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Abstract

We consider a host-parasite model for a population of cells that can be of two types, A
or B, and exhibits unilateral reproduction: while a B-cell always splits into two cells
of the same type, the two daughter cells of an A-cell can be of any type. The random
mechanism that describes how parasites within a cell multiply and are then shared into
the daughter cells is allowed to depend on the hosting mother cell as well as its daughter
cells. Focusing on the subpopulation of A-cells and its parasites, our model differs from
the single-type model recently studied by Bansaye (2008) in that the sharing mechanism
may be biased towards one of the two types. Our main results are concerned with the
nonextinctive case and provide information on the behavior, as n → ∞, of the number of
A-parasites in generation n and the relative proportion of A- and B-cells in this generation
which host a given number of parasites. As in Bansaye (2008), proofs will make use of
a so-called random cell line which, when conditioned to be of type A, behaves like a
branching process in a random environment.
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1. Introduction

The reciprocal adaptive genetic change of two antagonists (e.g. different species or genes)
through reciprocal selective pressures is known as host-parasite coevolution. It may be observed
even in real time under both field and laboratory conditions if reciprocal adaptations take place
rapidly and generation times are short. For more information, see, e.g. [11] and [13].

The present work studies a host-parasite branching model with two types of cells (the hosts),
here called A and B, and proliferating parasites colonizing the cells. Adopting a genealogical
perspective, we are interested in the evolution of certain characteristics over generations and
under the following assumptions on the reproductive behavior of cells and parasites. All cells
behave independently and split into two daughter cells after one unit of time. The types of the
daughter cells of a type-A cell are chosen in accordance with a random mechanism which is
the same for all mother cells of this type whereas both daughter cells of a type-B cell are again
of type B. Parasites within a cell multiply in an independent and identically distributed (i.i.d.)
manner to produce a random number of offspring, the distribution of which may depend on
the type of this cell as well as on those of its daughter cells. The same holds for the random
mechanism by which the offspring is shared into these daughter cells.
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The described model grew out of a discussion with biologists in an attempt to provide a first
very simple setup that allows us to study coevolutionary adaptations, here due to the presence
of two different cell types. It may also be viewed as a simple multitype extension of a model
studied by Bansaye [5] which in turn forms a discrete-time version of a model introduced
by Kimmel [10]. Bansaye himself extended his results in [6] by allowing immigration and
random environments, the latter meaning that each cell chooses the reproduction law for the
parasites it hosts in an i.i.d. manner. Let us further mention related recent work by Guyon [9],
who studied another discrete-time model with asymmetric sharing and obtained limit theorems
under ergodic hypotheses which, however, exclude an extinction-explosion principle for the
parasites which is valid in our model.

We continue with the introduction of some necessary notation which is similar to that in [5].
Making the usual assumption of starting from one ancestor cell, denoted as ∅, we put G0 := {∅},
Gn := {0, 1}n for n ≥ 1, and let

T :=
⋃

n∈N0

Gn with Gn := {0, 1}n

be the binary Ulam–Harris tree rooted at ∅ which provides the label set of all cells in the
considered population. Plainly, Gn contains the labels of all cells of generation n. For any cell
v ∈ T, let Tv ∈ {A, B} denote its type and Zv the number of parasites it contains. Unless stated
otherwise, the ancestor cell is assumed to be of type A and to contain one parasite, i.e.

(SA1) T∅ = A and Z∅ = 1.

Then, for t ∈ {A, B} and n ≥ 0, define

Gn(t) := {v ∈ Gn : Tv = t} and G
∗
n(t) := {v ∈ Gn(t) : Zv > 0}

as the sets of type-t cells and type-t contaminated cells in generation n, respectively. The set
of all contaminated cells in generation n is denoted by G

∗
n; thus, G

∗
n = G

∗
n(A) ∪ G

∗
n(B).

As common, we write v1 . . . vn for v = (v1, . . . , vn) ∈ Gn, uv for the concatenation of
u, v ∈ T, i.e.

uv = u1 . . . umv1 . . . vn if u = u1 . . . um and v = v1 . . . vn,

and v|k for the ancestor of v = v1 . . . vn in generation k ≤ n; thus, v|k = v1, . . . , vk . Finally,
if v|k = u for some k and u �= v, we write u < v.

The process (Tv)v∈T is a Markov process indexed by the tree T (see, e.g. [7] for the symmetric
independent case). It has transition probabilities

P(Tv0 = x, Tv1 = y | Tv = A) = px y, (x, y) ∈ {(A, A), (A, B), (B, B)},
P(Tv0 = B, Tv1 = B | Tv = B) = 1,

and we denote by

p0 := pAA + pAB = 1 − pBB and p1 := pAA

the probabilities that the first and the second daughter cells are of type A, respectively. In order
to rule out total segregation of type-A and type-B cells, which would just lead back to the model
studied in [5], it will be assumed throughout that

(SA2) pAA < 1.
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The sequence (# Gn(A))n≥0 obviously forms a Galton–Watson branching process with one
ancestor (as T∅ = A) and mean

ν := p0 + p1 = 2pAA + pAB = 1 + (pAA − pBB) < 2;
it is a standard fact that (see, e.g. [4, Section I.5])

# Gn(A) → 0 almost surely (a.s.) if and only if pAA ≤ pBB and pAB < 1.

To describe the multiplication of parasites, let Zv denote the number of parasites in cell v

and, for t ∈ {A, B}, s ∈ {AA, AB, BB}, let

(X
(0)
k,v(t, s), X

(1)
k,v(t, s))k∈N,v∈T, t ∈ {A, B}, s ∈ {AA, AB, BB},

be independent families of i.i.d. N
2
0-valued random vectors with respective generic copies

(X(0)(t, s), X(1)(t, s)). If v is of type t and their daughter cells are of type x and y, then
X

(i)
k,v(t, xy) gives the offspring number of the kth parasite in cell v that is shared into the daughter

cell vi of v. Since type-B cells can only produce daughter cells of the same type, we will write
(X

(0)
k,v(B), X

(1)
k,v(B)) as shorthand for (X

(0)
k,v(B, BB), X

(1)
k,v(B, BB)). To avoid trivialities, it is

always assumed hereafter that

(SA3) P(X(0)(A, AA) ≤ 1, X(1)(A, AA) ≤ 1) < 1, and

(SA4) P(X(0)(B) ≤ 1, X(1)(B) ≤ 1) < 1.

Next, observe that

(Zv0, Zv1) =
∑

t∈{A,B}
1{Tv=t}

∑
s∈{AA,AB,BB}

1{(Tv0,Tv1)=s}
Zv∑
k=1

(X
(0)
k,v(t, s), X

(1)
k,v(t, s)).

We put µi,t(s) := EX(i)(t, s) for i ∈ {0, 1} and t, s as before, write µi,B as shorthand for
µi,B(BB), and assume throughout that the µi,t(s) are finite and

(SA5) µ0,A(AA), µ1,A(AA), E(# G
∗
1(B)) > 0, µ0,B, µ1,B > 0.

The total number of parasites in cells of type t ∈ {A, B} at generation n is denoted by

Zn(t) :=
∑

v∈Gn(t)

Zv,

and we put Zn := Zn(A) + Zn(B), plainly the total number of all parasites at generation n.
Both (Zn)n≥0 and (Zn(A))n≥0 are transient Markov chains with absorbing state 0 and satisfy
the extinction-explosion principle (see Section I.5 of [4] for a standard argument), i.e.

P(Zn → 0) + P(Zn → ∞) = 1 and P(Zn(A) → 0) + P(Zn(A) → ∞) = 1.

The extinction events are defined as

Ext := {Zn → 0} and Ext(t) := {Zn(t) → 0}, t ∈ {A, B},
and their complements by Surv and Surv(t), respectively.

As in [5], we are interested in the statistical properties of an infinite random cell line, picked
however from those lines consisting of A-cells only. This leads to a so-called random A-cell line.
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Since B-cells produce only daughter cells of the same type, the properties of a random B-cell
line may be deduced from the aforementioned work and are therefore not studied hereafter.

For the definition of a random A-cell line, a little more care than in [5] is needed because
cells occur in two types and parasitic reproduction may depend on the types of the host and
both its daughter cells. On the other hand, we will show in Section 2 that a random A-cell line
still behaves like a branching process in an i.i.d. random environment (BPRE) which has been
a fundamental observation in [5] for a random cell line in the single-type situation.

Let U = (Un)n∈N be an i.i.d. sequence of symmetric Bernoulli variables independent of the
parasitic evolution, and put Vn := U1 · · · Un. Then

∅ =: V0 → V1 → V2 → · · · → Vn → · · ·
provides us with a random cell line in the binary Ulam–Haris tree, and we denote by

T[n] = TVn and Z[n] = ZVn, n ≥ 0,

the cell types and the number of parasites along that random cell line. A random A-cell line
up to generation n is obtained when T[n] = A, for then T[k] = A for any k = 0, . . . , n − 1 as
well. As will be shown in Proposition 1, the conditional law of (Z[0], . . . , Z[n]) given T[n] = A,
i.e. given an A-cell line up to generation n is picked at random, equals the law of a certain
BPRE (Zk(A))k≥0 up to generation n for each n ∈ N. It should be clear that this cannot be
generally true for the unconditional law of (Z[0], . . . , Z[n]), due to the multitype structure of
the cell population.

Aiming at a study of host-parasite coevolution in the framework of a multitype host
population, our model may be viewed as the simplest possible alternative. There are only
two types of host cell and reproduction is unilateral in the sense that cells of type A may give
birth to both A- and B-cells, but those of type B will never produce cells of the opposite type.
The basic idea behind this restriction is that of irreversible mutations that generate new types
of cells but never lead back to already existing ones. Observe that our setup could readily be
generalized without changing much the mathematical structure by allowing the occurrence of
further irreversible mutations from cells of type B to cells of type C, and so on.

The rest of this paper is organized as follows. We focus on the case of nonextinction of
contaminated A-cells, that is, P(Ext(A)) < 1. Basic results on Zn(A), Z[n], # G

∗
n(A), and

# G
∗
n, including the aforementioned one, will be shown in Section 2 and be partly instrumental

for the proofs of our results on the asymptotic behavior of the relative proportion of contaminated
cells with k parasites within the population of all contaminated cells. These results are stated in
Section 3 and proved in Section 4. A glossary of the most important notation used throughout
may be found in Appendix A.

2. Basic results

We begin with a number of basic properties of and results about the quantities G
∗
n(A), G

∗
n,

Zn(A), and Z[n].

2.1. The random A-cell line and its associated sequence (Z[n])n≥0

In [5], a random cell line was obtained by simply picking a random path in the infinite binary
Ulam–Harris tree representing the cell population. Due to the multitype structure here, we must
proceed in a different manner when restricting to a specific cell type, here type A. In order
to study the properties of a ‘typical’ A-cell in generation n for large n, i.e. an A-cell picked at
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random from this generation, a convenient (but not the only) way is to first pick at random a cell
line up to generation n from the full height n binary tree as in [5] and then to condition upon the
event that the cell picked at generation n is of type A. This naturally leads to a random A-cell
line up to generation n, for A-cells can only stem from cells of the same type. Then looking at
the conditional distribution of the associated parasitic random vector (Z[0], . . . , Z[n]) leads to
a BPRE not depending on n and, thus, to an analogous situation as in [5]. The precise result is
stated next.

Proposition 1. Let (Zn(A))n≥0 be a BPRE with one ancestor, and let (�n)n≥1 be an i.i.d.
environmental sequence taking values in {L(X(0)(A, AA)), L(X(1)(A, AA)), L(X(0)(A, AB))}
such that

P(�1 = L(X(0)(A, AB))) = pAB

ν
and P(�1 = L(X(i)(A, AA))) = pAA

ν

for i ∈ {0, 1}. Then the conditional law of (Z[0], . . . , Z[n]) given T[n] = A equals the law of
(Z0(A), . . . , Zn(A)) for each n ≥ 0.

Proof. We use induction over n and begin by noting that nothing has to be shown if n = 0.
For n ≥ 1 and (z0, . . . , zn) ∈ N

n+1
0 , we introduce the notation

Cz0,...,zn := {(Z[0], . . . , Z[n]) = (z0, . . . , zn)} and CA
z0,...,zn

:= Cz0,...,zn ∩ {T[n] = A},
and note that

P(T[n] = A) = 2−n
E

( ∑
v∈Gn

1{Tv=A}
)

=
(

ν

2

)n

for each n ∈ N, in particular,

P(T[n] = A | T[n−1] = A) = P(T[n] = A)

P(T[n−1] = A)
= ν

2
.

Assuming that the assertion holds for n − 1 (inductive hypothesis), i.e.

P(Cz0,...,zn−1 | T[n−1] = A) = P(Z0(A) = z0, . . . , Zn−1(A) = zn−1)

for any (z0, . . . , zn−1) ∈ N
n
0, we infer with the help of the Markov property that

P((Z[0], . . . , Z[n]) = (z0, . . . , zn) | T[n] = A)

= P(CA
z0,...,zn

)

P(T[n] = A)

= P(Cz0,...,zn−1 | T[n−1] = A)P(Z[n] = zn, T[n] = A | CA
z0,...,zn−1

)
P(T[n−1] = A)

P(T[n] = A)

= P(Z0(A) = z0, . . . , Zn−1(A) = zn−1)

× P(Z[1] = zn, T[1] = A | Z[0] = zn−1, T[0] = A)

P(T[n] = A | T[n−1] = A)

= P(Z0(A) = z0, . . . , Zn−1(A) = zn−1)

× 2

ν

(
pA B

2
(PX(0)(A,AB))∗zn−1({zn}) +

∑
i∈{0,1}

pA A

2
(PX(i)(A,AA))∗zn−1({zn})

)

= P(Z0(A) = z0, . . . , Zn−1(A) = zn−1)P(Z[n](A) = zn | Z[n−1](A) = zn−1)

= P(Z0(A) = z0, . . . , Zn(A) = zn).

This proves the assertion.
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The connection between the distribution of Zn(A) and the expected number of A-cells in
generation n with a specified number of parasites is stated in the next result.

Proposition 2. For all n ∈ N and k ∈ N0,

P(Zn(A) = k) = ν−n
E(#{v ∈ Gn(A) : Zv = k}),

in particular,
P(Zn(A) > 0) = ν−n

E# G
∗
n(A). (1)

Proof. For all n, k ∈ N, we find that

E(#{v ∈ Gn(A) : Zv = k}) =
∑
v∈Gn

P(Zv = k, Tv = A)

= 2n
P(Z[n] = k, T[n] = A)

= 2n
P(T[n] = A)P(Z[n] = k | T[n] = A)

= νn
P(Z[n] = k | T[n] = A)

= νn
P(Zn(A) = k),

and this proves the result.

For n ∈ N and s ∈ [0, 1], let

fn(s | �) := E(sZn(A) | �) and fn(s) := EsZn(A) = Efn(s | �)

denote the quenched and annealed generating functions of Zn(A), respectively, where � :=
(�n)n≥1. Then the theory of a BPRE (see [2], [3], [8], and [12] for more details) provides us
with the following facts: for each n ∈ N,

fn(s | �) = g�1 ◦ · · · ◦ g�n(s), gλ(s) := E(sZ1(A) | �1 = λ) =
∑
n≥0

λns
n

for any distribution λ = (λn)n≥0 on N0. Moreover, the g�n are i.i.d. with

Eg′
�1

(1) = EZ1(A) = pAA

ν
(µ0,A(AA) + µ1,A(AA)) + pAB

ν
µ0,A(AB) = γ

ν
,

where
γ := EZ1(A) = pAA(µ0,A(AA) + µ1,A(AA)) + pABµ0,A(AB)

denotes the expected total number of parasites in cells of type A in the first generation (recall
from (SA1) that Z∅ = Z∅(A) = 1). As a consequence,

E(Z[n] | T[n] = A) = EZn(A) = f ′
n(1) =

n∏
k=1

Eg′
�k

(1) =
(

γ

ν

)n

for each n ∈ N. It is also well known that (Zn(A))n≥0 dies out a.s., which in terms of (Z[n])n≥0
means that limn→∞ P(Z[n] = 0 | T[n] = A) = 1, if and only if

E log g′
�1

(1) = pAA

ν
(log µ0,A(AA) + log µ1,A(AA)) + pAB

ν
log µ0,A(AB) ≤ 0.
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2.2. Properties of # GGG
∗
n(A) and # GGG

∗
n

We proceed to the statement of a number of results on the asymptotic behavior of G
∗
n(A)

and G
∗
n conditioned upon Surv(A) and Surv, respectively. It turns out that if the number of

parasites tends to ∞ then so does the number of contaminated cells.

Theorem 1. (a) If P(Surv(A)) > 0 and pAA > 0, then P(# G
∗
n(A) → ∞ | Surv(A)) = 1.

(b) If P(Surv) > 0 then P(# G
∗
n → ∞ | Surv) = 1.

Proof. The proof of (a) is the same as for Theorem 4.1 of [5] and is thus omitted.
(b)We first note that, given Surv, a contaminated B-cell is eventually created with probability

1 and then spawns a single-type cell process (as EZ1(B) > 0 by (SA5)). Hence, the assertion
follows again from Theorem 4.1 of [5] if µB := µ0,B + µ1,B > 1.

Left with the case µB ≤ 1, it follows that

P(Surv(A) | Surv) = 1,

for otherwise, given Surv, only B-parasites would eventually be left with positive probability,
which would die out a.s. Next, pAA > 0 leads back to (a), so it remains to consider the situation
when pAA = 0. In this case there is a single line of A-cells, namely, ∅ → 0 → 00 → · · · ,
and (Zn(A))n≥0 is an ordinary Galton–Watson branching process tending P(· | Surv(A))-a.s.
to ∞. For n, k ∈ N, let

Zk(n, B) :=
∑

{v∈Gn+k+1(B) : v | n+1=0n1}
Zv

denote the number of B-parasites at generation k sitting in cells of the subpopulation stemming
from the cell 0n1, where 0n := 0 . . . 0 (n times). Using pAB = 1 and (SA5), notably
µ1,A(AB) > 0, µ0,B > 0, and µ1,B > 0, it is readily seen that

P

(
lim

n→∞ Z0(n − k, B) = ∞
∣∣∣ Surv(A)

)
= 1

and, thus,
P

(
lim

n→∞ ZK(n − k, B) = 0
∣∣∣ Surv(A)

)
= 0

for all K ∈ N and k ≤ K . Consequently,

P

(
lim inf
n→∞ # G

∗
n ≤ K

∣∣∣ Surv(A)
)

≤ P

(
lim

n→∞ max
0≤k≤K

Zk(n − k, B) = 0
∣∣∣ Surv(A)

)

≤
K∑

k=0

P

(
lim

n→∞ ZK(n − k, B) = 0
∣∣∣ Surv(A)

)
= 0

for all K ∈ N.

The next result provides us with the geometric rate at which the number of contaminated
cells tends to ∞.

Theorem 2. (ν−n# G
∗
n(A))n≥0 is a nonnegative supermartingale and, therefore, a.s. conver-

gent to a random variable L(A) as n → ∞. Furthermore,

(a) L(A) = 0 a.s. if and only if E log g′
�1

(1) ≤ 0 or ν ≤ 1,

(b) P(L(A) = 0) < 1 implies that {L(A) = 0} = Ext(A) a.s.
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Proof. That (ν−n# G
∗
n(A))n≥0 forms a supermartingale follows by an easy calculation and,

therefore, almost-sure convergence to an integrable random variable L(A) is ensured. This
supermartingale is even uniformly integrable in the case ν > 1, which follows because
the obvious majorant (ν−n# Gn(A))n≥0 is a normalized Galton–Watson branching process
having a reproduction law with finite variance and is thus L2-bounded (see Section I.6 of [4]).
Consequently, (ν−n# G

∗
n(A))n≥0 is uniformly integrable and

EL(A) = lim
n→∞ E

# G
∗
n(A)

νn
= lim

n→∞ P(Zn(A) > 0), (2)

the last equality following from (1).
As for (a), L(A) = 0 a.s. occurs if and only if either ν ≤ 1, in which case # G

∗
n(A) ≤

# Gn(A) = 0 eventually, or ν > 1 and E log g′
�1

(1) ≤ 0, in which case almost certain extinction
of (Zn(A))n≥0 in combination with (2) yields the conclusion.

(b) Defining τn = inf{m ∈ N : # G
∗
m(A) ≥ n}, we find that

P(L(A) = 0) ≤ P(L(A) = 0 | τn < ∞) + P(τn = ∞)

≤ P

(# G
∗
τn

(A)⋂
k=1

{
# G

∗
m,k(A)

νm
→ 0

} ∣∣∣∣ τn < ∞
)

+ P(τn = ∞)

≤ P(L(A) = 0)n + P(τn = ∞)

for all n ≥ 1, where the # G
∗
m,k(A), k ≥ 1, are independent copies of # G

∗
m(A). Since P(L(A) =

0) < 1, Theorem 1 implies that

P(L(A) = 0) ≤ lim
n→∞ P(τn = ∞) = P

(
sup
n≥1

# G
∗
n(A) < ∞

)
= P(Ext(A)),

which in combination with Ext(A) ⊂ {L(A) = 0} a.s. proves the assertion.

Since ν < 2 and (ν−n# Gn(A))n≥0 is a nonnegative, a.s. convergent martingale, we see that
2−n# G

∗
n(A) ≤ 2−n# Gn(A) → 0 a.s. and, therefore,

# G
∗
n

2n
 # G

∗
n(B)

2n
as n → ∞,

that is, the asymptotic proportion of all contaminated cells is the same as the asymptotic
proportion of contaminated B-cells. Note also that

P(T[n] = A) = E

(
# Gn(A)

2n

)
→ 0 as n → ∞. (3)

Further information is provided by the next result.

Theorem 3. There exists a random variable L ∈ [0, 1] such that # G
∗
n /2n → L a.s. Further-

more,

(a) L = 0 a.s. if and only if µ0,Bµ1,B ≤ 1,

(b) if P(L = 0) < 1 then {L = 0} = Ext a.s.
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Proof. The existence of L follows because 2−n# G
∗
n is obviously decreasing. As for (a),

suppose first that µ0,Bµ1,B ≤ 1 and note that this is equivalent to the almost-sure extinction of
a random B-cell line, i.e.

lim
n→∞ P(Z[n] > 0 | Z∅ = k, T[0] = B) = 0

for any k ∈ N. This follows because, starting from a B-cell, we are in the one-type model
studied in [5]. There it is stated that (Z[n])n≥0 forms a BPRE which dies out a.s. if and only
if µ0,Bµ1,B ≤ 1 (see [5, Proposition 2.1]). Fix any ε > 0 and choose m ∈ N so large that
P(T[m] = A) ≤ ε, which is possible by (3). Then, by the monotone convergence theorem, we
find that, for sufficiently large K ∈ N,

EL = lim
n→∞ P(Z[n+m] > 0)

≤ lim
n→∞ P(Z[n+m] > 0, T[m] = B) + ε

≤ lim
n→∞

∑
k≥0

P(Z[n+m] > 0, Z[m] = k, T[m] = B) + ε

≤ lim
n→∞

K∑
k=0

P(Z[n] > 0 | Z[0] = k, T[0] = B) + 2ε

≤ 2ε

and, thus, EL = 0. For the converse, note that

0 = EL = lim
n→∞ P(Z[n+1] > 0) ≥ lim

n→∞ P(Z[1] > 0, T[1] = B)P(Z[n] > 0 | T[0] = B)

implies that 0 = limn→∞ P(Z[n] > 0 | T[0] = B) and, thus, µ0,Bµ1,B ≤ 1 as well.
The proof of (b) follows along similar lines as Theorem 2(b) and is therefore omitted.

2.3. Properties of Zn(A)

We continue with some results on Zn(A), the number of A-parasites at generation n, and
point out first that (γ −nZn(A))n≥0 constitutes a nonnegative, mean-1 martingale which is a.s.
convergent to a finite random variable W . In particular, EZn(A) = γ n for all n ∈ N0. If
EZ1(A)2 < ∞, γ > 1, and

γ̂ := ν Eg′
�1

(1)2 = pAA(µ2
0,A(AA) + µ2

1,A(AA)) + pABµ2
0,A(AB) ≤ γ,

then the martingale is further L2-bounded as may be assessed by a straightforward but tedious
computation. The main difference between a standard Galton–Watson process and the
A-parasite process (Zn(A))n≥0 is the dependence of the offspring numbers of parasites living
in the same cell, which (by some elementary calculations) leads to an additional term in the
recursive formula for the variance, viz.

var(Zn+1(A)) = γ 2 var(Zn(A)) + γ n var(Z1(A)) + c1ν
nf ′′

n (1)

for all n ≥ 0 and some finite positive constant c1. Here it should be recalled that fn(s) =
EsZn(A). Consequently, by calculating the second derivative of fn and using γ̂ ≤ γ , we obtain

f ′′
n (1) = Eg′′

�1
(1)

n∑
i=1

(
γ̂

ν

)n−i(
γ

ν

)i−1

≤ c2n

(
γ

ν

)n
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for some finite positive constant c2. A combination of this inequality with the above recursion
for the variance of Zn(A) finally provides us with

var(γ −nZn(A)) ≤ 1 + γ −2
∞∑

k=0

γ −k(var(Z1(A)) + c1c2k) < ∞

for all n ≥ 0 and, thus, the L2-boundness of (γ −nZn(A))n≥0.
Recalling that (Zn(A))n≥0 and (Zn)n≥0 satisfy the extinction-explosion principle, the next

theorem gives conditions for almost-sure extinction, that is, for P(Ext(A)) = 1 and P(Ext) = 1.

Theorem 4. (a) If pAA = 0 then

P(Ext(A)) = 1 if and only if µ0,A(AB) ≤ 1 or ν < 1.

(b) If pAA > 0 then the following statements are equivalent:

(b.1) P(Ext(A)) = 1,

(b.2) E# G
∗
n(A) ≤ 1 for all n ∈ N,

(b.3) ν ≤ 1, or

ν > 1, E log g′
�1

(1) < 0, and inf
0≤θ≤1

Eg′
�1

(1)θ ≤ 1

ν
.

(c) P(Ext) = 1 if and only if P(Ext(A)) = 1 and µ0,B + µ1,B ≤ 1.

Remark. Let us point out the following useful facts before proceeding to the proof of the
theorem. We first note that, if E log g′

�1
(1) < 0 and Eg′

�1
(1) log g′

�1
(1) ≤ 0, then the convexity

of θ �→ Eg′
�1

(1)θ implies that

Eg′
�1

(1) = inf
0≤θ≤1

Eg′
�1

(1)θ .

If EZ1(A)2 < ∞, Geiger et al. [8, Theorems 1.1–1.3] showed that

P(Zn(A) > 0)  cn−κ
(

inf
0≤θ≤1

Eg′
�1

(1)θ
)n

as n → ∞ (4)

for some c ∈ (0, ∞), where

κ =

⎧⎪⎨
⎪⎩

0 if Eg′
�1

(1) log g′
�1

(1) < 0 (strongly subcritical case),
1
2 if Eg′

�1
(1) log g′

�1
(1) = 0 (intermediately subcritical case),

3
2 if Eg′

�1
(1) log g′

�1
(1) > 0 (weakly subcritical case).

A combination of (1) and (4) provides us with the asymptotic relation

E# G
∗
n(A)  cn−κνn

(
inf

0≤θ≤1
Eg′

�1
(1)θ

)n

as n → ∞,

in particular (with EZ1(A)2 < ∞ still being in force),

inf
0≤θ≤1

Eg′
�1

(1)θ ≤ 1

ν
if sup

n≥1
E# G

∗
n(A) < ∞. (5)
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Proof of Theorem 4. (a) If pAA = 0 and ν = pAB = 1, each generation possesses exactly
one A-cell and (Zn(A))n≥0 thus forms a Galton–Watson branching process with offspring mean
µ0,A(AB) and positive offspring variance (by (SA3)). Hence, almost-sure extinction occurs if
and only if µ0,A(AB) ≤ 1 as claimed. If ν < 1, type-A cells die out a.s. and so do type-A
parasites.

(b.1) ⇒ (b.2) (by contraposition). We fix m ∈ N such that E(# G
∗
m(A)) > 1 and consider a

supercritical Galton–Watson branching process (Sn)n≥0 with S0 = 1 and offspring distribution

P(S1 = k) = P(# G
∗
m(A) = k), k ∈ N0.

Obviously,
P(Sn > k) ≤ P(# G

∗
nm(A) > k)

for all k, n ∈ N0; hence,

lim
n→∞ P(# G

∗
nm(A) > 0) ≥ lim

n→∞ P(Sn > 0) > 0,

i.e. A-parasites survive with positive probability.
(b.2) ⇒ (b.1). If E# G

∗
n(A) ≤ 1 for all n ∈ N then Fatou’s lemma implies that

1 ≥ lim inf
n→∞ E# G

∗
n(A) ≥ E

(
lim inf
n→∞ # G

∗
n(A)

)
,

giving P(Ext(A)) = 1 by an appeal to Theorem 1.
(b.3) ⇒ (b.1), (b.2). If ν ≤ 1 then E# G

∗
n(A) ≤ E# Gn(A) = νn ≤ 1 for all n ∈ N. So let

us consider the situation when

ν > 1, E log g′
�1

(1) < 0, and inf
0≤θ≤1

Eg′
�1

(1)θ ≤ 1

ν

is valid. By (1),
E# G

∗
n(A) = νn

P(Zn(A) > 0)

for all n ∈ N. We must distinguish three cases.
Case A: Eg′

�1
(1) log g′

�1
(1) ≤ 0. By what has been pointed out in the above remark, we

then infer that
γ

ν
= Eg′

�1
(1) = inf

0≤θ≤1
Eg′

�1
(1)θ ≤ 1

ν

and, thus, γ ≤ 1, which in turn entails

E# G
∗
n(A) ≤ EZn(A) = γ n ≤ 1

for all n ∈ N as required.
Case B: Eg′

�1
(1) log g′

�1
(1) > 0 and EZ1(A)2 < ∞. Then, by (4),

P(Zn(A) > 0)  cn−3/2
(

inf
0≤θ≤1

Eg′
�1

(1)θ
)n

as n → ∞

holds for a suitable constant c ∈ (0, ∞) and, therefore,

0 = lim
n→∞ νn

P(Zn(A) > 0) = lim inf
n→∞ E# G

∗
n(A) ≥ E

(
lim inf
n→∞ # G

∗
n(A)

)
,

implying that P(Ext(A)) = 1 by Theorem 1.
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Case C: Eg′
�1

(1) log g′
�1

(1) > 0 and EZ1(A)2 = ∞. Using contraposition, suppose that
supn∈N E# G

∗
n(A) > 1. Fix any vector α = (α

(u)
s )u∈{0,1}, s∈{AA,AB,BB} of distributions on N0

satisfying
α

(u)
s,x ≤ P(X

(u)
1,v(A, s) = x) for x ≥ 1

and u, s as stated; hence,

α
(u)
s,0 ≥ P(X

(u)
1,v(A, s) = 0) and

∑
x≥n

α
(u)
s,x ≤ P(X

(u)
1,v(A, s) ≥ n)

for each n ≥ 0. Possibly after enlarging the underlying probability space, we can then construct
a cell division process (Zα,v, Tv)v∈T coupled with and of the same kind as (Zv, Tv)v∈T such
that

X
(u)
α,k,v(A, s) ≤ X

(u)
k,v(A, s) a.s. and P(X

(u)
α,k,v(A, s) = x) = α

(u)
s,x

for each u ∈ {0, 1}, s ∈ {AA, AB, BB}, v ∈ T, k ≥ 1, and x ≥ 1. To have (Zα,v, Tv)v∈T

completely defined, also put

(X
(0)
α,k,v(B), X

(1)
α,k,v(B)) := (X

(0)
k,v(B), X

(1)
k,v(B))

for all v ∈ T and k ≥ 1. Then Zα,v ≤ Zv a.s. and, thus,

Eg′
α,�1

(1)θ ≤ Eg′
�1

(1)θ , θ ∈ [0, 1], (6)

where Zα,k(A) and gα,�1 have the obvious meaning. Since the choice of α has no affect on the
cell splitting process, we have να = ν > 1, while (6) ensures that

E log g′
α,�1

(1) ≤ E log g′
�1

(1) < 0. (7)

For N ∈ N, let α(N) = (α
(u)
s (N))u∈{0,1}, s∈{AA,AB,BB} be the vector specified by

α
(u)
s,x(N) :=

{
P(X

(u)
k,v(A, s) = x) if 1 ≤ x ≤ N,

0 if x > N.

Then EZα(N),1(A)2 < ∞ and we can fix N ∈ N such that supn∈N E# G
∗
α(N),n(A) > 1, because

# G
∗
α(N),n(A) ↑ # G

∗
n(A) as N → ∞. Then, by what has already been proved under case B in

combination with (6), (7), and να(N) > 1, we infer that

inf
0≤θ≤1

Eg′
�1

(1)θ ≥ inf
0≤θ≤1

Eg′
α(N),�1

(1)θ >
1

ν

and thus violation of (b.2).
(b.2) ⇒ (b.3). Suppose that E# G

∗
n(A) ≤ 1 for all n ∈ N and further ν > 1 which,

by (1), entails limn→∞ P(Zn(A) > 0) = 0 and thus E log g′
�1

(1) ≤ 0. We must show that
E log g′

�1
(1) < 0 and inf0≤θ≤1 Eg′

�1
(1)θ ≤ ν−1. But, given E log g′

�1
(1) < 0, the second

condition follows from (5) if EZ1(A)2 < ∞, and by a suitable ‘α-coupling’ as described
under case C if EZ1(A)2 = ∞. Hence, it remains to rule out that E log g′

�1
(1) = 0. Assuming

the latter, we find with the help of Jensen’s inequality that

inf
0≤θ≤1

log Eg′
�1

(1)θ ≥ inf
0≤θ≤1

θ E log g′
�1

(1) = 0,
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or, equivalently,

inf
0≤θ≤1

Eg′
�1

(1)θ ≥ 1 >
1

ν

(which implies that inf0≤θ≤1 Eg′
�1

(1)θ = 1). Use once more a suitable ‘α-coupling’ and fix α

in such a way that

1 = inf
0≤θ≤1

Eg′
�1

(1)θ > inf
0≤θ≤1

Eg′
α,�1

(1)θ >
1

ν
,

which implies subcriticality of the associated BPRE (Zα,n(A))n≥0. By another appeal to (5),
we thus arrive at the contradiction

sup
n∈N

E# G
∗
n(A) ≥ sup

n∈N

E# G
∗
α,n(A) = ∞.

This completes the proof of (b).
(c) Since Ext ⊆ Ext(A), we see that P(Ext) = 1 holds if and only if P(Ext(A)) = 1 and the

population of B-parasites dies out a.s. as well. But the latter form a Galton–Watson branching
process with offspring mean µ0,B + µ1,B once all A-parasites have disappeared and hence die
out as well if and only if µ0,B + µ1,B ≤ 1.

Theorem 5. Assuming that P(Surv(A)) > 0 and thus particularly γ > 1, the following
assertions hold.

(a) If EZ1(A)2 < ∞ and γ̂ ≤ γ , then P(W > 0) > 0 and EW = 1.

(b) If P(W = 0) < 1 then Ext(A) = {W = 0} a.s.

Proof. (a)As pointed out at the beginning of this subsection, (Zn(A)/γ n)n is an L2-bounded
martingale and thus uniformly integrable. It therefore converges in L1 to its limit W satisfying
EW = 1 as well as P(W > 0) > 0.

Part (b) follows in the same manner as Theorem 2(b).

3. Relative proportions of contaminated cells

We now turn to a statement of our main results that are concerned with the long-run behavior
of relative proportions of contaminated cells containing a given number of parasites, viz.

Fk(n) := #{v ∈ G
∗
n | Zv = k}
# G

∗
n

for k ∈ N and n → ∞, and of the corresponding quantities when restricting to contaminated
cells of a given type t, viz.

Fk(n, t) := #{v ∈ G
∗
n(t) | Zv = k}

# G
∗
n(t)

for t ∈ {A, B}. Note that

Fk(n) = Fk(n, A)
# G

∗
n(A)

# G
∗
n

+ Fk(n, B)
# G

∗
n(B)

# G
∗
n

.

Given survival of type-A parasites, i.e. conditioned upon the event Surv(A), our results, devoted
to regimes where at least one of A- or B-parasites multiply at a high rate, describe the limit
behavior of Fk(n, A), # G

∗
n(A)/# G

∗
n, and Fk(n, B), which depends on that of Zn(A) and the

BPRE Zn(A) in a crucial way.
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For convenience, we define

Pz,t := P(· | Z∅ = z, T∅ = t), z ∈ N, t ∈ {A, B},
and use Ez,t for the expectation under Pz,t. Recalling that P stands for P1,A, we put P

∗ :=
P(· | Surv(A)) and, furthermore,

P
∗
z,t := Pz,t(· | Surv(A)) and P

n
z,t = Pz,t(· | Zn(A) > 0)

for z ∈ N and t ∈ {A, B}. Convergence in probability with respect to P
∗ is shortly expressed

as P
∗-lim.

Theorem 6 below deals with the situation when B-parasites multiply at a high rate, viz.

µ0,Bµ1,B > 1.

In essence, it asserts that among all contaminated cells in generation n those of type B prevail
as n → ∞. This may be surprising at first glance because multiplication of A-parasites may
also be high (or even higher), namely if

(SupC) µ0,A(AA)pAAµ1,A(AA)pAAµ0,A(AB)pAB > 1,

i.e. if the BPRE (Zn(A))n≥0 is supercritical. On the other hand, it should be recalled that
the subpopulation of A-cells grows at rate ν < 2 only, whereas the growth rate of B-cells is 2.
Hence, prevalence of B-cells in the subpopulation of all contaminated cells is observed whenever
# G

∗
n(B)/# Gn(B), the relative proportion of contaminated cells within the nth generation of

all B-cells, is asymptotically positive as n → ∞.

Theorem 6. Assuming that µ0,Bµ1,B > 1, the following assertions hold.

(a)
# G

∗
n(A)

# G
∗
n

→ 0 P
∗-a.s.

(b) Conditioned upon survival of A-cells, Fk(n, B) converges to 0 in probability for any
k ∈ N, i.e.

P
∗-lim
n→∞ Fk(n, B) = 0.

Properties attributed to a high multiplication rate of A-parasites are given in Theorem 7 below.
First of all, contaminated B-cells still prevail in the long run because, roughly speaking, highly
infected A-cells eventually produce highly infected B-cells whose offspring m generations
later for any fixed m are all contaminated (thus 2m in number). Furthermore, the Fk(n, A)

behave as described in [5] for the single-type case: as n → ∞, the number of parasites in any
contaminated A-cell in generation n tends to ∞ and Fk(n, A) to 0 in probability. Finally, if we
additionally assume that type-B parasites multiply faster than type-A parasites, i.e.

µB := µ0,B + µ1,B > γ,

then type-B parasites become predominant and Fk(n, B) behaves again in Bansaye’s single-type
model [5].

Theorem 7. Assuming that (SupC) is satisfied, the following assertions hold.

(a) Conditioned upon survival of A-cells, Fk(n, A) converges to 0 in probability for any
k ∈ N, i.e.

P
∗-lim
n→∞ Fk(n, A) = 0.
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(b)

P
∗-lim
n→∞

# G
∗
n(A)

# G
∗
n

= 0.

(c) If E1,BZ2
1 < ∞, µB > γ , and µ0,B log µ0,B + µ1,B log µ1,B < 0, then

P
∗-lim
n→∞ Fk(n, B) = P(Y(B) = k)

for all k ∈ N, where P(Y(B) = k) = limn→∞ P1,B(Z[n] = k | Z[n] > 0).

4. Proofs

Proof of Theorem 6. (a) By Theorem 3, 2−n# G
∗
n → L, P

∗-a.s. and P
∗(L > 0) = 1, while

Theorem 2 shows that ν−n# G
∗
n(A) → L(A), P-a.s. for an almost-sure finite random variable

L(A). Consequently,

# G
∗
n(A)

# G
∗
n

=
(

ν

2

)n 2n

# G
∗
n

# G
∗
n(A)

νn
 1

L

(
ν

2

)n # G
∗
n(A)

νn
→ 0 P

∗-a.s.

as n → ∞ for ν < 2.
(b) Fix arbitrary ε, δ > 0 and K ∈ N, and define

Dn :=
{ K∑

k=1

Fk(n, B) > δ

}
∩ Surv(A).

By another appeal to Theorem 3, # G
∗
n(B) ≥ 2nL, P

∗-a.s. for all n ∈ N and L as above. It
follows that

#{v ∈ Gn(B) : 0 < Zv ≤ K} ≥ δ # G
∗
n(B) 1Dn ≥ δ 2n L 1Dn,

and by taking the expectation, we obtain, for m ≤ n,

δE(L 1Dn) ≤ 1

2n
E

( ∑
v∈Gn

1{0<Zv≤K, Tv=B}
)

≤ 1

2n
E

( ∑
v∈Gn

1{0<Zv≤K, Tv|m=B} + #{v ∈ Gn : Tv|m = A, Tv = B}
)

≤ 1

2n

∑
v∈Gn

P(0 < Zv ≤ K, Tv|m = B) + 1

2m
E# Gm(A)

≤ 1

2n

∑
z≥1

∑
v∈Gn

P(0 < Zv ≤ K, Zv|m = z, Tv|m = B) +
(

ν

2

)m

≤
∞∑

z=1

( ∑
u∈Gm

P(Zu = z, Tu = B)

2m

)( ∑
u∈Gn−m

Pz,B(0 < Zv ≤ K)

2n−m

)
+

(
ν

2

)m

≤
∞∑

z=1

P(Z[m] = z, T[m] = B) Pz,B(0 < Z[n−m] ≤ K) +
(

ν

2

)m

.
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Since ν < 2, we can fix m ∈ N such that (ν/2)m ≤ ε. Also, fix z0 ∈ N such that

P(Z[m] > z0) ≤ ε.

Then

δE(L 1Dn) ≤
∑
z≥1

P(Z[m] = z, T[m] = B) Pz,B(0 < Z[n−m] ≤ K) +
(

ν

2

)m

≤
z0∑

z=1

Pz,B(0 < Z[n−m] ≤ K) + 2ε.

But the last sum converges to 0 as n → ∞ because, under Pz,B, (Z[n])n≥0 is a single-type
BPRE (see [5]) and, thus, satisfies the extinction-explosion principle. So we have shown that
EL 1Dn → 0, implying that P(Dn) → 0 because L > 0 on Surv. This completes the proof of
the theorem.

Turning to the proof of Theorem 7, we first note that part (a) can be directly inferred from
Theorem 5.1 of [5] after some minor modifications owing to the fact that A-cells do not form a
binary tree here but rather a Galton–Watson subtree of it. Thus, left with the proof of parts (b)
and (c), we first give an auxiliary lemma after introducing the following notation. For v ∈ Gn

and k ∈ N, let
G

∗
k(t, v) := {u ∈ G

∗
n+k(t) : v < u}

denote the set of all infected t-cells in generation n + k stemming from v. Furthermore, let

G
∗
n(A, B) := {u ∈ G

∗
n+1(B) : Tu|n = A},

which is the set of all infected B-cells in generation n + 1 with mother cells of type A.

Lemma 1. If (SupC) holds then

P
∗-lim
n→∞

#G
∗
n(A, B)

#G∗
n(A)

= β > 0,

where β := limz→∞ Ez,A# G
∗
1(B).

Proof. Since z �→ Ez,A# G
∗
1(B) is increasing and E1,A# G

∗
1(B) > 0 by our standing assump-

tion (SA5), we see that β must be positive. Next observe that, for each n ∈ N,

# G
∗
n(A, B) =

∑
v∈G

∗
n−1(A)

# G
∗
1(B, v),

where the # G
∗
1(B, v) are conditionally independent given Zn(A) > 0. Since # G

∗
n(A) → ∞,

P
∗-a.s. (Theorem 1) and P

n = P(· | Zn(A) > 0) → P
∗ in total variation distance, it is not

difficult to infer with the help of the strong law of large numbers that

#G
∗
n(A, B)

#G∗
n(A)

P
∗

 1

# G
∗
n(A)

∑
v∈G

∗
n(A)

EZv,A# G
∗
1(B) as n → ∞,

where an

P
∗

 bn means that |an − bn| P
∗−→ 0. Now use Ez,A# G

∗
1(B) ↑ β to infer the existence

of a z0 ∈ N such that, for all z ≥ z0,

Ez,A# G
∗
1(B) ≥ β(1 − ε).
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After these observations we finally obtain, by an appeal to Theorem 7(a),

β ≥ 1

# G
∗
n(A)

∑
v∈G

∗
n(A)

EZv,A# G
∗
1(B)

≥
∑
z≥z0

Fz(n, A)

#{v ∈ G
∗
n(A) | Zv ≥ z0}

∑
v∈{u∈G

∗
n(A) | Zu≥z0}

EZv,A# G
∗
1(B)

≥ β(1 − ε)
∑
z≥z0

Fz(n, A)

→ β(1 − ε) as n → ∞.

This completes the proof of the lemma.

Proof of Theorem 7(b) and (c). Let ε > 0 and N ∈ N. Then

# G
∗
n(B) =

n−1∑
k=0

∑
v∈G

∗
k(A,B)

#G
∗
n−k−1(B, v)

≥
n−1∑
k=0

∑
v∈{u∈G

∗
k(A,B) | Zu≥z}

#G
∗
n−k−1(B, v)

≥
∑

v∈{u∈G
∗
n−1−m(A,B) | Zu≥z}

#G
∗
m(B, v)

a.s. for all n > m ≥ 1 and z ∈ N, and, thus,

P
∗
(

#G
∗
n(A)

#G∗
n

>
1

N + 1

)
= P

∗(N #G
∗
n(A) > #G

∗
n(B))

≤ P
∗
(

N#G
∗
n(A) >

∑
v∈{u∈G

∗
n−1−m(A,B) | Zu≥z}

#G
∗
m(B, v)

)
. (8)

Fix m so large that

2m(1 − ε) >
4N

β
.

Then, since limz→∞ Pz,B(#G
∗
m = 2m) = 1, there exists z0 ∈ N such that Pz,B(#G

∗
m = 2m) ≥

1 − ε, and, therefore,

Ez,B#G
∗
m ≥ (1 − ε)2m >

4N

β
(9)

for all z ≥ z0. Moreover,
∑

k≥z0
Fk(n, A)

P
∗−→ 1 by part (a), whence

#{v ∈ G
∗
n(A, B) : Zv ≥ z0}
# G

∗
n(A, B)

P
∗−→ 1.

This together with Lemma 1 yields

#{v ∈ G
∗
n(A, B) : Zv ≥ z0}
# G

∗
n(A)

P
∗−→ β
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and thereupon

P
∗
(

#{v ∈ G
∗
n(A, B) : Zv ≥ z0}
# G

∗
n(A)

≥ β

2

)
≥ 1 − ε (10)

for all n ≥ n0 and some n0 ∈ N. By combining (8) and (10), we now infer, for all n ≥ n0 + m,

P
∗
(

#G
∗
n(A)

#G∗
n

>
1

N + 1

)

≤ P
∗
(

N#G
∗
n(A) >

∑
v∈{u∈G

∗
n−1−m(A,B) : Zu≥z}

#G
∗
m(B, v)

)

≤ P
∗
(

2N

β
>

∑
v∈{u∈G

∗
n−1−m(A,B) : Zu≥z} #G

∗
m(B, v)

#{u ∈ G
∗
n−1−m(A, B) : Zu ≥ z}

)
+ ε

≤ P
n−m

(
2N

β
>

∑
v∈{u∈G

∗
n−1−m(A,B) : Zu≥z} #G

∗
m(B, v)

#{u ∈ G
∗
n−1−m(A, B) : Zu ≥ z}

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε

≤ P
n−m

(
2N

β
>

∑#{u∈G
∗
n−1−m(A,B) : Zu≥z}

i=1 Gi,m(z0)

#{u ∈ G
∗
n−1−m(A, B) : Zu ≥ z}

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε,

where the Gi,m(z0) are i.i.d. with the same law as #{v ∈ G
∗
m(B) : Z∅ = z0, T∅ = B}. The law

of large numbers provides us with n1 ≥ n0 + m such that, for all n ≥ n1,

P
n−m

(∑#{u∈G
∗
n−1−m(A,B) : Zu≥z}

i=1 Gi,m(z0)

#{u ∈ G
∗
n−1−m(A, B) : Zu ≥ z} ≥ EGi,m(z0)

2

)
≥ 1 − ε.

By combining this with (9), we can further estimate in the above inequality

P
∗
(

#G
∗
n(A)

#G∗
n

>
1

N + 1

)

≤
(

P
n−m

(
2N

β
>

EGi,m(z0)

2
>

2N

β

)
+ ε

)
P(Zn−m(A) > 0)

P(Surv(A))
+ ε

=
(

P(Zn−m(A) > 0)

P(Surv(A))
+ 1

)
ε

→ 2ε as n → ∞.

This completes the proof of part (b).
As for (c), we will show that all conditions needed in Bansaye [5] to prove his Theorem 5.2

are fulfilled. Our assertions then follow along the same arguments as provided there.
Step 1: (µ−n

B Zn(B))n≥0 is a submartingale and converges a.s. to a finite limit W(B). The
submartingale property follows from

E(Zn+1(B) | Zn(B))

= E

( ∑
v∈G

∗
n

(Zv0 1{Tv0=B} +Zv1 1{Tv1=B})
∣∣∣∣ Zn(B)

)

= Zn(B)E(X(0)(B) + X(1)(B)) + E

( ∑
v∈G

∗
n(A)

(Zv0 1{Tv0=B} +Zv1 1{Tv1=B})
∣∣∣∣ Zn(B)

)

≥ Zn(B)µB for any n ∈ N,
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while the almost-sure convergence is a consequence of

sup
n∈N

E

(
Zn(B)

µn
B

)
< ∞,

which, using our assumption γ < µB, follows from

E

(
Zn+1(B)

µn+1
B

)
= E

(
Zn(B)

µn
B

)
+ E

(
1

µn+1
B

∑
v∈G

∗
n(A)

Zv0 1{Tv0=B} +Zv1 1{Tv1=B}
)

= E

(
Zn(B)

µn
B

)
+ 1

µn+1
B

E

(
Zn(A) E(Z0 1{T0=B} +Z1 1{T1=B})︸ ︷︷ ︸

=:µAB

)

= E

(
Zn(B)

µn
B

)
+ µAB

µB

(
γ

µB

)n

= · · ·

= µAB

µB

n∑
k=0

(
γ

µB

)k

≤ µAB

µB

∞∑
k=0

(
γ

µB

)k

< ∞
for any n ∈ N.

Step 2: {W(B) = 0} = Ext a.s. The inclusion ‘⊇’ being trivial, we must only show
that P(W(B) > 0) ≥ P(Surv). For i ≥ 1, let (Zi,n(B))n≥0 be i.i.d. copies of (Zn(B))n≥0
under P1,B. Each (Zi,n(B))n≥0 forms a Galton–Watson process which dies out if and only if
µ−n

B Zi,n(B) → 0 (see [5]). Then, for all m, N ∈ N, we obtain

P(W(B) > 0) = P

(
lim

n→∞
Zm+n(B)

µm+n
B

> 0

)

≥ P

(
lim

n→∞
1

µm
B

Zm(B)∑
i=1

Zi,n(B)

µn
B

> 0

)

≥ P

(
lim

n→∞
1

µm
B

Zm(B)∑
i=1

Zi,n(B)

µn
B

> 0, Zm(B) ≥ N

)

≥ P

(
lim

n→∞

N∑
i=1

Zi,n(B)

µn
B

> 0, Zm(B) ≥ N

)

≥ P(Zm(B) ≥ N) − P1,B

(
lim

n→∞

N∑
i=1

Zi,n(B)

µn
B

= 0

)

= P(Zm(B) ≥ N) − P1,B

(
lim

n→∞
Zn(B)

µn
B

= 0

)N

= P(Zm(B) ≥ N | Surv) P(Surv) − P1,B(Ext)N ,
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and then, upon letting m and N tend to ∞,

P(W(B) > 0) ≥ P(Surv)

because P1,B(Ext) < 1 and by Theorem 1.
Step 3: supn≥0 Eξn < ∞, where ξn := (µB/2)−nZ[n]. First, we note that (Z[n])n≥0, when

starting with a B-cell hosting one parasite (under P1,B), is a BPRE with mean µB/2 (see [5]).
Second, we have

EZ[n] 1{T[n]=A} = P(T[n] = A) EZn(A) =
(

γ

2

)n

,

and, thus,

EZ[n] = EZ[n] 1{T[n]=A} +
n−1∑
m=0

EZ[n] 1{T[m]=A, T[m+1]=B}

=
(

γ

2

)n

+
n−1∑
m=0

EZ[m] 1{T[m]=A} E1,AZ[1] 1{T[1]=B} E1,BZ[n−m−1]

=
(

γ

2

)n

+ η

n−1∑
m=0

(
γ

2

)m(
µB

2

)n−m−1

for all n ∈ N, where η := E1,AZ[1] 1{T[1]=B}. This implies that

sup
n∈N

Eξn =
(

γ

µB

)n

+ 2η

µB

n−1∑
m=0

(
γ

µB

)m

≤ c

∞∑
m=0

(
γ

µB

)m

< ∞ (11)

for some c < ∞.
Step 4: limK→∞ supn≥0 Eξn 1{Z[n]≥K} = 0. By our assumptions, (Z[n])n≥0, when starting

in a B-cell with one parasite, is a strongly subcritical BPRE with mean µB/2 (see [5]). Hence,
by [1, Corollary 2.3],

lim
K→∞ sup

n≥0
E1,Bξn 1{Z[n]>K} = 0,

which together with (11) implies that, for n, m ∈ N,

lim
K→∞ sup

n≥0
Eξn+m 1{Z[n+m]>K}

≤ lim
K→∞ sup

n≥0
E ξn+m 1{Z[n+m]>K} 1{T[m]=B} + sup

n≥0
Eξn+m 1{T[m]=A}

≤ lim
K→∞ sup

n≥0
E1,Bξn 1{Z[n]>K} Eξm + Eξm 1{T[m]=A} sup

n∈N

E ξn

≤
(

γ

µB

)m

sup
n∈N

E ξn;

the last expression can be made arbitrarily small by choosing m sufficiently large for γ < µB.
This proves step 4.

Final step. Having verified all the conditions needed for the proof of Theorem 5.2 of [5],
one can essentially follow his arguments to prove Theorem 7(c). We refrain from supplying all
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the details here and restrict ourselves to an outline of the main ideas. First use what has been
shown as steps 1–4 to prove an analogue of [5, Lemma 6.5], i.e. (control of filled-in cells)

lim
K→∞ sup

n,q≥0
P

∗
(

#{v ∈ G
∗
n+q(B) : Zv|n > K}
# G

∗
n+q(B)

≥ η

)
= 0 (12)

for all η > 0, and of [5, Proposition 6.4], i.e. (separation of descendants of parasites)

lim
q→∞ sup

n≥0
P

∗
(

#{v ∈ G
∗
n+q(B) : Zv|n ≤ K, Nn(v) ≥ 2}

# G
∗
n+q(B)

≥ η

)
= 0 (13)

for all η > 0 and K ∈ N, where Nn(v) denotes the number of parasites in cell v|n with at
least one descendant in cell v. In particular, (12) (with q = 0) combined with # G

∗
n(B) → ∞,

P
∗-a.s. implies for all ε > 0 the existence of a K0 ≥ 0 such that, for all N ∈ N,

lim
n→∞ inf

K≥K0
P

∗
( ∑

v∈G
∗
n(B)

Zv 1{Zv≤K} ≥ N

)
≥ 1 − ε. (14)

Using (12) and (13), we infer that, for all η, ε > 0, there exist K1 ≥ K0 and q0 ∈ N such that,
for all n ∈ N,

P
∗
(∣∣∣∣Fk(n + q0, B) − #{v ∈ G

∗
n+q0

(B) | Zv = k, Zv|n ≤ K1, Nn(v) = 1}
#{v ∈ G

∗
n+q0

(B) | Zv|n ≤ K1, Nn(v) = 1}︸ ︷︷ ︸
=:Jn

∣∣∣∣ ≥ η

)
≤ ε.

Since # G
∗
n(A)/# G

∗
n(B)

P
∗−→ 0, we further obtain

Jn

P
∗


n→∞

#{v ∈ G
∗
n+q0

(B) | Zv = k, Zv|n ≤ K1, Tv|n = B, Nn(v) = 1}
#{v ∈ G

∗
n+q0

(B) | Zv|n ≤ K1, Tv|n = B, Nn(v) = 1}
as n → ∞, which puts us in the same situation as in the proof of [5, Theorem 5.2]. Now, by
using (14) and the law of large numbers, we can identify the limit of Jn, which is in fact the
same as in step 1 of the proof of [5, Theorem 5.2]. A reproduction of the subsequent arguments
from there finally establishes the result.

Appendix A. Glossary

T Cell tree.
Gn Set of cells in generation n.
Gn(t) Set of cells of type t in generation n.
G

∗
n Set of contaminated cells in generation n.

G
∗
n(t) Set of contaminated cells of type t in generation n.

Tv Type of cell v.
ps Probability that the daughter cell of an A-cell is of type s.
p0 Probability that the 1st daughter cell of an A-cell is of type A.
p1 Probability that the 2nd daughter cell of an A-cell is of type A.
ν Mean number of type-A daughter cells of an A-cell.
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(X(0)(A, s), X(1)(A, s)) Offspring numbers of an A-parasite with daughter cells of type
s ∈ {AA, AB, BB}.

(X(0)(B), X(1)(B)) Offspring numbers of a B-parasite.
Zv Number of parasites in cell v.
µi,t(s) Mean number of offspring of a t-parasite which goes in daughter

cell i ∈ {0, 1} if daughter cells are of type s ∈ {AA, AB, BB}.
µi,B Mean offspring number of B-parasites which go in daughter cell

i ∈ {0, 1}.
µB Reproduction mean of a parasite in a B-cell.
Zn Number of parasites in generation n.
Zn(t) Number of parasites in t-cells in generation n.
Ext / Surv Event of extinction/survival of parasites.
Ext(t)/ Surv(t) Event of extinction/survival of t-parasites.
Z[n] Number of parasites in a random cell in generation n.
Zn(A) Number of parasites of a random A-cell in generation n.
fn(s | �), fn(s) Quenched and annealed generating function of Zn(A),

respectively.
g�n(s) Generating function giving the nth reproduction law of the

process of a random A cell line.
γ Mean number of offspring of an A-parasite which go in an

A-cell.
γ̂ := ν Eg′

�1
(1)2

= pAA(µ2
0,A(AA) + µ2

1,A(AA)) + pAB µ2
0,A(AB).

Pz,t Probability measure under which the process starts with one
t-cell containing z parasites.

P
∗
z,t The same as before but conditioned upon Surv(A).

P
n
z,t The same as before but conditioned upon survival of A-parasites

in generation n.
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