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Introduction. Let A = { z e C | | z | < l } and //(A) the set of analytic functions on A.
We recall the definition of subordination between two functions, say/and g, analytic on
A: this means that /(0)=g(0) and there is a function pe / / (A) such that p(0) = 0,
|p(z)| < 1 if z e A, and f(z) = g(p(z)). Subordination between / and g will be denoted by

f<g. The Hadamard product (or convolution) of two functions f(z)= £ anz" and

g(z) = £ bnz" in //(A) is the function f*ge //(A) defined as / *g(z) = £ anbnz".
n=0 n=0

Let F e //(A) be univalent, convex and bounded; it follows that F(A) is a bounded
convex domain and F extends to a homeomorphism between the closed unit disc and
the closure of F(A). We define s{F) = {/ e//(A) | / < F } and for deU, s(F,0) =
\fes(F) lim/(z) = F(e'e)\. In this paper any limit as z—»1 is understood to be a

non-tangential limit. Let G e //(A) be convex and univalent; our main result is a
description of the range of the linear functional

I{f)=ff
•>o

* G(x) dx

over the set s(F, 6). We shall prove the following result.

THEOREM 1. For each 8 e U,

{/(/) | / E s{F, 0)} = f " f F * G(x) dx\zeAorz= eie).
IZ Jo -1

Moroever

^C/)—75
e

This result appears to be useful because it gives a complete description of the range
of a linear operator over a class of functions defined by subordination and a constraint,
namely the value of the angular limit at some point of the unit circle. Our conclusion will
include some applications of our theorem.

REMARK 1. It is clear that any bounded function in //(A) is integrable over [0,1]. For
any G e //(A) convex and univalent we have [2]
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where /i is a probability measure on the unit circle. Therefore, for any/ es(F),

/*G(z)=/(0)G(0) + G'(

and
1/ * G(z)| ^ |/(0)| |G(0)| + 2 |G'(0)| max |f ( | ) | (z e A).

This shows that the functionnal / is well-defined on s{F). It is also easy to establish that /
is a continuous functional on s(F) endowed with the topology of uniform convergence on
compact subsets of A.

REMARK 2. There exists a nice theory dealing with continuous linear functionals on
subsets of //(A) defined by subordination. In a book by Hallenbeck and MacGregor [5]
we find many precise results about extreme points and support points of s(F). However
the classes s(F, 6) are not compact (this follows from Lemma 3 below) and it seems
difficult to apply directly the results contained in [5] to prove Theorem 1.

Our method to obtain Theorem 1 lies closer to the method of Hallenbeck and
Ruscheweyh in [6] where they more or less established the range over s(F) of the
functional

with F convex univalent, z a fixed complex number in A and y a complex parameter in
the right half-plane.

A special case of Theorem 1 was obtained in [4]. In our conclusion we shall point out
some consequences of our result.

Preliminary Lemmas. In this section we quote several lemmas needed for our proof
of Theorem 1. The first one is a convolution property of convex functions due to
Ruscheweyh and Sheil-Small [7].

LEMMA 1. Let g, h e H(A) be convex univalent. Then g*h is also convex univalent and

fes(g)^f*hes(g*h).

We say that feH(A) is properly subordinate to geH(A.) if f(z) = g(p(z)) where
p e H(A) and \p(z)\ < \z\ if z =£0; we shall denote this by f<pg. In fact Ruscheweyh and
Sheil-Small proved in [7]

f*h<pg*h if f<pg and h, g are convex univalent. (1)

We shall also need the following classical result, due to Julia (see [1, Section 1.4])

LEMMA 2. Let v e H(A) with \v(z)\ ^ \z\ for all z e A. Then lim — exists and is
2-.1 \~Z

either ^ 1 or infinite. Moreover if lim — : = / < °°, then 1 < lim v'(z) = I and equality
is possible only if v(z) = z. z—\-z 2—i

The next lemma appears in [4].
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LEMMA 3. Let a.fieU. There exists a sequence of functions {pk} analytic in the
closed unit disc such that \pk(z)\^\z\, pk(l) = e'a and lim pk{z) = e'^z uniformly on
compact subsets of A. Ar~*°°

If £ is a subset of C let E designate the closure of E. We shall finally need the
following result, a proof of which, due to St. Ruscheweyh, is given below.

LEMMA 4. Let f e H(A) be univalent, convex and bounded; let

ThengjA)czf(A).
The fact that U(z) = —z log(l — z) is convex univalent in A will be used at several

stages of our work.

Proof of Lemma 4. We may assume that /(0) =/ '(0) - 1 = 0. Under this normaliza-
tion it is known that (see [3, Chapter 2])

|/(2)| < | 2 | / l - | z | (zeA), (2)

/(A) contains a disc of radius \, centered at the origin. (3)

The representation g{z) =f(z)* —z~l log(l — z) and Lemma 1 show that g is convex
univalent; the representation g(z) = jpfjtz) dt shows that g(A) lies in the closed convex
hull of/(A). Therefore g(A)c/(A) and g is continuous on A. Clearly the proof will be
completed if we can prove that g(A) and /(A) share no boundary point.

Let vv0 e 9g(A) D 9/(A). There must exist a supporting line through w0 such that/(A)
lies in one of the closed half-planes determined by this line. There must also exist an e,
with |e| = 1, such that

max Re(eg(2» = max Re(e/(z)) = Re(e»v0) > 0. (4)
|2|S1 |Z|Sl

By (3) and (4) we clearly have Re(ew0) > \. On the other end, for any x e (0, 1), by (2)
and (4),

Re(ew0) = max Re(eg(2))

= max
|z|sl j0

<max | Re(£/(z)) dt + max | Re(ef(tz))dt
|z|=sl Jo |z |s l Jx

rx t \z\
<max dt + (1 - x)Re(ew0)

Jo l~t\z\
|z|sl Jo l~t\z\

x 2

1 - j c v '

It leads to \ < Re(ew0) ^ and this is impossible if x is small enough. Therefore g(A)

and /(A) share no boundary point.
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Proof of Theorem 1. We first establish the formula

{Hf)\fes{F)} = ̂ F*G(x)dx\\z\*\}. (5)

In fact Lemma 1 yields, for/ es(F),

/ * G < F * G and (/ * G{z)) * ~ l o g ( 1 ~ Z) < (F * G(z)) * ~ ' ° g ( 1 ~ Z)

and the last statement is simply

- f f*G(x) dx<- f F*G(x) dx. (6)
Z Jo Z Jo

By letting z —* 1, we obtain

{/(/)|/6*(F)}sf- f F*G(x)dx\\z\^l).Iz Jo )

The reversed inclusion follows from the fact that F(^z) < F(z) for any § e A and

F(&)*G(x)dx = - \ F*G(x)dx.
Jo S Jo

Let / es(F, 6); we define

If2 If2

&(z) = - /*G(*)<£x: and K(z) = - \F*G(x)dx.
z Jo z h

We have, by (6), k(z) = A"(p(z)) where p e H(A) and |p(z)| < |z|, z e A. We shall prove
that

lim p(z) exists, (7)

sup|p'(z)|<°°. (8)

In fact / *g is integrable over [0,1] and lim k{z) = lim {IIz) Jo/ * G(x) dx exists. Also K

is convex univalent (it can be written as the convolution of three convex functions), it
extends to a homeomorphism and, since p(z) = K~\k(z)), we obtain (7). On the other
hand

\p'(z)\ = \k'(z)\/\K'(p(z))\ (zeA),

where \K'(p(z))\ is bounded below on A by a strictly positive constant (since K is convex
univalent) and |&'(z)l is bounded above on A because

\zk'(z)\ = I f (/ • G(z) -f * G(x)) dx < 2 sup |/ * G(§)|.
I Jo SeA

This establishes (8).
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We now prove that p(l) := lim p(z) belongs to A unless /(z) = F(ewz), in which case
z—*l

we shall obtain p(l) = e'e. This will mean, in view of (5) and the identity

F*G(x)dx,

that

\ \ F*G(x)dx}<z{I(f)\fes(F, 0)} c {- [ F*G(x)dx \z e &or z = ew) (9)
6 Jo J **Z JQ J

If limp(z) = e'v, where ip eU, we obtain

sup
zeA 1 — Z

< o o

because, by (8),

1 -z
= lim

= lim

— z

It follows from Lemma 2 that

, ,. p'(z) , zp'(z) 1
1 ^ lim —r— = lim ———: = - ,

z-»i e z-«i p(z) r

where 0 < T ^ 1 , and r = 1 if and only if p(z) = enpz. Upon differentiation of (6), we
obtain for any zeA,

F*G(x)dx+J^/-f*G(z).f
This shows first lim f*G{z) exists. Then, by letting z -» l , we deduce that

z—»1

F*G(en") = (l-T)e-""\ F*G{x)dx + rf*G(l). (10)

Note that, by Lemma 4, e~<Vl JS'* F * G(x) dx belongs to the interior of the convex set
F*G(A); we can interpret (10) as follows: a boundary point of F*G(A), namely
F * Gie'V), is a convex combination of one of its interior points and of one of its points
(namely f*G(l), because f*G<F*G); clearly then T = 1 and p(z) = e'vz. Let us
assume t h a t / < p F ; we obtain, from (1),

- I f*G(x)dx<p- I F*G(x)dx
Z JQ

 z JO
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which is impossible because p{z) = e'vz. Therefore/is not properly subordinate to Fand
since f es(F, 6) we have f(z) = F(e'ez) because F extends to a homemorphism on A.
Hence we have obtained (9).

We can now complete the proof of Theorem 1. If the conclusion were false it would
follow from (9) that

:=[[ f*G(x)dx\fes(F, 0)}g£2:= (z-'[ F*G{x)dx \ \z\ < 1 or z = ew\. (11)

The sets E, and E2 are convex and bounded. One boundary point of E2 belongs to £, ,
namely e~i8 jo"F* G(x) dx. From (9) and (11), some interior point of E2 does not belong
to £,; there must exist an open half-plane P such that £, n P is empty and P contains
some boundary point of E2, say e~'p Jg' F*G{x)dx, with e'p^e'e. By Lemma 3, there
exists a sequence {pk} c H(A) such that \pk{z)\ < \z\, pk(l) = e'e and lim pk(z) = e'tiz,

uniformly on compact subsets of A. Clearly {F(pk)} cs(F, 6) and since

lim f F(pk) * G(x) dx=\ F* G(eifix) dx = e~lli\ F*G(x) dx,

we have e~'p jo" F * G(x) dx e £, D P. This contradicts the emptiness of £, D P and the
conclusion of Theorem 1 must hold.

Conclusion. 1° The assumptions made on the function F of our theorem (that is,
boundedness and convexity) may seem too strong but they are in some sense necessary.
For example let us put F(z) = G(z) = 1/(1 - 2). If the point at infinity is considered as an
admissible boundary point, it is easily seen that (5) is valid, i.e.,

However any function as/n(z) = 1/(1 - z") belongs to s(F, 0) if n is a positive integer and

I fn(x)dx=\ F(x)dx = ™,
Jo Jo

so that Theorem 1 is not valid for this choice of F. A similar counterexample can be
constructed where F is a starlike function mapping A into A minus a "radial" slit.

2° We consider, for A e [0, 1] the class of normalized univalent functions

Sk = {he //(A) I h(0) = h'(0) - 1 = 0 and \h'{z) - 1| < A, z e A}.

We define the order of starlikeness of Sk as inf Re( —-—-). Observe that

o

I (2 6 A)

zh'(z)_ 1 + A>v(z)

H{Z) l + Az-'l w(x)dx
Jo
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where »v is an arbitrary function in H(A) subordinate to the identity function. It follows
clearly from Theorem 1 (with F(z) = z and G(z) = z/(l - z)) that

inf Re

and some simple computations would lead to the following result.

COROLLARY 1. Let A e [0, 1] and px denote the order of starlikeness of Sk. Then

3° Finally we remark that Theorem 1 can be used to obtain a sharp variability
region for certain combinations of the Taylor coefficients of functions / e s(F, 9). For

oo

example if F(z) = S Anz" e //(A) is convex univalent and bounded, we obtain the
n = l

following result as an immediate consequence of Theorem 1, by choosing

G(z) = z + n-2zn.

COROLLARY 2. For any 6 eU, we have
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