvectors. To calculate these two parts we
need to separate the ageostrophic fields into two fields associated with each of the
eigenvectors. This can easily be done by projecting a1 and a2 on the eigenvector
basis, setting either the first class or the second class of modes to zero and finally
transforming back to the normal basis which the inversion relations (2.6) can be
applied to.
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