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Introduction

This paper is the second part of our work on differential Galois theory as we

promised in [U3]. Differential Galois theory has a long history since Lie tried to

apply the idea of Abel and Galois to differential equations in the 19th century (cf.

[U3], Introduction). When we consider Galois theory of differential equation, we

have to separate the finite dimensional theory from the infinite dimensional theory.

As Kolchin theory shows, the first is constructed on a rigorous foundation. The

latter, however, seems inachieved despite of several important contributions of

Drach, Vessiot,.... We propose in this paper a differential Galois theory of infi-

nite dimension in a rigorous and transparent framework. We explain the idea of

the classical authors by one of the simplest examples and point out the problems.

Let us consider an ordinary differential equation

IΛ \ τ^ί r (w—1)\ in)

(1) F(y, y',...,y ) = y ,

where F is a polynomial in y> y',. . ., y and its coefficients are meromorphic

on a domain of C. The derivation is taken with respect to the variable x on C.

There are two procedures.
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6 0 HIROSHI UMEMURA

(i) Linearization process. They replace the differential (1) by the partial linear

differential equation

(2) (d/dx + y'd/dy + y2)d/dyf + + F(y, y',..., y(n~Ώ) 9/9 ( n " υ ) Y = 0

satisfied by a first integral Fof (1).

(ii) Galois theory of a partial linear differential equation. They seek Galois

theory of a set of independent solutions Ylt Y2,..., Yn of (2).

There are problems in each procedure. Let us try to formulate the idea in a

more precise language. First of all, as in Galois theory of an algebraic equation,

the Galois group should be attached not to a differential equation but to a field ex-

tension that a particular solution of the differential equation defines. So we must

clarify the differential base field and the particular solution. Let K be a diffrential

field of meromorphic functions over a domain of C such that the coefficients of the

polynomial F(y> y\ . . . , y n~ι) are in K. Namely K is the base field of the dif-

ferential equation (1). We choose a solution y of (1) once for all and study a dif-

ferential field extension K(y, y\.. ., y n~ ) of K.

PROBLEM 1. Starting from the ordinary base field K and the solution y of (1), if

we try to pass from ordinary to partial, it is not clear at all how to choose a base field

for the partial linear differential equation (2).

Leaving the Problem 1 aside, we take a set of independent first integrals ( =

solutions of (2)) Yu Y2,...,Yn in the linearlization process.

PROBLEM 2. There is no canonical choice of the set of independent first integrals

Y V Y

Even if the Problem 1 is settled so that we have a canonical base field # for

the partial linear differential equation (2), the differential field extension $((Yly

Y2,. . . , Fw) depends on the choice of the set of first integrals Yv Y2,.. ., Yn, i.e. a

different choice gives a completely different partial differential field extension of

the base field H. Here we denote by X(Yίt Y2, . . . , Yn) the partial differential

field generated by Yί9 F 2 , . . . , Yn over # .

In most of works, the authors simply say that Galois theory of an ordinary

differential equation is equivalent to Galois theory of a partial linear differential

equation and they limit themselves to the second procedure (e.g. [D], [VI] and [P]).
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GALOIS THEORY OF INFINITE DIMENSION 6 1

PROBLEM 3. In the second procedure of developing Galois theory of partial linear

differential equation, there are obscurities due to the lack of language.

For example Vessiot [VI] introduced an automorphic system, which is, rough-

ly speaking, a principal homogeneous space of a Lie pseudogroup. Since a Lie

pseudogroup is not a group, it requires a precision.

Inspired by a work of Vessiot [V2] in 1946, we overcome the Problems 1, 2

in the linearization process. Our setting is general. We consider an ordinary dif-

ferential field extension L/Koί characteristic 0. We canonically construct a par-

tial differential field extention !£/$( (cf. §3). To avoid the Problem 3, we apply the

method of [U3] to the partial differential field extension # / # in §4 and 5. We in-

terpret a Lie pseudogroup as a formal group of infinite dimension or as a group

functor on a category of rings (See §1). The idea of understanding a Lie pseudo-

group as a formal group seems to go back to Ritt [R] of 1950.

Let L/K be an ordinary differential field of characteristic 0 such that L is

finitely generated over K as an abstract field. We attach to L/K the Galois group

Inf-gaiα/iD,

which is a formal group with coefficients in L (Lie-Ritt functor on the category of

L-algebras), in general of infinite dimension, where we regard the differential field

L as an abstract field.

Here are the main properties of the Galois group.

(i) If M is a differential intermediate field of L/K, there exists a canonical

surjective morphism Inf-gal(Z,/iD —* Inf-gal(M/K) (Theorem 5.14).

(ii) If L/K is a strongly normal extension with Galois group G, then the dif-

ferential Galois group lnΐ-gal(L/K) is the formal completion G of G

(Theorem (5.15)).

(iii) If L is finite algebraic over K, then Inf-gal(L/iO = 0 (Corollary

(5.22)).

(iv) If L is generated by constants over K, then Inΐ-ga\(L/K) = 0 (Corol-

lary (5.22)).

Index of notations

N(A) The set of all nilpotent elements of a ring A

Γn(A) The group of all infinitesimal coordinate transformations of

^-variables with coefficients in A (Definition (1.1))
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ΓnR

(Alg/i?)

(Grp)

AiS}

K<S>

(Vec/k)

(Fmod/R)

*™ L/K ™

—cp
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The Lie-Ritt functor of all infinitesimal coordinate trans-

formations of ^-variables on the category (Alg/i?) (Defini-

tion (1.8))

The category of R-algebras

The category of groups

Differential algebra generated by a set 5 over a differential

ring R

Differential field generated by a set S over a differential

field K

The category of Λ -vector spaces

The category of free i?-modules

The Λ -vector space of formal vector fields (Lemma (2.3))

Differential field (L * , {d/duv d/du2,..., d/duj) (§3)

Differential subfield of L [[t]] [t~ ] generated by L and

i(K) (§3)

Differential subfield of L [[£]][£"] generated by i(K) and

The set of all infinitesimal deformations with coefficients in

an L -algebra A of the canonical morphism £ —• L [[w,

1) The set of all infinitesimal deformations with coefficients in

an £ -algebra A of the universal Taylor morphism J£—•

# * [[w, T\] (§4)

Inf-diff-bir^Z,C4) The group of all continuous differential # ®L# Λ [ M ] -

automorphisms of £ ®L# A[_[w\\ that are congruent to the

identity modulo %®L*N\X.w\\ (§5)

Inf-gal(L/iO Infinitesimal differential Galois group (Definition (5.13))

§1. Lie-Ritt functor

In this paper all the algebras, except for Lie algebras and Hopf algebras, are

commutative Q-algebras. For a commutative algebra A, we denote by N(A) the set

of all nilpotent elements of A :

N(A) = {x ^ A I χn = 0 for some positive integer n depending on x).

So N(A) is an ideal of A.
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DEFINITION (1.1). For an algebra A, we set

Γn(A) — (Φ — (ψι, φ2>-.• > <Pr) I 0, — <Pi(x) e -Att^!, x 2 , . . . , xn]] for 1 < / < n

such that Φ = (xί9 x2,..., a:n) mod iV(A)}.

Here we mean by Φ = (xl9 x2,..., xn) m o d N ( A ) that

xz — φ , ^ , x2,..., .rw) ^ iVG4) [ [ J ^ , Λ:2, . . . , xn]]

for I < i < n. So geometrically Φ = (φ19 φ2,..., φn) is a formal coordinate

transformation of ^-variables with coefficients in A that is congruent to the

identity modulo nilpotent elements. In other words Φ = (φv φ2,..., φn) is an in-

finitesimal formal coordinate transformation of n-variables with coefficients in A.

LEMMA (1.2). Let W= (φ19 φ29. . . , φn) be another element ofΓn(A). Then the

composite

ψ°φ = (φι(φlf φ2,..., φn), φ2(φlf φ2,..., φn),..., Φn(φχ, ψ2i > ζ^«))

is well-determined in Γn(A).

Proof We may assume for simplicity n = 1. Let Φ = (<p(x)) with

φ (x) = a0 4- α ^ + #2^ + ' ' *

and ?Γ= (0(x))

φ(x) = bo + bλx 4- i 2 χ 2 4- .

Then

φ°φ = bQ -hb.iao + axx 4- ^ 2 χ 2 + •)

l ^ o + V + f l / l •• ) 2

+ ( 6 ^ ! + 2b2a0a1 4- 363^0^! + 4bAa0a1 4- * ) ^ +

which is a formal power series in Γλ{A) since α0 is nilpotent.

LEMMA (1.3). If we setlά = (J^, x 2 , . . . , xΛ), thenld°Φ = Φ°Id = Φ.

Proo/ The assertion follows the definition.
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6 4 HIROSHI UMEMURA

LEMMA (1.4). For Φ J t 6 » G Γn(A), we have

(φoψ)oβ= φo(ψOQ).

Namely the composition law ° is associative.

Proof. The element Φ ^ Γn(A) defines an A-algebra endomorphism

Φ*:A[[xlf x 2 , . . . , xn]] ->A[[xl9 x 2 f . . . , xn]] Or, ̂  φ ( x f ) )

continuous with respect to the (xv x2i . . ., xw)-adic topology. We can recover Φ

from Φ . Similarly the elements Ψ', (9, defines an A-algebra endomorphisms

x2,..., xj] ~+A[[xίf x2,..., xn]].

The lemma follows from the identity

which is the associativity law for composition of maps between sets.

LEMMA (1.5). For Φ e Γn(A), there exists Ψ e ΓΛG4) 5^/ι ί^αί

?Γ°Φ- Id.

Namely every element of Γn(A) has a left inverse.

Proof We may assume that n — \ for simplicity. Let Φ = (<p(r)) with

<p(x) = a0 + ^.r + α ^ 2 + e /^(A).

Since the composition law ° is associative by Lemma (1.4), it is sufficient to show

that

(x — ao)°φ(x) = axx + a^2 +

has a left inverse. So we may assume that a0 is equal to 0. Now as is well-known,

since a0 = 0 and aγ is invertible in A, the series φ(x) has the (left) inverse

φ(x) in i4[[x]]. We denote the classes of φ(x), φ(x) modN(A)[[x]] respectively

by φ(x), φ(x). Since the quotient ring

is isomorphic to
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GALOIS THEORY OF INFINITE DIMENSION 6 5

we can regard

φ(x), φ(x)

Then it follows from

ψ°φ(x) = φ°φ{x) = x and φ(x) = x in (A/N(A))[[x\]

that φ ° φ(x) = φ ° ψ(x) = x in (A/N(A))[[x\] and hence φ(x) = x in

U/NG4))[[*]]. Namely φ(x) = x mod N(A)[[x]]. Hence 0Cr) is in Γ^A) so

that φ(x) has a left inverse 0Cr).

PROPOSITION (1.6). The set Γn(A) forms a group with respect to the composition

law °.

Proof. If a composition law satisfies the following conditions, then it is a

group law:

(i) It is associative;

(ii) There exists a left identity;

(iii) Every element has a left inverse.

This fact is well known (cf. Chap. I , §2, p. 9 of [L] for example). Proposition

now follows from Lemmas (1.3), (1.4) and (1.5).

COROLLARY (1.6.1). We have a canonical anti-isomorphism of groups:

Γn(A) - ^ { φ £ AutAi4[[xx, x2,...,xn]]\Φis continuous with respest to the

(xlf x2,. . ., xn)-adic topology and the reduction of

Φ modulo N(A) is the identity map ofA/N(A)[[xv x2,..., xn]]}.

Proof We use the notation in the proof of Lemma (1.4). For Φ ^ Γn(A), we

can find by Proposition (1.6) A ^ Γn(A) such that we have

Λ°Φ = Φ°Λ = Id

so that we have

Hence

Φ^iAίίx,, x2,..., xJl-^Allx,, x 2 , . . . , xn]]

is an A-automorphism of i4[[x1, x2,. . . , xn]]. Since is contravariant, the map-
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ping Φ *-» Φ gives the canonical anti-isomorphism of the groups.

Corollary (1.6.1) gives a coordinate free description of the group Γn(A). Let

R be a Q-algebra. The category of R-algebra will be denoted by (Alg/R). So we

can regard A |-> Γn(A) as a group functor. To make the reference algebra R clear,

we add a subscript R :

ΓnR : (Alg/R) - (Grp), A^Γn(A)

for an i?-algebra A.

DEFINITION (1.7). We call the group functor ΓnR the Lie-Ritt functor of all in-

finitesimal coordinate transformations of ^-variables defined over R.

For an i?-algebra A the formal power series ring

A[[xl9 x2,..., xj]

is a differential ring with respect to the derivations

{d/dxv d/dx2,..., d/dxn}.

We consider the formal jet space. Let

A[[xίf x 2 , . . . , xj]{ylf y 2 , . . . , yj

be a differential polynomial ring with coefficients in the differential algebra

Ά L YXi, X21. . . > Xn\ J

So as an abstract ring

ΆΪΪΎ r rΛΛin u n \ = 4 Γ Γ T r r 11 Γ7/ ( ; i > ; ' 2 ; < n >l
l<ι<n

where the y^1'32"'"'" are indeterminates over the ring Attα^, x2,. . ., xn]]. The de-

rivations

{d/dxv d/dx2,..., d/dxn}

of A t t ^ , x2,..., xn]] are extended to

A [ [ x l f χ 2 , . . . , χ n ] ] { y l f y 2 , . . . , y j

b y
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9 iiι,i2,...,in) (/Ί,;2. . W ι + i . W Λn>

dxx

 yi ~ ^

for

l<i, l<n, (jvj2,..

We denote the formal complection

, X2, - f Xni ι 2 Λ t

by

A[[χlf χ2,-> , ^ J H ί ^ i , y2f-f yJ}

which is a differential algebra with derivations

{d/dxv d/dx2,..., d/dxn}.

Let / be a differential ideal of the formal power series ring

R[[χv χ 2 , . . . , χu]]i{y19 y 2 , . . . , yj}-

We denote by IA a differential ideal [7] of

A[[x19 x 2 , . . . , xn]]{{y19 y 2 9 . . . 9 y j )

generated by / for an R-algebra A.

DEFINITION (1.8). A Lie-Ritt functor defined over a Q-algebra R is a group

functor on the category (Alg/R) isomorphic to a group subfunctor G of the group

functor ΓnR defined by a differential ideal of

R [ [ x l 9 χ 2 , . . . , xn]]{{yl9 y 2 9 . . . 9 y n ) ) .

Namely there exists a differential ideal / of

R ί ί x v x 2 , . . . , χ n ] ] i { y 1 9 y 2 9 . . . 9 y n ^

such that we have

G(A) = (Φ ^ Γn(A) I F(Φ) = 0 for every F e IA) for each i?-algebra A.

Here in the equation F(Φ) = 0 we substitute
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for

Let us see some examples.

EXAMPLE (1.9). In the following examples (i), (ii), (iii), n—\ and R = Q.

(i) Let us denote the additive group N(A) by Ga(A) for a Q-algebra A so

that

GaQ(Alg/Q) - (Grp), A •-> Ga(A)

for a Q-algebra A, is a group functor. We consider a subset

of /\04.) is a subgroup for a Q-algebra A. Hence

A -G+04)

is a group subfunctor of the group functor /^Q. We have a functorial isomorphism

Ga(A)-* G+(A>

that sends a0 to a0 + x for α0 ^ Ga(A). Thus the group functor GΛ Q is isomor-

phic to the group functor G+. Now we choose a differential ideal / = [y' — 1] of

Q[Lr] ]{{*/}}. Then the set

{<?ω e rx(A) I ̂ ω - 1 = 0}

coincides with the subgroup G+(A) for a Q-algebra A so that the group functor

GαQ(A) is a Lie-Ritt functor. For any Q-algebra R the restriction of the Lie-Ritt

functor G^QCA) to the subcategory (Alg/R) will be denoted by GaR.

(ii) Let us set

GmQ04) = ia e A I β - 1 e MA)}

so that G^QCA) is a group by the multiplication in the ring A. We get a group

functor

GmQ: (A/£/Q) - (Grp), A » GmQ(A)

for a Q-algebra A. Let us consider a subset

{ α ^ e Γ j 04)}

of Γ^A) for a Q-algebra A. Then the subset is in fact a subgroup of Γί(A).
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Hence we get a group subfunctor Gx of the group functor Γλ:

for a Q-algebra A. Moreover there exists a functorial isomorphism of groups

So the group functor G w Q is isomorphic to Gx. We consider now a differential

ideal [xyr - y] of Q[[x]] {{#}}. Then the subset {φ(x) ^ Γ^A) \ xφr(x) -

φ(x) = 0} coincides with the subgroup GX(A). Hence G m Q is a Lie-Ritt functor

defined over Q. Similarly as for the group functor G α Q , the restriction of the

group functor G m q to the subcategory (Alg/R) for a Q-algebra R will be de-

noted by GmR.

(iii) We consider a subgroup

J ) 2 2 ( G ) , ad - be =

for a Q-algebra A We notice here that d is invertible in 4̂ and hence

= d~ {ax + 6) (1 — cΓ ex H- (d~ιcx) — •)x

is a formal power series in x. As is well-known a transformation

ax + b

is characterized by the Schwarzian derivative {y x} (Let us recall

Namely G(A) = {^(x) e Γ^A) | {</)(x) ;χ} = 0}. So G is a Lie-Ritt functor,

(iv) Let us take now R = Q as above but w arbitrary. We set

G(A) = {Φ = (Ψu ψ2 ψn) e Γn{A) I The Jacobian ^ ' ^ ' ' ' ' ' ^ = l}

for a Q-algebra A Then G is a group subfunctor of Γn defined by the differential

equation

D(φlf φ2,..., φn) =

D(xv x2,..., xn)
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So G is a Lie-Ritt functor.

The Examples (1.9.i), (1.9.ii), (1.9.iii) are finite dimensional. Namely the

dimension of the Lie algebra of the each group functor, which will be defined in

§2, is finite dimensional. The Examples (i) and (ii) are of dimension 1. The Exam-

ple (iii) depends on 3 parameters. In Example (iv), however the solution of the dif-

ferential equation

D(φί9 φ2,..., ψn)
D ( x ί f x 2 f . . . , x n )

depends on infinitely many parameters if n > 2.

= 1

DEFINITION 1.10. We define a morphism of Lie-Ritt functors over a ring as

a morphism of group functors.

For example, we have for a Q-algebra A a functorial morphism

GaQ 04) -> G m Q (A), a *-> exp a

of groups. So there exists a morphism

of Lie-Ritt functors. Similarly for a Q-algebra A, we have a functorial morphism

G w Q 04) -» G β Q 04), a ^ log a

of groups, which gives us a morphism

log : G m Q -> GaQ

of group functors. Since exp°log = Id, log°exp = Id, the Lie-Ritt functors GaQ

and G W Q are mutually isomorphic. Customarily the equivalence of Lie pseudo-

group is defined by using prolongations. Our definition seems new and quite natu-

ral.

A formal group yields an example of a Lie-Ritt functor. Let us recall the de-

finition of a formal group.

DEFINITION (1.11). A formal group over a ring R is an w-tuple F= (/•) of

formal power series

ft(u, υ) e R[[uv u2f..., un, v19 v2,..., vn]] = R[[u, ύ]]

https://doi.org/10.1017/S0027763000006024 Published online by Cambridge University Press
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such that

(1) F(u, 0) = u and F(0, υ) = v,

(2) F(u, F(v, w)) = F(F(u, v),w).

We know that there exists

Θ(u) = ( ^ ( w ) , Θ2(u),..., θn{u)) eR[[ul9u2,..., u2]]n

such that θ(0) = 0 and such that

F(u, θ(u)) =F(θ(u), u) =0

(cf. Serre [S] LG Chap. 4, §6). Let A be an i?-algebra. For

a= (alf a2,..., an), b= (blf b29..., bn) e N(A)n

we define the product of a and b by

ab = F(ay b).

Then N(A)n is a group by this group law. The unit element is given by 0 and

θ(a) is the inverse a of a. We denote this group by N(A)F. Hence the formal

group F defines a group functor

F : (Alg/R) -> (Grp), A ^ N(A)"F.

The group functor F is a Lie-Ritt functor. In fact let / be the differential ideal in

R[[x]]{{y}} generated by

dF(y, ΘQr)) /» dFi^υ) dyt . » dFi^v^ dθ

We show that the group functor F is isomorphic to the Lie-Ritt functor defined by

the ideal /. Let A be an i?-algebra and

Φ(x) = (<pl9<p29...9 φn) e ΓnR(A).

Assume that

, i i ox
( I . I Z ) i 0Ui υXi i=1 ovi σ

for 1 < i < n. The system (1.12) of equations is equivalent to

dM/dXi = 0 for 1 < i < n,

where we set M= F(Φ(x), θ(x)). So the system (1.12) of the differential equa-
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tions is satisfied if and only if M = F(Φ(x), Θ(x)) e i4[[x]]w is constant, or

(1.13) F(Φ(x), Θ(x)) = (av a2,..., an)

with at G A for 1 < i < n. If we pass to A/N(A), then Φ(x) is equal to

and hence by (1.13) (av a2y. . ., αw) is congruent to 0 modulo N(A). Namely the

at ^ A are in fact in N(A). We have thus shown that the following conditions are

equivalent:

(1) H{Φ{x)) = 0 for every H e /

(2) dM/dx{ = 0 for 1 < / < w

(3) F(Φ(z), ΘW) = a with α

Now if F(ΦCr), θ(x)) = a, then

(1.14) Φte) =F(a,x).

Therefore we proved that if we set

G(A) = { φ e ΓnA I H(Φ(x)) = 0 for every ffeΛ,

then the mapping

7Γ: GG4) — MA)W = N(A)n

F, Φ(x) ^ F(Φ(x), Θ(x)) = a

is bijective. This mapping π is an isomorphism of groups. In fact, let now

Φ(x), Ψ(x) e G(A)

so that we can find by (1.14)

such that

Φ{x) =

So since F is a formal group, we have

Φ*Ψ(x) = F(a, Fib, x)) = F(F(a, b),x).

Therefore

ψ) =F(a, b)

by the above equivalence of conditions and π is a group homomorphism. Since the

group isomorphism π is functorial in A, the group functor G is isomorphic to the
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group functor F associated with the formal group F.

Let

F(u9 v) e R[[uί9 u2,..., um9 vί9 v2,..., vm]]m,

G(y, z) e R[[yl9 y 2 , . . . , y n 9 zl9 z2,..., zn]]n

be formal groups. A morphism/ : F—• G of formal groups is an w-tuple

such that/,(()) = 0 for 1 < i < n and such that

f{F{u,υ)) = G{f(u),f(υ)).

The morphism of formal groups

/ :F~+G

induces a morphism of group functors

f : F - * G .

Therefore we get a functor of the category of formal groups over R to the categ-

pry of Lie-Ritt functors over R.

LEMMA (1.15). The functor F ^ F i s fully faithful. Namely we have

KomformalgrouP(F, G) — HomLie_Rittfunctor(F, G)

for any two formal groups over R.

Proof We denote by 0 the subfunctor of N attaching the point ((0, 0,. . .,

0) of N(A) to every i?-algebra A. It is sufficient to show that a morphism of func-

tors

f :Nm-^Nn

that maps 0 ^ N™ to 0 ^ Nn is defined by an w-tuple

(Λ, Λ, > /») G Rίίuv u2,..., um]]n

such that/j (O) = 0 for 1 < i < n and such that we have

for

a= (alfa29...9aM) e N(A)m.
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Let us prove this under the assumption m — n = 1, the general case being treated

in the similar way. Let us set

Ar = R[x]/χr for r^ N.

Then the map

fr=f(Ar):N(Ar)^N(Ar)

gives

such that

(r) (r) (r) _ ,->

a0 , aι , . . . , ar_v e R

n

fr(x) = Σ at

r x,
. 2 = 1x being the class of x in Ar. Since the diagram

N(Ar+1) - H

I I

N(Ar) — -

is commutative, the vertical arrows being the canonical morphism, we have

a{ = at for 0 < i < r — 1.

So af ^ R is independent of r and hence we denote it by at ^ R for ί e N. We

find the at ^ R for I ' G N such that we have in Ar

r-l

fr(x) = Σ djX for every r ^ N .
/=0

Let now A be an i?-algebra and a €= iVW) so that we have α = 0 for an integer

r > 0. So there exists an i?-morphism

ψ :R[x] /χr-+ A, x^a.

Since the diagram

N(R[x]/χr) ^ N(A)

N(R[x]/χr) > N(A)

is commutative, we have

fA(a) = Σ afl .
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So the morphism

of functors is defined by the power series

y» i

i=0

Since /(0) = 0, we have a0 = 0 and the lemma is proved.

We can regard a Lie-Ritt functor as a formal group of infinite variables. Let

us take for example ΓnR. We assume for simplicity n = 1. Let A be an i?-algebra

and let

φ = a0 + (1 + a^x + a2x
2 + •

and

0 = b0 + (1 + ftx)x + b^x +

be power series in /"^(A) so that α t, 6f are in N(A). Then

So we can find formal power series

ft(u, υ) e R[[u, v]] =

for ί ^ N such that

ψ°φ = fo(b,a) + (1

with

α = (fl0, «!, α 2 , . . . ) , 6 = (&0, &!, 6 2 , . . . ) .

Then

(1.16) F ( « , t;) = (/ 0(«, ^),Λ(w, t ; ) , / 2 ( « , t ; ) , . . . )

is a formal group of infinite variables u0, uv u2, . . . . Namely the set F(w, f) of

the power series satisfies the conditions (1), (2) of Definition (1.11). Now we con-

sider a group subfunctor G of ΓlR and a differential ideal I of i4[[x]]{z/} in De-

finition (1.8) with n — 1. Let

0 = w0 + (1 + ujx + w2χ
2 +
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be an element of R[[u0, uv u2, . . . ] ] [ [ r ] ] . Setting the coefficient of the power

series in x equal to 0, we can show that the condition F(φ(x)) = 0 for an element

F(y, yω, yw,...) e I <z RlWliy)

is equivalent to a set of power series relations among uQ, uv U2>. . . with coeffi-

cients in R. So there exists a family of power series ha(u0, ulf u2,. . .) €= R[[uQt

uίf u2, . . .]] indexed by an appropriate set / satisfying the following condition.

For every i?-algebra A and φ(x) G ;4[Lr]] with φ(x) = x mod N(A), the follow-

ing conditions are equivalent:

(1) ha(uOf ul9u2,...) = 0 for every a ^ J

(2) 0(x) e G04).

In other words, the ideal (ha(u))aeJ c i?[[w]] = i?[[w0, wx, u2, . . .]] defines a

formal subgroup of the formal group F(u, υ). This argument works also for

n > 2. So we have proved

PROPOSITION (1.17). Every Lie-Ritt functor over a ring R is represented by a for-

mal group scheme over R.

A formal group is equivalent to a complete commutative Hopf algebra. For ex-

ample, the set (1.16) of power series defines on the power series ring

Rίίui] =R[[u0, u19 u2,...]]

a continuous comultiplication

by sending u{ to/•((«) 0 1 , 1 ® (u)) so that i?[[w]] is a continuous commutative

Hopf algebra over R and the formal spectrum Spf R [ M ] is the formal group ΓίR.

Here the power series ring i ? [ M ] is a topological ring by (w)-adic topology and

we take the completion of the tensor product

R[lu]]®RR[[u]]

with respect to the ((w) ® 1 + 1 ® («))-adic topology.

This point of view is close to the formulation of Ritt [R], which Weifeiler [W]

and Nichols [N] later developed by introducing differential Hopf algebra. It seems

that Ritt's trial of defining formal group originated from the infinite dimensional

differential Galois theory. We explain now their idea for the simplest case of Γ1C

and compare with ours. Ritt considers general functions
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φ(x) = x + φ(x), φ(x) = x + φ(x)

and their composite

(1.18)

If we introduce a differential indeterminate 0 over the differential ring

d/dx) and if we define on the completion

of the differential polynomial ring

a continuous comultiplication

(1.19) C[[x]] {{0}} —> C[[x]] {{0}} ® c [ [ < r ]]C[[x]] {{0}},

which is a differential CtLr]] -algebra homomorphism, by

°° 1 ® 0 ( W ) „

0 h ~ > 0 ® l + l ® 0 + Σ i 0 ® 1,

(so that in general

m -I /O\ Jf (W)

n=l n '

for ^ e N, e.g.

. ( 1 )
Φa) ^ (φ ®i + l ® φ + Σ \ {(l ® Φin+1)) (Φn

then C[Lr]]{{0}} is a continuous commutative Hopf algebra, a formal

CtLr]] -T- -group with i ί = C[[x]] and /c = C in the terminology of Weisfeiler

and Nichols (cf. [N] p. 971). Here the completion of the tensor product is taken

with respect to the ((0) ® 1 + 1 ® (0))-adic topology. In [N] K is a field but in

this example K is a ring and the definition is easily extended to the ring case.

What is the relation between these two continuous Hopf algebras

C[[uo,ultu2,...]] and C[[x]][[φ, φω, φ(2\...]]?
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For every C-algebra A both

{/ e Home(C[[«]], A) I f(u) e N(A) for every i e N}

and

{/e Diff-homc[[x]](C[[x]][[0, 0(o), 0 ( 2 )]], A[[x]])\f(φ) =ao + a,x + a2χ
2

+ with α, e N (A) for all i e N)

give the group J\CC4) by definition. We can define a continuous i?-derivation (5

on R[[u]] by

i + 1 for ί G N.

So C[[w]] is a formal C H ~ -group with K= k = C (loc. cit.) and there exists a

continuous C[Lr]] -isomorphism

sending u{ to ~y 0 % of Hopf algebras with derivation. Here the tensor product is

that of differential algebras (i.e. we define (a Θ bY = af ® 1 + 1 ® V) and the

completion is taken with respect to the 1 ® (w)-adic topology. We believe that the

continuous Hopf algebra i ? [ M ] is more natural than C[Lz]][[0, φ , φ , . . . ] ]

for the following reasons.

(1) The Hopf algebra i ? [ M ] is defined over Z. However the Hopf algebra

is defined only over Q.

(2) All the Lie-Ritt functors are usual formal groups without derivation (in

general of infinite dimension).

(3) What we need in the general differential Galois theory is a formal group

without derivation.

§2. Lie alg ebra of a Lie-Ritt functor

For a reasonable group functor on a category of schemes, we can define its

Lie algebra by a general theory developed in Expose Π of [S.G.A.D]. In particular

a Lie-Ritt functor has its Lie algebra. It is convenient, however, to review how we

define the Lie algebra of a Lie-Ritt functor in the frame work of [S.G.A.D.].

For a /c-vector space V, the direct sum k Θ F h a s a structure of /c-algebra if
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we define the product of elements of V to be 0. Namely we define the product of

two elements of k φ F b y

{a, u) (b, υ) = (ab, av + bu) for (a, u), (bf υ) e k Θ V.

We denote the algebra k® Vby D{V). So we have a projection

p:D(V) = k®V-^k

which is a /c-algebra homomorphism. Let G be a group functor on the category of

/c-algebras. Hence we have a homomorphism

of groups induced by the morphism /> of /c-algebras. We denote the kernel of p*

by LG(V). Therefore we get a functor

LG:(Vec/k)-*(Set), V^LG(V),

where (Vec/k) denotes the category of /c-vector spaces. We set

Lie G = LG(VX)

for a 1 dimensional /c-vector space Vι so that we have

Lie G = Keτp*.

Here p% denotes the homomorphism of groups

Gtf)

induced by the projection p : D(V^) —• k. We show that if G satisfies a reasonable

condition, Lie G has a natural structure of Lie algebra. Usually the following nota-

tion is employed. Let k[ε] (ε = 0) be the ring of dual numbers over k so that

k[ε] ^

and the ring k[ε] is /c-isomorphic to DiV^. Under this isomorphism the projec-

tion p coincides with the A -homomorphism

q : k[ε] -* k, ε *-> 0

of algebras. Hence

Lie G = Ker q%,

where
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is the homomorphism of groups induced by q : k[ε] —• k. We refer the reader for a

general argument to [S.G.A.D.] and just illustrate the defintion of the Lie algebra

structure on Lie G for a Lie-Ritt functor G. For this reason we restrict ourselves

to the following group functors on the category (Alg/k) of /c-algebras.

(1) Lie-Ritt functors. In particular the group functor Γnk of all infinitesimal

coordinate transformations of n variables.

(2) The general linear group GL(W0 for a A:-vector space W.

Since Γn(k) = 1 by definition, the morphism

is trivial so that we have

In particular we have

UeΓnk = Γnk(D{V1)).

Hence we have

LΓnk:(Vec/k)-*(Set), V^LΓJV) = Γnk(D(V)).

LEMMA (2.1). Let V, W be two k-vector spaces. Then we have a canonical iso-

morphism

LΓJV@ W) - LΓJV) x LΓJW).

In other words the functor

LΓnk: (Vec/k)-> (Set)

transforms a product to a product.

Proof. Lemma follows from the following observation. Let

Φ= (ψv ί>2>...,0>») ^D(V®W)[[xvx2,...,xn]]n.

Then Φ e LΓnk(V® W) if and only if every coefficients of <p{ — xt lies in V® W

for 1 < i < n.

COROLLARY (2.2). Lie Γn = LΓ (Vλ) has a structure of an additive group.
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Proof. Since the functor

LΓnk: (Vec/k)-+ (Set)

transforms a product to a product by Lemma (2.1), the addition

ViΘVi—VL

which is a /c-linear map, induces a map

LΓJVy) x LrJVJ - LrJV, θ Vi) - LΓJV^.

This map defines an additive group structure on Lie LΓnk

 = Γn(D(V^)).

We have a multiplication

for λ ^ k, which induces a map

If we set

Λ.Φ = m ^ Φ ) for Φ

then Lie 7̂ w = L^^C^) = Γnk(D(V^)) is a /c-vector space. Now we define a pro-

duct on the k-vector space Lie Γn = LΓnk(V^) such that Lie Γn is a A -Lie algebra.

LEMMA (2.3). Let Θnk be the k-vector space

k[[xv x2,..., xn]]nd/dx1 + k[[xv x2,..., xn]]nd/dx2

+ ••• + k[[xv x2,..., xn]Td/dxn

of all formal vector fields. Then we have a canonical isomorphism

D:UeΓn->Θnk

of k-vector spaces.

Proof Let V1 be a A:-vector space of dimension 1. Then the algebra DiVj is

/c-isomorphic to the ring

k[e] (ε2 = 0)

of dual numbers. So

L i e Γnk = Γ ^ O X V i ) ) - Γnk(kίε]) = {Φ = {ψv ψ2,..., Ψ n ) e k[ε] [[xlt x 2 , . . . , xn]]n
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. φt - xt e εk[[xlfx2f.. ,,xn]] for 1 < i< n}.

Hence if

then there exist

such that

for 1 < ί < w. Therefore if we define a map

by

D(Φ) = φ.d/dx, + φ2d/dx2 + + φnd/dxn,

then ΰ is bijective. It follows from the definition of the /c-vector space structure

of Lie Γnk that this map D is in fact λ -linear.

The above argument allows us to prove the following result.

LEMMA (2.4). Let

G:(Alg/k)-*(Grp)

be a group functor. If the functor

LG : (Vec/K) -> (Set) V^ K e r ^

transforms a product to a product, then Lie G is a k-vector space.

In particular we can apply this argument to a Lie-Ritt functor to get the fol-

lowing

COROLLARY (2.5). If G is a Lie-Ritt functor, then Lie G is a k-vector space.

Proof. We may assume that G is a group subfunctor of Γnk so that G is de-

fined by a differential ideal / of

k[[xly χ 2 9 . . . 9 χn]]{{yv y 2 , . . . , y j ) .
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We show that the functor G satisfies the condition of Lemma (2.4). Let U be an

arbitrary /c-vector space which we consider as a variable and

Φ=(φ1,φ2,...,φn> e Γnk(D{U)).

So we have

φt = x{ + φt with φi = φt(x) e U[[xv x2,..., xn]]

for 1 < i < n. Let

Φiix) = Σ at

h'h-ln)xϊxι

2*'''xι

n\
(lvl2,...,ln)eKn

with

ay*-1* e U.

Since

u.u = o

in the algebra D(U), the differential equations

F(Φ) = 0

for every F G / is translated to a system of /c-linear equations among the coeffi-

cients

al1^ w e [/

of 0 f . Namely there exists a system of /c-linear forms

(2.5.1) Ha(...,aϊ* '* '"',...) (αe/)

in

fl<

('"' '-' e f/

indexed by an appropriate set / such that the following conditions are equivalent:

(1) Φ<ΞLG(U) = G(D(U);

(2) F{Φ) = 0 for every F e / ;

(3) ^ β ( . . . , a!1'1*""1*,...) = 0 for every <*€=/.

Here of course in the linear forms
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only a finite number of the coefficients

(ivι2,..,ιn)
ut

are involved. Furthermore since we choose the vector space U as a variable, the

system (2.5.1) is independent of the choice of a vector space U. More precisely let

ϊ/' be another λ -vector space and

Φ'={ψ\,ψ'2,...,ψ'n)^Γnk{D{U')).

So we have

ψ\ = xt + φ\ with 0 = φ'iix) G U'[[xί9 x2,..., xn]]

for 1 < i < n. Let

i(x) = Σ < ' 2 nx1%
2 - - xn

n

with

Then the following conditions are equivalent:

(1) Φ' ̂ LG(Ur) = G(D(U0;

(2) F(Φ0 = 0 for every f e / ;

(3) / ί α ( . . . , α; ( / l ' / 2 '- ' / w ),...) = 0 for every a €Ξ /.

Let now F and Ŵ  be A -vector spaces and

Φ=(φltφ2,...,φn)<EΓnk(D(V®W))

so that we have

φt = x{ + φt with φi = φfa) e ( F Θ WOttP!, ΛT2,. . . , xn]]

for 1 < i < n. Let

with

auvι2,..,ιn)

Then it follows from the equivalence of conditions (1), (2), (3) the following condi-

tions are equivalent:
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(1) Φ e LG(V® W) = G(D(VΦ W))

(2) Ha(. . ., a"11'2 '«',. . .) = 0 and Ha(. . . , b"1''1 'n\. . .) = 0 for every

(3) If we set

= X + Σ A ( / i ' Z 2 ' Λi> Ί ' 2 . . . χ

ι n

for 1 < i < n and

Θ= (θ9 0 2 , . . . , θn), Π = (π l f τr 2,. . ., τrw),

then θ e G(Z)(y)) and Π e G(Z)(W0).

Hence the functor

L c : ( 7 ^ / A ) - * ( S β d

transforms a product to a product so that we can apply Lemma (2.4) to G.

Remark (2.5.1). Let G be a Lie-Ritt functor. It follows from the Proof of

Corollary (2.5) that the /c-vector space LieA G is isomorphic to the /c-subspace of

Θnk defined by the linear equations

The fc-vector space Lie G is isomorphic to the fc-subspace

{φιd/dx1 + φ2d/dx2 + -\~dnd/dxn e Θnk |

(h (r) = T /7

(/i'/2'- ' / « )

r

/ i r

/ 2 τ

ιn Tj / U\>h> — ιti) \ = A)

Now we analyze a familiar group functor.

EXAMPLE (2.6). Let W be a A-vector space. For a A -algebra i?, we denote by

GL^Cfi? ® kW) the automorphism group of the i?-module R ® k W. So we get a

group functor

Since the functor GL(W0 satisfies the condition of Lemma (2.4), Lie GL(W0 is a

/c-vector space.
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LEMMA (2.6.1). We have a canonical isomorphism

LieGL(W0 - End W

of k-vector spaces. Here we denote by End W the k-algebra of all endomorphisms of the

k-vector space W.

Proof. Let k[ε] be the ring of dual numbers and q : k[ε] —* k the A -algebra

homomorphism defined by q(ε) = 0. So we have

Lie GL(W) = Ker ?#={?>€= GL,[ε] (k[ε\ Θw W)\q*φ = 0}

= iφ €= GLk[£](k[ε] (g), W) \ φ = / + εφ with ψ e End W).

Therefore we get a bijection

As in the proof of Lemma (2.3), it follows from the definition of the k-vector space

structure on LieGL(fK) that this bijection is an isomorphism of the A -vector

spaces.

LEMMA (2.7). If we have a morphism of group functors

on the category (Alg/k) of k-algebras, then f induces a map

/* : Lie Gι-^ Lie G2.

If the functors Glf G2 satisfies Condition (2.4) so that Lie Gv Lie G2 are k-vector

spaces, then

/* : Lie G, -» Lie G2

is k-linear.

Proof The lemma follows from the definition.

Let G be a group functor on (Alg/k) satisfying Condition (2.4) so that Lie G

is a /c-vector space. Let A:[ε] be the ring of dual numbers. The structure morphism

induces a homomorphism
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i: G(k)-+G(k[ε])

of groups. So for g e G(k), we can define

by

Since ^ leaves Lie G = Ker^# invariant, we get a homomorphism

(2.8) G(A)-+GLJk(LieG)

of groups.

So far we worked over a field k. We may however the field k by a ring i? and

a /c-vector space by a free i?-module. So the dimention of a /c-vector space is re-

placed by the rank of a free i?-module. Therefore for example Lie G is defined for

a group functor

G : (Alg/R) - (Grp)

as follows. Namely let Vλ be a free i?-module of rank 1. Then

D(VX) = R®V,

is an i?-algebra if we define the product of elements of Vx to be 0. Let

p : ZXVΊ) — R

be the projection which is an i?-algebra homomorphism. We set

Lie G = Ker p%,

where

is an induced homomorphism of groups by the projection p. As in the case of the

field ky Lie G is defined using the ring R[ε] of dual numbers over R. Let us de-

fine a homomorphism of i?-algebra

q:R[e]-+R

by q(ε) = 0 so that we have a homomorphism of groups
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induced by q. Then Lie G = Ker q%. To define an i?-module structure on Lie G,

we have to introduce the functor LG. For a free i?-module V, D(V) = R 0 V is

an i?-algebra if we define the product of any two elements of V to be 0. We de-

note by p the projection D(V) —* R which is an i?-algebra homomorphism. So p in-

duces a homomorphism of groups

If we set

LG(V) =

then we get a functor

LG:(Fmod/R)-+(Set),

where (Frnod/R) is the category of free i?-modules. The Proof of Lemma (2.4)

allows us to prove that if the functor LG transforms a product to a product, then

Lie G is an i?-module. We can prove the following Lemmas as over the field k.

LEMMA (2.9). Let ΘnR be the free R-module

R[[xlf x2> -> xn\Yd/dxι + R[[xv x2f..., xn]]nd/dx2

+ •••-+- R[[x19 x2,..., xn]]nd/dxn.

of all formal vector fields. Then we have a canonical isomorphism

D:LieΓnR-ΘnR

of R-modules.

LEMMA (2.10). For a free R-module W, we have a canonical isomorphism

LieGL(ίF) - End* W

of R-modules. Here we denote by End^ W the R-algebra of all endomorphisms of the

R-module W.

LEMMA (2.11). Let G be a Lie-Ritt functor defined over a field k. Then for a

k-algebra R, Lie GR is a free R-module. We have a functorial isomorphism

Lie GR = 7?Θ f c LieG.

Proof We use the notation of the Proof of Corollary (2.5) so that G is a
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group subfunctor of Γnk defined by a differential ideal / of

k[[x19 x 2 , . . . , xn]]{{yv y 2 , . . . , y j ) .

So the argument of the Proof of Corollary (2.5) allows us to prove the following.

Let U be a free i?-module and

So that we have

Ψi = xt + φ{ with φt = φi(x) G U[[xv x2,..., xn]]

for 1 < i < n. Let

with

So by the argument of the Proof the following conditions are equivalent:

(1) Φ<ΞLG(U) = G(D(U);

(2) F(Φ) = 0 for every F G /

(3) HaL . . , a"ιtl*""ln\...) = 0 for every α €= / .

So as in the Proof of Corollary (2.5), the functor

LGR: (Fmod/R)-^ (Set)

transforms a product to a product. Hence the Proof of Lemma (2.4) shows that Lie

GR is an i?-submodule of ΘnR defined by Ha = 0. Since the form Ha is λ -linear,

we have an isomorphism

Lie GR - R (8)A Lie G

as i?-modules (cf. Remark (2.5.1)).

The above argument allows us to prove the following result (cf. [S.G.A.D], Ex-

pose Π, Proposition 3.4).

LEMMA (2.12). Let

G : (Alg/k) -> (Grp)
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be a group functor. If the functor

LGR : (Fmod/R) -> (Set)

transforms a product to a product for every k-algebra R, then Lie GR is an R-module

and we have an isomorphism

Lie GR - R ®k Lie G

of R-modules.

Let now G be a Lie-Ritt functor defined over a filed k. It follows from (2.8)

interpreted over /c-algebras and from Lemma (2.11) that we get a morphism of

group functors

(2.12) G->GL(LieG).

So we get by (2.7)

(2.13) / : Lie G — GL(G) = End (Lie G).

The morphism defines a product on Lie G. We denote by fx the image of x ^ Lie

G by the map/ in (2.13) so that

/ , e End (Lie G).

Hence we get a /c-linear map

/ x : L i e G - + L i e G .

We set

te, 2/] = fx(y) for x, # G Lie G.

PROPOSITION (2.14). L<?£

Φ,Ψ^UeΓnk

and

D-.LieΓnk-+Θnk

be the isomorphism of Lemma (2.3). Then we have

D([Φ, Ψ\) = [D(Φ),D(Ψ)]9

the latter being equal to
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D(Φ)D(Ψ) - D(Ψ)D(Φ)

by definition. Namely the k-vector space Lie Γnk forms a Lie algebra with respect to the

product [, ] which is isomorphic to the Lie algebra Θnk of all formal vector fields.

Proof We may assume for the simplicity n — 1. Let k[ε] be the ring of all

dual numbers. We prepare a copy k[ε'] of k[ε]. So let

Φ = x+ εφ(x), Ψ= x+ εrφix) with <p(x), φix) e k[[x]].

Hence we have

DiΦ) = φix)d/dx, DiW) = φix)d/dx.

Let us calculate in /c[ε, ε'] [[x]]

U= (x+ εφ(x)V1°(x+ ε'φ(x))°(x+ εφ(x)) - (x + εfφ(x)).

We need

LEMMA (2.15). Let fix), g(x) G i?[[x]] for a ring R. Then we have in

fix + εgix)) = fix) + εgix)f'ix) in R[ε] [[x]] (ε2 = 0).

Proof of lemma. In fact since ε = 0, if fix) = χn, then we have

ix + εgix))n = xn + εgix)nxn~

by the binomial expansion theorem. The lemma follows from this observation.

Repeated applications of Lemma (2.15) give us

U= ix - εφix))°ix + ε'φix))°ix + εφix)) - ix + ε'φix))
= ix — εφix)) ° ix + εφix) + εrφix + εφix)) — ix + ε'φix))
= ix- εφix))°ix + εφix) + ε'iφix) + εφfix)ψix)) - ix + ε'φix))
= x + εφix) + ε'iψix) + εφrix)φix)) — εφix + εφix) + ε'iφix)

+ εφ'ix)φix))) - (x+έφ(x))
= x + εφix) + ε'iψix) + εφ'ix)φix)) — εφix + ε'0(«z) 4- εiφix)

+ έφ'(x)φ(x)) - ix + ε'0Cz))
= x + εφCr) + e'(0Cr) + εψ{χ)φ(x)) - εφix + ε'0Cr)) - Cr + ε'0(jr))
= x + ε<pCr) + ε'0(x) + εε'ψ'ix)φix) — εφix) — εε'ψix)φ'ix)

-ix+ε'φix))
= εε'iφ'ix)φix) - φix)φrix)).
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Let F be a formal group over a ring R. Then

F(x, y) = x + y + B(x, y) + terms of degree > 3

(cf. [S] LG, Chap. 4, §7). Then usually the Lie F of the formal group F is defined

as the free i?-module Rn equipped with the product

[x, y\F = B(x, y) - B(y, x)

for x,y<ΞRn (cf. [S] LG, Chap. 5, §1). If

/ :F-^G

is a morphism of formal groups over R, then

induces a homomorphism of i?-Lie algebras. Here fx is the linear part of / (cf. [S]

loc. cit). We can also consider the Lie algebra of the associated Lie-Ritt functor F.

PROPOSITION (2.16). Let F be formal group over a commutative ring R. Then we

have a canonical isomorphism

Lie F - Lie F

of R-Lie algebras.

Proof. This follows from the Proof of Proposition (2.14) and from the formu-

la

xyx~ι = y + Lr, y]F + terms of degree > 3

where we denote F(x, y), Θ(x) respectively by xyy x~ (cf. [S] LG, Chap. 4, §7,

Formula 3).

§3. Construction of # and £

Let L/K be an ordinary differential field extension with derivation δ. We

assume that the field extension L/K satisfies the following condition.

(F.C) The field L is finitely generated over K as an abstract field.

We have the universal Taylor morphism
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»:I-»I ( [[f]]:i(α) = Σ (δ"a/n\)f for a e L
Π = 0

(cf. [U3], §1). Here as in [U3], L denotes the abstract field structure of the dif-

ferential field L and t is an independent variable over L . We add \ when we

want to emphasize that we consider the abstract field structure of a differential

ring.

So the power series ring L [[/]] is a differential ring with derivation d/dt

and the universal Taylor morphism i is' a morphism of differential rings, i.e. we

have

i(δa) = -Ti i(a) for every a ^ L.

Let {uv u2,..., uj (ui e L for 1 < / < n) be a transcendence basis of L over K

so that K[uv u2, . . . , un] is isomorphic to a polynomial ring (here rigorously

speaking, we have to write L , K for L and K, which would make the notation

complicated). Hence we have the if-derivations

lf u2,..., un) —> K(ulf u2,..., un) for 1 < i < n.

Since L is algebraic over K(uλ, u2,..., ww), each iΓ-derivation

d/dui: UCiw!, u2,..., un) —* K(ulf u2,..., un) for 1 < i < n

can be extended to the unique derivation L —» L which we denote by the same

symbol d/dut. The field L endowed with the derivations d/dut will be denoted

by L . Now we have in L [\_f\][t~ ] two kinds of derivations: (i) the differentia-

tion d/dt (ii) the derivations 9/du i applied on the coefficients of Laurent series.

Namely we set

4r{± anf)= Σ ΐ^ f " for Σ anf e L* [[ί]][Γ1].
t/W/ _oo« w _oo« W O1^/ -oo«W

So we get a differential field

(L" [ [ f l lCΓ 1 ] , id/dt, d/dulf d/du2J...y d/dun}).

Its constant field is the algebraic closure of K in L :

ϋΓ' = { Σ af e i ' [ [ ί l l t Γ 1 ] \aoe K* and α, = 0 for i Φ 0).

The differential field
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α " [ M Π Γ 1 ] , {d/dt, d/du19 d/du2,..., d/dun})

will be denoted by L*[[t]] [ Γ 1 ] .

Let {vίf v2,..., vn} (v{ ^ L for 1 < i < n) be another transcendence basis

of the field extension L /K . So we can introduce the derivation d/dvt:L —*

L for 1 < i < n as above.

LEMMA (3.1). The jacobians \ dvi/dui |, | dui/dvj | G i are not equal to 0.

Proof. We know that the dimension of the L -vector space Όeτcκ\(L ) is

equal to the transcendence degree tr. ά[L: K\ = n and that

id/dul9 d/du2,..., d/dun}

and

{d/dvlf d/dυ2y...y d/dvj

form respectively basis of the L -vector space Der^* (L ). So we can find atj €=

L such that

(3 '2) du, - h Λii duj

for 1 < i < n with | au \ΦQAt follows from (3.2)

so that I dVj/dUi \ Φ 0. For the same reason we conclude | dUj/dVi | Φ 0.

Let us denote by

Hoi%_ v e c t(L, L)

the L-algebra of all if-linear endomorphisms of the if-vector space L. Lemma

(3.1) shows that if we consider an L -subalgebra of

Hoi%_ v e c t(L, L)

generated by the d/du{, then the L -subalgebra is uniquely determined. So the

definition of any differential L -subalgebra of L W_tW\_t ] is independent of the

choice of a transcendence basis of L/K. Since there is no reason to distinguish

d/dt from the other partial derivations, we may denote d/dt by d/dt.
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DEFINITION 3.3. We denote by UL/K a subfield of Z,#[[θ] [f"1] generated by

L and i(K), which is a differential subfield of

α'CMΠΓ 1 ] , ld/duu d/du2,..., d/dun, d/t)).

£L/K is a differential subfield of /,*[[/]] [Γ 1 ] generated by i(L) and XL/K. We de-

note ΉL/K, £L/K respectively by # , ί? when there is no danger of misunderstand-

ing the starting differential field extension L/K.

EXAMPLE (3.4). Let us analyse Example (2.1) of [U2]. In this example K =

CCr) and L = K(y) with y = exp x, the derivation δ of L being d/dx. So we

have yn — y for any integer n ^ N. Thus since we have /(.r) = .r + t, we have

# = i(K), L* - i(C(i(x))L* = L*(t) c !*[[/]][Γ1].

It follows from the equality

(3.4.1) i(y) = yexpt

that we have in L" [[fl] [Γ 1 ]

" = i(K(y))L" = ί(A) (z/ exp ί)LN = t(A) .L" (exp t) = tt(exp t).

Hence this subfield is closed under the derivations d/dy and d/dt and therefore

£ = # ( e x p t). See Examples (3.8), (3.9) and Proposition (3.13).

Now we have the universal Taylor morphism

iL\U-+L* [[wlt w2,..., wn]],

where wv w2>..., ωn are independent variables. So we get a morphism

L [[t]] [t~ ] —*L [[wlf w2,..., wn, t]] [t~ ]

of the differential algebras with the (n + 1) derivations sending

Σ anf to Σ iL(an)tn.
—oo«M — oo<«

Restricting this morphism to the subfield j£, we get a morphism

(3.4.2) t\£—*L \_wv w2>..., wn, t]] [t ] .

Let us see what happens in our Example (3.4). We take uλ = y. Let us calculate

the image of i{y) under the morphism c. Since
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let us set Y(wv t) = c(i(y)). It follows now from (3.4.1)

Y(wlf t) = (y + ^)exp t e V [[w, flΠΓ1].

This shows that Y(wlf t) is nothing but the general solution of the differential

equation dy/dx=y, if we notice that the differential equation y'= y is

translated into —^r = Yin the differential algebra L [[wlf t]][t ].

Let us study a more general situation. Let K be an ordinary differential field

and L — K <z/> such that

(3.5) y n ) = F(y, y ' , . . . , y ( n ~ υ ) w i th F(y, y ' , . . . , y ( n " 1 } ) ^ K[y, y\..., y(n~Ώ].

More precisely we consider the differential equation (3.5) and we define I as a

quotient field of

Kiy] /(differential ideal generated by y n — F(y, y\..., y n~ ) ) .

We take

(1) (n-l)

If we set

then

= Y(wy t) = Y(wlf w2f..., wn, t) e L [ t ^ , w2,...y wny t]][Γι]9

and since i(y ' ) (0) = y * ,

dΎ(uf0) _ ω
Ί , M ; 2 , . . . , wn]].

όt

Namely Y(u, t) is the generic solution of the differential equation (3.5) or is the

solution depending on the n parameters wl9 w2, . . ., wn. The derivation d/dwi is

really a differentiation of the solution Y(w, f) with respect to the initial value w{.

Remark (3.7). In general the field ί? is not of finite type over the field Ή ,

We can construct such an example by considering a simple differential equation

V' = F(y).
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EXAMPLE (3.8). The Weierstraβ ^-function. Let X be a differential field and

y an element of a differential overfield of X satisfying a differential equation

(3.8.1) y'2 = V - g2/ - g3

with g2, g3 €Ξ Cκ such that

gl - 27&2 ^ 0.

The equation

defines an elliptic curve E in PCR and (1, y, y') gives us an L-valued point

if we set L = /f(z/, z/O We notice that the differential equation (3.8.1) contains as

a particular case, K = C(x) and y is the Weierstraβ ^-function with g2, g3 e C.

We denote F/X, Z / X by u, v so that we have v2 = 4u3 — g2u
2 — g3 and the

function field of the elliptic curve E is

Cκ(u, υ).

Let us take

U , Y, Z) = (0,0,1)

as the origin of E. The L-valued point g of E defines a tangent vector δg at g and

it follows from the definition that

(δg)(u) = δ(g*(u)) = δy = y', {δg){υ) = δ(g*(v)) = δ{yr) = y"

(cf. Example (2.15), [U2]). So we have

(3.8.2) lδg=υd/du\{u>v)=g.

If we take u = u1 = y, then

i(y) = Y(f) €=L'[[*]] .

The power series Y(f) satisfies

/dY\2
 Λ v 3

\-dt) =^γ -

where we identify Cκ with its image
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iicκ) CLL" aL" iimir1].

The points

(u,v) = i.y,y'), (Y,dY/di)

are L [[t]]-valued point of E. We writing the addition on the elliptic curve E by

+ , the sum

(1, F, 1) - (F, dY/dt) - (y, y')

of the two points on E is an L [[t]]-valued point of the elliptic curve E. Since

the vector field vd/du on E is translation invariant, it follows from (3.8.2) and

from Lemma 16 of [Ul] that the L * [[£]] [Γ1]-valued point (X, Ϋ, 1) of E satis-

fies (3.8.2) too. The equation (3.8.2) is written in terms of (X, F) as a system

(3.8.3)

Since the initial condition

(1(0),

at t — 0 is the origin (0,0,1), it follows from the equation (3.8.3) that all the coeffi-

cients of the power series X, Y are in if .So

X(Y, dY/dt) = X((Y, dY/dt) - (y9 y')) = X(X, Ϋ).

Since the coefficients of X, F a r e in Ή>

dX/dy = dΫ/dy = 0

and hence $((Xf Ϋ) is closed under the derivation d/dy. Thus

# ( F , dY/dt) =tt(X, Ϋ) = <β.

See Examples (3.4), (3.9) and Proposition (3.13).

EXAMPLE (3.9). Let M/K be an ordinary differential extension and

A= (aj eMJK)

a square matrix of degree m. If a matrix
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satisfies a linear differential equation

(3.10) Y' = AY,

where we denote by Yf a matrix (y'tj)i^t,j^m. Then a subfield L — K(yij)1<t;<m

of the differential field M is colsed under the derivation. If we denote the matrix

(uz/ί;)) e Mm(L [Unit ])

by i(Y). Then if we set

Ϋ{f) = i{Y)Y~ι\

then the matrix Ϋ(t) satisfies a differential equation

(3.11) -jj-=i(A)Ϋ,

where ί(A) = (i(atj)) e l j L ^ W H Γ 1 ] ) . Equation (3.11) is an identity be-

tween the matrices in MΛL* [[flΠΓ1]). Since i(A) e MΛK* [[t]]) and 7(0) =

/w, we can show by induction on /, using (3.11) that the coefficients of F i n t is in

K* for / = 0,1,2,.. . . Namely

Now in the field L [[t]] [t~ ], we have

(3.12) L\i(L) =L\(K{Y)) = L\i(

\ ~ 1 " ) =X(Ϋ(t)).

Here we denote for example by L ,i(L) a subfield of L [[f\] [t ] generated by L

and i(L). So if we take a transcendence basis uv u2,. . . , un of L / i ί and introduce

the derivations d/duj to obtain if, then by (3.12) I?,i(Y) = X(Ϋ(t)) is closed

under the derivations d/duίf d/dt and hence coincides with x9 (cf. Examples (3.4),

(3.8) and Proposition (3.13)).

In Examples (3.4), (3.8) and (3.9), the extensions L/K are G-primitive and

we have £ — i(L).L . In general if we denote by Kx the algebraic closure of K in

L, then the field C# of all constants of $1 is Kx . We have the following general

result.

PROPOSITION (3.13). If L/K is a G-primitive extension, then £ = i(L).L and

!£ /$( is a Gc -primitive extension.
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Proof. It follows from the definition of a G-primitive extension that G is an

algebraic group scheme defined over the field Cκ of all constants and that there

exists an L-valued point g : SpecL—• G of the algebraic group G satisfying the

following two conditions: (1) There exists a right invariant vector field a €= Lie

Gκ such that

(3.13.1) lδg = a;

(2) We have K(g) = L (See [Ul], p. 784 for the definition of the logarithmic dif-

ferential Iδg) Let Spec A c: G be an affine neighbourhood of the image of the

L-valued point g and

A — Cκ[zίf z2,..., zm\.

So we have a C^-morphism

g* : A — Z,, {Zj >-* gj for 1 < j < m)

of C^-algebras. We have by definition δgj — (lδg)Zj, which is equal to a(g)Zj —

(azj) (g) by (3.13.1) for 1 < j < m. Since az, e A ®C / r K,

azj(g) = fj(z19 z2,..., z m ) ,

where / ; is a polynomial with coefficients in K. So we have

(3.13.2) δgj = ffa, g2,..., gm) for 1 < < m.

If we pass from L to L [[t]] through the universal Taylor morphism i:L—+

gives us an /(L)-valued (hence an L[[t]]-valued) point of S p e c i e G which

satisfies

(3.13.3) d°gf;)) = F ;0(^), i ^ , . . . , iigj) for 1 < < m,

where the polynomials

Fj e ΛΓ11 [[ί]][Z l f Z 2 , . . . , Z J (1 <> < m)

are the image of fj ^ i ίtZi, Z 2 , . . ., Zm] by the universal Taylor morphism K

i ί [Wl. We denote this L[[t]]-valued point of G by i(g). On the other hand

2 , . . . , zm
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gives us an L -valued (hence an L [[/]]-valued) point of Spec A c G, which we

denote by g .So i(g)g ~ is an L [[fl]-valued point of G. It follows from the

construction that i{g)g is in fact an i(L) .L -valued point. Since

(3.13.4) (ld/dt)(i(g)g"~ι) = α e= Lie G* c Lie G^

by Lemma 16 of [Ul], the point i(g)g ~ satisfies the differential equation

(3.13.3) too. Namely

*~l = (glt g2>- " fin)

is a power series solution of (3.13.3) and its initial condition at t — 0 is 1 G G.

Hence the initial conditions

g.(0) G Q c ί ^ for 1 < < m.

Since the coefficients of the Fj are power series with coefficients in K , the

gj(t) are in K" [[/]]. So for any D G Der^^L^ we have Dgj(t) = 0 so that

(3.13.5) lD(t(g)g"~1) =0

hence in particular

(3.13.6) lD(i(g)g*~ι) e Lie G^.

By (3.13.5) the subalgebra

i(L).Ls = ι(K)(ι(g).Lk) = ι(K)(ι(g)g"-\Lk) =X(t(g)g"~1)

of L[[ί]][ί ] is invariant under the derivations of L /K . Therefore £ =

%{i(g).L*) = i(L).L#. Now the proposition follows from (3.13.4) and (3.13.6).

A G-primitive extension is a particular case of a strongly normal extension

(cf. Kolchin [K], Chap. VI).

THEOREM (3.14). If L/K is a strongly normal extension with Galois group G,

then !£ /$( is a strongly normal extension with Galois group Gκ\, Here Kλ is the algeb-

raic closure of the field K in L.

Proof It follows from Theorems (2.13), (3.10) of [U3] that G is an algebraic

group scheme over the field C — Cκ— CL of all constants and there exists a

iί-scheme X with derivation that is a model of a differential field extension L/K

such that the algebraic groups Gκ operates on X and such that we have a

if-isomorphism
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(3.15) Gκ xκX= G xcX-^XxκX, (g, x)

of schemes with derivation. We show ί£ = i(L) .L in L [[£]][£" ]. Let Y= Spec

A be a if-affine open set of X with A = K[yly y2i. . ., ym] So the subring A of the

differential field L is closed under the derivation and L = K(yv y2y. . . , ym). Kx

being the algebraic closure of K in L, by the Hubert Nullstellensatz we can find a

finite algebraic extension K2 of Kγ such that the i£-scheme Y has a i£2-valued

point. We consider L — L ®κ^ K2, which is a finite algebraic extension of L and

is a differential field. In the Laurent series ring L [[f\] [t ], which is a differen-

tial overring of L [[/]] [t~ ], we have by Lemma (1.1), [U3]

To introduce the partial differential field L we take a transcendence basis

of the extension L /K . So

{uί9 M2, . . . , un}

{uv u2,..., un}

is also a transcendence basis of L /K2 and thus the partial differential field

structure U is defined on L . So since L is a field, to prove that the inclusion

i(L)L a £ is in fact an equality, it is sufficient to show that the natural morph-

ism

Since we have a /Γ2-valued point of F = Spec A , we have a morphism A

is an isomorphism

Since we hav(

—• K2 of abstract K2 -algebras, the isomorphism

Diff-hom^CA, K2 [[ί]]) - Horn,,, (A \K2)

of Proposition (1.4), [U3] gives us a (K2 [[/]], d/dt)-valued point

of the scheme Fwith derivation and hence a (K2 [[/]], d/dt)-valued point

/of the scheme X with derivation. Consequently we get a (Z/ [[/]], d/df)-valued
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point

/ 3 : Spec L ' ' [ [ « ] - > *

of the scheme X with derivation by composing the morphism f2 with the inclusion

K* [[t]] C>Z/*[[*]]. Since the universal Taylor morphism i:L-+L*[[fi]

composed with the inclusion L [[t]] C_» L' [[t]] defines another (IS [[fl],

d/dt) -valued point

/ 0 : Spec £ '

of the scheme X with derivation. It follows from (3.15) that there exists a point

such that

(3.16) g k = U U =

In fact by (3.15) the /^-differential morphism

gives a if-morphism

S p e c ! 7 ' [[*]]-> G X C Z

and hence by composing with the projection to the first factor, a differential

morphism

& : Spec L'*[[*]]-> G.

Since G is a scheme with trivial derivation, the differential morphism g0 factors

through a Spec C r n [ m r v a l u e d point yielding a morphism

g o : S p e c CLr»[[t]] = S p e c IS -+ G

of schemes. We translate (3.16) into the language of rings. To this end let Yj(t) be

the image of z/; by the universal Taylor morphism i:L—*L [ M ] ( c Γ [[t]])

and Zj(f) e ^ [[fl] c L" [[fl] be the image of z/; by /3. Then (3.16) shows

(3.17) IS*(i(K), Yv F 2 , . . . , Ym) =U*(i<iK),Z1,Z2,...,Zm)

in Z,'* [[fl]. Since the Z ; (1 < < m) are in K2[[i\],

dZj/du^O for \<l<n

and
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i(K)(Zι,Z2,...,Zm)

is closed under the derivation d/ dt, the field

L'*(i(K),Z1,Z2,...,Zm)

is closed under the derivation d/dt. Thus the right side of (3.17) is closed under

{d/dt, d/duv d/du2,..., d/dun)

and hence so is the left side. The left side of (3.17) is U*.i(L). So L'*.i(L) is

closed under

{d/dt, d/duγ, d/du2,..., d/dun).

Therefore we have

£.L'* = L*.i(L)

in U#[[t]] [Γ 1 ] by definition of £, which is the

{d/dt, d/dux, d/du2,..., d/dun)-invariant

subfield of L [[t]] [t ] generated by L and i(L). Since

X = iUQ.L* - Q(i(K) ®CU),

we have thus proved

= i(L) .L* -

so that we have

Hence X ®κ${ is a model of the differential field extension J£V#, which is a prin-

cipal homogeneous space of Gκ ® $(. Namely we have an isomorphism

of schemes with a set of derivations

{d/dt, d/dulf d/du2,..., d/dun]-invariant.

Since Cg — C^ = Kx , !£ /$( is a strongly normal extension with Galois group

GKi by Theorem (3.10) of [U3] (only ordinary case is treated there but the result

is easily extended to partial case).
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§4. Functors ^ # / : # and

Let L/K be an ordinary differential field extension satisfying the condition

(F.C) as in §3. We have introduced the differential field Ή and the differential

field extension £ 7 # in §3. They are differential subfield of L * [[w, flΠΓ1]. For

an L -algebra A we denote by

Diff-hom^ΛKw, flΠΓ1])

the set of all differential morphisms

that coincide with the morphism

in (3.4.2) when restricted to the differential subfield $1. Namely the diagram

£ ^ A[[w,miΓι]
ί ί

% -* L\[W, tmr1]

is commutative, where the lower horizontal arrow is the canonical morphism c \%

and the left vertical arrow is the inclusion, and the right vertical arrow is induced

from the structure morphism L —* A of the L -algebra A. We say that

/ e Diff-hoiVί?, A[[w, t]] [Γ 1 ])

is an infinitesimal deformation of the canonical morphism

if the reduction of / modulo the nilpotent radical N(A) of A coincides with the

morphism c in (3.4.2), i.e. if the diagram

s - L *[[w,t] π r 1 ]

I I

is commutative. Here the upper horizontal arrow is the morphism (3.4.2), the low-

er horizontal arrow is the reduction modulo N(A) of coefficients and the right

vertical arrow is induced from the composite morphism
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of the structure morphism L —* A and the reduction A —* A/N(A). As in our

preceding paper [U3], we introduce a functor

by

#>/#(A) = {/e Diff-hoi%(£\ A[[w, flltΓ1]) | / is an infinitesimal

deformation of the canonical morphism c: £ -* L [[w, t]][t ] in (3.4.2)}.

The definition of the functor 3F %/% looks dependent on the choice of the trans-

cendence basis

{uv u2,..., un}

/K\

PROPOSITION (4.1). The functor &'£/:K is independent of the choice of a transcend-

ence basis of L /K .

Proof Let

{«!, u2f..., un}, ivlf v2,..., vn}

be transcendence basis of L /K . The infinitesimal deformation functor ^ ^ / ^

defined by using

{«!, tt2,..., un)

and

{^, v2,..., vj

are respectively denoted by 2FU and ^ . We show that the functors &u1 9:

v are

mutually isomorphic. Using the notation of the Proof of Lemma (3.1), we have

n

d/du( = Σ aiid/dυi

for 1 < i < n with (atj) €= GLW(L). We denote the universal Taylor morphisms

(L#, {d/duv d/du2,..., d/dun})-+ L* [[wlf w2,..., w j ]

(L#, {9/d^i, d/dv2,..., 9/9t>J) - * L [bi,-ε2> •» ^J3

respectively by iu and /y. We define an L -morphism
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:L* [[zίf z2f..., zn]]-+L* [[wlf w2t..., wn]]

by

φ(z{) = iu(v) - vt

for 1 < i < n so that the diagram

L • L [Up z2,..., zn]]

(4.2) || JΦ

L • Z,

is commutative. If we define an L -morphism

by

φ(Wi) = iυ{u^) — ui9

then

φ°φ = Id, φ°φ = Id

by the commutative diagram (4.2). Hence the morphism φ is an isomorphism.

Moreover if we identify

i with Σ dijd/dVj (1 < i < n)

and

d/dwt with Σ iMij^/dZj (1 < i < n),

then the morphism in (4.2) commute with the derivations. For an L -algebra A,

the morphism φ induces an ̂ -isomorphism

φΛ:A[[z, tmr^^AUw, tmr1}

by

ψA(t) = t, φA(z,) = φ{z) (l<i<n).

Now if

/ :(£, {d/dt, d/duιt d/du2,..., d/dun}) -*A[iw, tiJίf1]
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is an infinitesimal deformation of the canonical morphism

(2, id/dt, d/duv d/du2,..., d/dun}) -> L* [[w, t]

then

φ*f :(<£, {d/dt, d/dυl9 d/dυ2,..., d/dvn})->A[[z,

is an infinitesimal deformation of the canonical morphism

(5?, {d/dt, d/dvl9 d/dv2,..., d/dυn})->L* [[z, fl

and a mapping

gives an isomorphism of the functors 0Fυ and 2FU. This proves the proposition.

We can find a differential i£-subalgebra R of L that is of finite type over K

as an abstract ϋί-algebra such that L is the quotient field of R (cf. Lemma (1.5),

[U3]). Let

be a generator of the K -algebra R so that we have

K[y19 y2,...,yml = R K(yγ) y 2 , . . . , yj = L .

Since R is closed under the derivation, we have a system of differential equation

(4.3) y'{ = fi(y19 y 2 , . . . , y m ) \<i<m,

fi(Zlt Z2, . . . , Zm) being polynomials with coefficients in K. As in §3, we may

assume that {ylf y2,..., yn} (n < m) is a transcendence basis of L / ί ί and we use

{̂ i> 2̂2> > &»} t o construct Λf and iP. Let

i\L-+2-+Lx [[w, tlUt'1]

be the composite of the canonical morphisms. We denote i{y) by ΓJ (w, /) for

1 < j < m and identify L, ίP with their images in L [[w, t]][t ]. In particular

yΊ and Yj(w> t) are identified. It follows from the construction of 5? that F/w, ί)

is in fact in L [[w, t]] for 1 < j < m. Now the system (4.3) of differential equa-

tions is translated into the system

(4.4) dY,(.w, t) /dt = F,(F l f Y2 YJ 1 < j < m.

Here the
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Fi(V1,Y2,...,Vm) \<j<m

are polynomials in the Vx (1 ^ / ̂  m) with coefficients in i(K) which is a sub-

algebra of L" [[fl].

LEMMA (4.5). Let

be an infinitesimal deformation of the canonical morphism

2-*L*[[W, tmr1]

in (3.4.2). Thenf(Yj) is inA[[w, t]] forl < j < m and there exists

Φ= (φ^w), φ2(w),..., φn{w)) (ΞΓnL*(A)

such that we have

, t) for \<j<m.

Proof It follows from the definition of an infinitesimal deformation

f(Y) = Y, + Z, with Z, e N(A)[[w, t]] [Γ1]

for 1 < i < m. We show

Z,eN(A)liw, ί]].

To this end we denote by Z,_ the polar part of Z, (with respect to t) so that

zi+ = z,- z,_
is the regular part of Z{. Therefore we have

Zf - Z,_ + Z,+, Z,_ e ΓιN(A) ίM] [Γ 1], Zι+ e N(A) [[w, t]]

for 1 < i < m. Since / is a iΓ-morphism of differential algebras,

{f{Yγ)J{Y2) f(YJ)

satisfies the system (4.4) of differential equations:

(4.6) df{Y) (w, t) /dt = FiifiYJJίYJ,..., f(Ym)) l<i^m.

The coefficients of F{ are in i(K), hence in iT[[fl] and in particular regular. We

have to show that Zt_ = 0. Assume that Z{_ Φ 0. Then among the Z{_ (1 < i

< m), let Z ;_ take a pole of the highest order d > 1. It follows from (4.6) that we
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have

d{Y, + Z,_ + Z,+) /9ί = FM + Z,_ + Z1+, Y2 + Z2_ + Z 2 + , . . .
^ ; ...,Ym + Zm_ + Zm+).

We denote the ideal generated by the coefficients of Z{_ (1 < i < m) by /. So / <z

N(A). Let us first assume 7 = 0 . Since 7 = 0 and since the Fj are polynomials

with regular coefficients, the left side of (4.7) has a pole of order d + 1. Whereas

the order of the pole of the right side is at most d. This is a contradiction. So we

have proved Zt_ = 0 if 7 = 0. If 7 =£ 0, then we work over A/1 instead of A

itself to conclude that the coefficients of Z{_ (1 < i < m) are in 7 . So 7 = 7 and

consequently 7 = 7 for every positive integer /. If the ideal 7 is generated by a fi-

nite number of nilpotent elements, 7 = 0 for a sufficiently large integer /. There-

fore 7 = 0 and hence Z{_ — 0 for 1 < i < m. If the ideal 7 is not finitely gener-

ated, then we replace A[[M>, ίΠU" 1 ] by J4[[M;, /]][/~1] /(W ). The above argument

shows that Z{_ = 0 mod w for every / G N s o that Zt_ = 0. So we have proved

f(Yt) GA[[w, fl] for 1 < z'< m.

Let us set in L* [[w, ί ] ] [Γ 1 ]

/(Y;.) (W, 0) - ^ = φi{w) for 1 < i < m

which are in L [[w]] and

Here we denote by y{ the image of y{ ^ L by the natural morphism

L*^L*[[W, tmr1].

Since / is an infinitesimal deformation of the canonical morphism

in (3.4.2), we have

Y,(w, t) = f(Y,(w, 0) mod JVG4) [[to, /]] for 1 < i < m

and hence

Y,(w, 0) Ξ/ίFjdi), 0)) mod JV(A)[tw]] for 1 < i < m.

Since we take u, = yt for 1 < ί < w, we have

Y,(w, 0) - yϊ + w,
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by definition and consequently

w{ = ψjiw) mod N(A) [[w]] for 1 < i < n

by the congruence above. So

Φ — (ψiiw), φ2(w),..., φn{w))

is an infinitesimal coordinate transformation, i.e. we have

Φ^ΓnLΛA).

Since

L*[[wf t]]^A[[w, t]] (w^Φ(w), t^t)

is a 9/3^-differential L -morphism and since the coefficients of F{ (1 < i

<m) a r e i n L ' [ [ f l ] ( c L ' [ [ « , , fllfΓ1]),

(^(Φί ic ; )^) , Y2(Φ(w),t),...9 YJΦ(w), t))

is also a solution of (4.4). Since the coefficients of the system (4.6) of differential

equations are in J4[[M;, t]], the solution

is determined by the initial condition

(fiYJiw, 0),f(Y2)(w, 0 ) , . . . ,

To prove

f(Yt(w, f)) = Yt{Φ{w), t) for 1 < i < m,

we have to show that their initial conditions coincide:

f(Y) (w, 0) = Y,(Φ(w), 0) for 1 < i < m.

In fact we have

(4.8) f(Y,)(w, 0) = Y,(Φ(w), 0) for 1 < i < n

by definition. To see

f(Y,) (to, 0) = Y^Φiw), 0) for n + 1 < i < m,

we set

L' = i(D =i(K)(Yv Y2,..., YJ
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which is a subfield of the ring L [[w, t]]. Identifying the field

i(K) (c L c C [[w, t]])

with K c i 4 [ M ] , we define two ϋΓ-algebra morphisms

respectively by

h^Yiiw, t)) = f(Y,)(.w, 0) and h2(Y,(w, t)) = Y,Ww), 0)

for 1 < i < m. Since the morphism

is the conposite of if-algebra morphism

f\L,:L'
and the A[M]-algebra morphism

of substituting w = 0, the morphism

is a well-defined if-algebra morphism. Similarly

h2:L'-+A[[w\]

is the composite morphism of the L -algebra morphism

of substituting t = 0 and the L -algebra morphism

L *[[«/]] - L [ [ α ; ] ]

of substituting w = Φ(w). We have to show

LEMMA (4.9). 77ι<? morphisms

hv h2:L'-+A[[w\]

coincide.

Proof of Lemma. Let us set
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L o = i ( K ( y x , y ί t . . . , y n ) ) = i ( K ) ( Y v Y2,..., Yn)

which is a subfield of L. Then hx and h2 coincide on Lo by (4.8). We show

hλ(s) = h2(s) for every s ^ ZΛ Let

(4.10) sι + axs
ι~ι + + flz = 0 (av a2,...,aι^ Lo)

be the minimal polynomial of s over LQ. It follows from the definition of in-

finitesimal deformation that every coefficient of the power series h^s) — h2(s) ^

^ 4 [ M ] is nilpotent We first prove that the constant term of the power series

hλ(s) — h2(s) is equal to 0. Composing the morphisms

hl9h2:L'->A[[w\]

wiht the morphism

of evaluation at w = 0, we get two if-algebra morphisms

hlf h2:L'-*A

such that hγ and h2 coincide on LQ. The constant term of h^s) — h2(s) is hλ(s),

h2(s) which we denote by α. By (4.10) we have

(4.11) hx{s)1 + h^a^h^s)1'1 + + /^(α,) = 0.

Substituting hλ{s) = h2(s) + a in (4.11), we get

(4.12) (h2(s) + a)1 + hx(ad (h2(s) + a)1'1 + + A ^ ) = 0.

Since hλ coincides with h2 on Lo, it follows from (4.12)

(4.13) (A2(s) + α) f + ^ ( β i ) (A2(s) + α ) ' " 1 + + h^aj = 0.

Applying A2 to (4.10), we have

(4.14) h2(s) + h2(a^)h2(s) ~ + + A2(α/) = 0.

If we assume here that a = 0, then it follows from (4.13) and (4.14) that

G'(A2(s))α = 0,

where we denote the polynomial

/ i Γ / \ /-i i i r / \

x + h2κa^)x + + h^aμ

by GCr) and dG/dx by G^x). Since we are in characteristic 0, h2(s) is a simple

root of the characteristic polynomial, Gr(h2(s)) is a non-zero element of a field
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h2(L) and hence is a unit in A. Therefore a = 0. If a2 Φ 0, then the argument of

proving Z{_ — 0 in the proof of Lemma (4.5) shows that a = 0. By the same argu-

ment we can show that for the reductions

modulo

h1,h2:L'-^A[[w]]->A[[w]]/(w)k

( w ) k = (wίf w2,..., w n ) k

of the morphisms hlf h2, we have h^s) — h2(s) for every non-negative integer k.

So h^s) = h2(s). This is what we had so show.

Remark. In the argument of proving Z{_ = 0, the ideal / should be finitely

generated. Since h^s) — h2(s) has infinitely many coefficients, we have to consid-

er the reductions modulo (w) of the morphisms hlf h2.

£ and $( are differential algebras with a set

{d/dulf d/du2,..., d/dunJ d/dt)

of derivations. So we can consider the universal Taylor morphisms

£-+($* [\w, 71], id/dwlf d/dw2,..., d/dwn, d/dT})

and

M-* ( # " [[w, 71], {d/dwl9 9/9i(;2,..., d/dwn, d/dT}).

For example the universal Taylor morphism sends an element a ^ £ to

1 dlal

—j- w1 w2 - - - wn T ,

which is an element of the power series ring £ [[w, 71]. For an £ -algebra A

we denote by

Όiίί-homχ(£,A[[w, t]])

the set of all differential morphisms

such that the restriction to ̂  of / coincides with the universal Taylor morphism

Namely the diagram
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SB —

T
A[[w,

» T

m

is commutative, where the lower horizontal arrow is the universal Taylor morph-

ism, the left vertical arrow is the inclusion map, and the right vertical arrow is in-

duced from the structure morphism £ —• A of the £ -algebra A. We say that

is an infinitesimal deformation of the universal Taylor morphism

if the reduction of / modulo the nilpotent radical N(A) of A coincides with the in-

dentity, i.e. if the diagram

n i
A[[w,t]] ->• A/N(Λ)[[w,t}]

is commutative. Here the upper horizontal arrow is the universal Taylor morph-

ism, the lower horizontal arrow is the reduction modulo N(A) of coefficients and

the right vertical arrow is induced from the composite morphism

of the structure morphism ί£ —* A and the reduction A—*A/N(A). Similarly as

we defined the functor <^>/#, we introduce a functor

z w g ) - * (Set)

by

3te/#(A) = {/ e Diff-homjfίί?, A[[w, t]]) \ f is an infinitesimal deformation of

the universal Taylor morphism £ —+ £ [[w, t]]}.

Then the argument of the proof of Proposition (4.1) shows that the definition

of the functor 3^/# is independent of the choice of the transcendence basis

{u19 u2f..., un}

of L /K . The functor %%/% is more natural than $?<£/%. It has however a dis-

advantage that the reference field £ is in general very big. We denote the image

of y{ under the universal Taylor morphism by Y^w, T) for 1 < i < m. The argu-

ment of the proof of Lemma (4.5) allows us to prove
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LEMMA (4.15). Let f ^ %£/:f{{A) for an £ -algebra A. Then there exists

Φ= ((Piiw), <p2(w),..., φn(w)) e f ^ i M )

such that we have

f(Y,) = Y,(Φ(.w), T) forl<i<m.

In fact since we are working in the power series ring instead of the Laurent

series ring, it is easier. In the proof of Lemma (4.5), using the notation there we

had first to show that the infinitesimal deformations f(Yt) are in J4[[M;, t]]. But

this condition is satisfied in the case of Lemma (4.15) by definition.

Let L/K be an ordinary differential field extension and K c M c L a dif-

ferential intermediate field. We take a transcendence basis

of M /K and extend it to a transcendence basis

{Ulf U2,..., « „ , }

mscendence bas

{u19 u2,..., un,, un,+1,..., un}

(M\ {d/dulf d/du2,..., d/dunλ)

is a differential subalgebra of

(L , {d/dulf d/du2,..., d/duj).

By construction in §3 M = ί£M/κ is a differential subfield of M*[[i\][t~ι] and <β a

differential subfield of L*[[i\]Vt~l]. So both <£ and M are differential subfields of

L [[t]] [Γ ] and M is a differential subfield of £. Let A be an ί£ -algebra and

f:<e^>A[[w, 71]

be an infinitesimal deformation of the universal Taylor morphism

2-*2*[[w, 71].

By restriction / induces an infinitesimal deformation

f\M:M-*A[[w19 w2,..., wn, T]].

Since / \M is a differential morphism, it factors through the differential subalgebra

A[[wv w2,..., wn,, 71]
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Of

A[[wv w29..., wn, 7 1 ] .

Hence f\M is an infinitesimal deformation of the universal Taylor morphism

M—>M ί[wλ, w2,..., wnr, 7 1 ] —• J ? [[wl9 w2,..., wnr, 7 ] ] .

If we denote the restriction of the functor

to the subcategory {Alg/ίE *) of {Alg/M *) by

we have a morphism

of functors. Namely we define

by sending

for an ί? -algebra A.

PROPOSITION (4.16). For every ί£ -algebra A, the functorial morphism

is surjective.

Proof. In Proposition (1.4) of [U3] we have proved that for an ordinary dif-

ferential ring the universal Taylor morphism is universal among the Taylor

morphisms. The same argument allows us to prove it for general case. Let / ^

%jι/χ(A) and g G }iomκ{M , A) be the morphism corresponding t o / by the iso-

morphism

Diff-hom#Uf, A[[w, T]]) - Hom^. (M *, A),

which is the universality of the universal Taylor morphism. Then g : M —* A is a

# -infinitesimal deformation of the inclusion M —*%. Namely the reduction

Λf * -*A-
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of g mod N(A) is the inclusion map

It is sufficient to show that we can extend the corresponding morphism g : M -~*

A, which is an infinitesimal deformation of the inclusion morphism M C_» j£ t to

an infinitesimal deformation of the identity morphism Id : ί£ —*!£ . T o this end

it is sufficient to prove by Zorn's lemma the following

LEMMA (4.17). Let M be an abstract intermediate field between M and £ . If

the infinitesimal deformation g : M —* A is extended to an infinitesimal deformation

gr: M' —* A of the inclusion morphism M C_> <£ , then for any element u ^ !£ , we

can extend g'': M' ~* A to an infinitesimal deformation of the inclusion morphism

M'(u) (L->£\

Proof of Lemma. Maybe this is well-known: A field extension in characteris-

tic 0 is smooth. We briefly indicate here a proof for convenience of non-

specialists. If u is transcendental over M', then we take any element v ^ A (e.g.

v = u) such that

u = v mod N(A).

So we get an infinitesimal deformation h:M'[u]—*A of the inclusion morphism

MΊu] C - ^ * . Then we can extend h\M\_u\-*A to the quotient field M'(u) so

that we have an infinitesimal deformation k: M (u) —> A. In fact for 0 Φ a ^

hid) = a + w = α(l + a~ιw)

with w G N{A) and hence a~λw G N(A), is invertible in A:

h(a)~ — a~ι(\ — a~ w —{cΓ w)2 — •).

If u is algebraic over M, then let

r\u) = u + aλu -r a2u -r + am = 0,

Fix) being the minimal polynomial of u over if. We have to show that there ex-

ists an element υ G A such that u = v mod N(A) and such that

(4.18) υm + g'iajO1*-1 + gr{a2)vm~2 + + g'(am) = 0.

To solve (4.18) we may replace
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M! by M (alf a2,..., am)

a n d

A by 2x[g'(aϊ,g'(a2),...,g'(an)Ί,

which is a subring of A, so that the ring A is of finite type over £ and hence

N(A) is nilpotent. Say N(A)S = 0 for a positive integer s. We may assume that

N(A) = 0. For once we can solve (4.18) under the assumption that N(A) = 0,

then we can lift the canonical morphism

to an infinitesimal deformation

h2:M'[u]-*A/N(A)2

that extends the reduction

of g' mod N(A), then to an infinitesimal deformation

h3:M'[ύl-+A/N(A)3

that extends the reduction

of gr mod 7VG4) and so on by succesive approximation. If we take / > s, then the

reduction §Ί of gf mod N(Λ) = 0 is gf itself and

)is a desird extension of g''. Now if iVG4.) = 0, then setting

g(at) = a{ + Wj ̂  A with w] = 0 for 1 < i < in,

we look for υ = u + z with z = 0 satisfying (4.18):

(4.19) (M + *Γ + (a, + wj (u + ^Γ"1 + + (am + wj = 0.

(4.19) is equivalent to

(4.20) F'(u)z + wγu
m~λ + w2u

m~2 + - + wm = 0.

Since we are in characteristic 0 and since F is the minimal polynomial of u, we

have F'(u) Φ 0 and so F'(u) is invertible in £ hence in A. Thus we can solve
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(4.20)

Z = — \WχU H- W2U Ί- ' ' ' + Wm)Γ \U) .

For the functor 2F, similarly we have a morphism

(4.21) 9x/x-^9MIX%M,Ly

of functors on (Alg/L ). We show in §5, Corollary (5.12) that the morphism

(4.21) is surjective. More precisely the functorial morphism

(4.22) ® \ {)

is surjective for all £ -algebra A. We do not know a direct proof of the surjectiv-

ity of (4.22).

§5. Infinitesimal Galois group

We use the notations of §4. Let

be an infinitesimal deformation of the canonical morphism

LEMMA (5.1). The subalgebras /CSP) and A[[w]] ofA[[w, fllfΓ1] are linearly

disjoint over L .

Proof. Since the field of the constants of the differential field (J£, d/dt),

which is a differential subfield of (L [[t]][t ] , d/dt), is L and since / is a

^-morphism, the field of the constants of (/(J£), d/dt) is L . Hence if we consid-

er i4[[w;, t]][t ] as a differential algebra with derivation d/dt, then the lemma

follows from Lemma (1.1) of [U3].

COROLLARY (5.2). The subalgebras *£ and A\\_w\~\ ofA[[w, t]]^'1] are linearly

disjoint over L .

Proof This is a particular case of Lemma (5.1) if we take as / the canonical

morphism
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LEMMA (5.3). The following conditions on an element z of Q[£y A[[w]]] are

equivalent:

(1) z is divisible by w in Q[i?, i4[[w/]]]

(2) z is divisible by w inA[[w, t]] [t~l], which is an over-ring o/QLS?, Λ[[w]]].

Proof Since the condition (1) evidently implies (2), we assume the condition

(2) and prove (1). Let z = z{w, t) e Q[2, A[[w]]]. It follows from Corollary

(5.2)

So we can write

(5.3.1) z(w, f) = Σ a{{w)z{{w, f)

with

at(w) G i 4 [ M ]

and

for 1 < i < v such that the z{{w, t) ^ £ are linearly independent over L . It fol-

lows from (2) that there exists z' ^ A\lw> t\][t~ ~\ such that

(5.3.2) z(w, t) = Σ at(w)zt(w, t) = wz'(w, t).

Differentiating successively by t, we get

(5.3.3) Σ ai(w)dszt(w9 t) /dts e wA[[w, t]] [Γ 1 ]

for 0 < s < v — 1. Since the z^w, t) are linearly independent over L , which is

the field of the constants of the differential field (iϊ\ d/dt), the Wronskian

I δ\(w, t) 1 ^ , ^ e S?

is not equal to 0. So the Wronskian is a unit in field £ hence in -A[[w, f]][t ]. So

considering the α,- as unknowns, we can solve the linear equation (5.3.3) by Cram-

er's rule to conclude

at(w) e wA[[w, t]] [t~ι] for 1 < i < v.
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Hence a^w) e wA[[w]] for 1 < i < v and consequently

V

z(w, t) = Σ ai(w)zi(wf t)
ι = l

is divisible by w in Q[ί£, A[[w]]]. So the condition (1) is satisfied.

COROLLARY (5.4) TO THE PROOF. Let f be an infinitesimal deformation of the cano-

nical morphism

g^L'iiw, tmr1].

The folloiυing conditions on an element z ofQ[f(£), ; 4 [ M ] ] are equivalent:

(1) f(z) is divisible by w in Q [ / ( # ) , A[[w]]]

(2) f(z) is divisible by A[[w, t]][t~ ], which is an over-ring of

Let

be an infinitesimal deformation of the canonical morphism

/ : 3?->#[[«;, fllEΓ1].

Then if follows from Lemma (4.5) that there exists

Φ= (φ^w), <p2(w),..., φn(u>)) e ΓnLΛA)

such that

f(Y) = YiiΦiw), t) for 1 < i < m.

Let us set

Φ = (wλ + <p[(w), w2 + φ'2(w),..., wn + φf

n(w))

and

so that

Φ = Id + Φr.

We denote
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for / = (lv l2,..., ln) e Nw.

LEMMA (5.5). For any positive number v, there exists a number N such that if

11 > N for every 1 < i < n, then

Φfl G (wY.

Proof Lemma follows from the fact that the constant terms of the φt{w) are

nilpotent.

LEMMA (5.6). We have a # Θ z# A[[w]]-isomorphism

sending z G £ tof(z). Here

is the completion of

with respect to the (1 ® w)-adic topology and

is the closure of

in Q[[w, f]] [t ] wiht respect to the (w)-adic topology.

Proof By Lemma (5.1) we have a $ί ΘL# A[[w]]-isomorphism

Now the lemma follows Lemma (5.4)

LEMMA (5.7). We have
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Proof. We have

f(Yt) = r,(Φ(α/), ί) for \<i<m.

Since the F^w, t) are in

i ' [ [ w , tlΠΓ 1]

and since

Φ = id + Φ' with Φ ' = (^(w), p 2 (uθ,. . . , <?;») e ( J V U ) [ M ] ) W ,

it follows from the Taylor formula

(5.7.1) /(F,) = Ff(Φ(tί0, ί) = F,(Id + Φ', /) = Σ Ίj^γΦ'1

so that /(F<) G Q[ί?, A[[M;]]] by Lemma (5.5). So if we set 3? = L*{Ylf F2,. . .,

FJ.then

Let 0 =£ z G ^. Then it follows from (5.7.1) and the proof of Lemma (5.5) that we

can write f(z) = z + υ, where v is an element of the ideal of i4[[w, /]][/ ]

generated by N(A) [[w]] and

f(z)~ι = (* + v)~ι = z~\\ +

Therefore since £ is the quotient field of $,

hence

and

For the same reason, we get the opposite inclusion

A[[w]]] 3 Q[ί?, AIM]].

By Lemmas (5.6) and (5.7) we have # Θi* ^4[[«/]] -isomorphism

?, A[[wΏΊ

The above determined # ®i# J4[[W]]-automorphism
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of {d/dw, 9/9*}-differential algebra £ ®z# A [ M ] will be denoted by/*. It fol-

lows from the construction that the composite morphism

is / where the first morphism is the canonical morphism «$?—• JS? ® 1, the second

is /* and the last is the morphism in Lemma (5.6), / in the lemma being the cano-

nical morphism

DEFINITION (5.8). We define a group functor

Inf-diff-bir^Z,: (Alg/L *) -> (Grp)

by

Inf-diff-bir^Z,C4) = {/| / is a differential K ®L* A[[w]]-automorphism of

£ ®z# A[[M;]] that is continuous with respect to the

(1 ® w)-adic topology and congruent to the identity

modulo SB ®L# N(A) [[w]]}

for an L -algebra A.

LEMMA (5.9). The group functor

Inf-diff-bir^L: (Alg/L *) -^ (Grp)

is a Lie-Ritt functor.

Proof We show that there exists an isomorphism

Inf-diff-bir^L — ^ £/:K

of functors. In fact let A be an L -algebra. By Lemma (5.6), £ ®L# A[[w]] is iso-

morphic to Q[5?, A t M ] ] which is a subalgebra of A[[w, t]] [t'1]. So /

Inf-diff-bir(i4) defines an infinitesimal deformation

<e-><e®L, A[[w\] + SB®L» A[[W]] -

where the first morphism

is the canonical morphism of identifying *£ with ί£ ® 1. We denote this deforma-

tion by / ' . So we get a functorial map
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Inf-diff-birO4) ^

which sends an automorphism / t o / ' . We have defined above the functorial map-

ping

&2/x(A) — Inf-diff-bir 04), h^h^.

We have (/*)' = / for every / G SF£/χ(A) by definition. Since £ topologically

generates the algebra £ ® L

# A[[w\] over $ί ®L# A[[w]] and since the two

$( ®L# A[[«;]]-automorphisms / and (/ ')# coincide on i£, we have (/ ')# —/for

every

/ e Inf-diff-bir 04).

We know that every element / ^ ^>/#04) is given by some Φ ̂  ΓML* 04) :

/(Yiitv, t)) = Yt(Φ(w), t) for 1 < i < m.

Now if we take an element

Φ= (φ^w), φ2(w),..., φn(w)) e ΓnLAA),

then there exists an infinitesimal deformation that sends Yj(w> t) to Y^Φiw)y f) if

and only if the following condition is satisfied:

(5.9.1) FiY.iΦ, t), Y2(Φ, £ ) , . . . , YJΦ, t)) = 0

for every differential polynomial

F(ZU Z2,...,Zm)

with coefficients in $( with respect to the derivations {d/dwy d/dt} such that

F(YV Y2,..., YJ = 0.

We notice here that not only the Z, but also the partial derivatives da+βZi/

dw dt are involved in the differential polynomial

F(Zlf Z 2 , . . . , Zm).

Considering Φ as a set of unknown functions in w, we expand the right side of

(5.9.1) as a power series in t:

F(YX(Φ9 t), Y2(Φy f ) , . . . , Ym(Φ, t)) = Σk^^Fk(wt Φ)t\

where Fk(w, Φ) e L \\w\\{{Φ}} if we use the notation of §1. So we have

proved that
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Φ= (φx{M>), φ2(w),..., φn{w)) €= ΓnL>{A)

is in

Inf-diff-bir*LC4)

if and only if Fk(wf Φ) = 0 for every integer k and every differential polynomial

F with coefficients in # such that F{YV Y2,. . ., Ym) = 0. To complete the proof

of the lemma, we have to show

J(ψoφ)* = JΨ*° JΦ*

for any two such transformations Φ, Ψ ̂  ΓnΓi (A). In fact writing Φ = Id + Φ\

we have

, t) = 7f(Id + Φ',t)= Σ }r^Ύ φfl

and so

/ ) = Σ

by definition. Hence

since /y* is continuous

since/y* is a differential morphism, we h a v e / ^ ( 9 Y{/dw ) = dιY{(Ψ(w), t) /dw

= Σ Tj " ' — 0 Φ'Z

by the Taylor formula

= Σ^Γ-

\*i'

as wanted. So the lemma is proved.

Let A be an L -algebra, / ^ ^
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/ϊelnf-diff-birxL(Λ).

So

is a differential ^-algebra morphism and h is a $( <S)L# A[[w]]-automorphism of

the differential algebra

We denote by hf the composite morphism

* £ ®L, A[[w\] ^ QlfW, AίMΏ <z A[[w,

where the first morphism is the canonical morphism and the third is the isomorph-

ism of Lemma (5.6). Then hf ^ 0F£/χ(A). Hence

Inf-diff-bir̂ L(Λ) * &<e/χ(A)-*&£/χ(A) (hj)^hf

is an operation of the group functor Inf-diff-bir^Z, on the functor ##/#.

THEOREM (5.10). The Lie-Ritt functor Inf-diff-bir^L operates on the functor

(Inf-diff-bir^L, HFg/x) is a principal homogeneous space.

Proof We have seen above the first assertion. So it remains to prove the

second. Let i'• : £—>A[[w, t]][t ] be the canonical morphism. If we consider the

morphism

k : Inf-diff-biΓjLCA) — 3F£/X(A) f*->fi,

then k is injective by Lemma (5.6) and since h^i = h for any h ^

surjective.

We have seen in §4 that every result for the infinitesimal deformation functor

^<£/$; °* t n e canonical morphism £ —• L [[w, t]][t~ ] holds for the infinitesimal

deformation functor 3>/;# of the universal Taylor morphism ίP—• J? ίίw, T\] ex-

cept for the surjectivity of the morphism (4.22).

THEOREM (5.11). The restriction

(Inf-diff-bir^L) ®L. £*

of the Lie-Ritt functor Inf-diff-bir^L on the category {Alg/ίE ) operates on the

functor %g/:K and (Inf-diff-bir#L, 3>/#) is a principal homogeneous space.
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Proof. We notice that if we replace the canonical morphism £ —* L [[w,

t]][t ] by the universal Taylor morphism !£ —* ϊ£ [[w, T\], then Lemmas (5.1),

(5.3), (5.5), (5.6), (5.7) and Corollaries (5.2), (5.3) hold. Now the theorem follows

from the proof of Theorem (5.10).

COROLLARY (5.12). The functoήal morphism (4.22) is surjective for all £ -

algebra A.

Proof The Corollary follows from Theorems (5.10), (5.11) and Proposition

(4.16).

We had better introduce a new notation to indicate the infinitesimal Galois

group.

DEFINITION (5.13). We call the Lie-Ritt functor Inf-diff-bir^Z, the in-

finitesimal Galois group of the ordinary differential field extension L/K and we

denote it by Inf-gal (L/iD.

THEOREM (5.14). Let L/K be an ordinary differential field extension satisfying

the condition (F.C) and L ^ M ^ K be a differential intermediate field. Then there ex-

ists canonical morphism

lnf-gal(L/K) -> Inf-gal(M/iO ®M> ^

such that

Inf-gaiα/iO 04) -> Inf-gal(M/K) ®M> L" (A) = Inf-gaUL/iD 04)

is surjective for every ί£ -algebra A.

Proof The theorem follows from Proposition (4.16).

If L/K is a strongly normal extension with Galois group G, what is the in-

finitesimal Galois group Inf-gal (L/K)? The answer is that Inf-gal (L/K) is

almost G.

THEOREM (5.15). If L/K is a strongly normal extension with Galois group G,

then we have

Inf-gal (L/K) - Go.

Here G denotes the formal group associated with algebraic group scheme G.
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Proof. We denote the field C# of constants of the differential field Ή by <6. It

follows from Theorem (3.14) that the extension £ /$( is a strongly normal exten-

sion with Galois group G<g. So by Theorems (2.13), (3.10) in [U3] generalized to

partial case, there exists a model ΘC of the differential field extension # / # such

that Gft operates on 9C in such a way that

G% x%9C = Gx Xχ9C->9C Xχ3C (g,x) ^ (gx9x)

is an isomorphism of schemes with derivations. In fact in the proof of Theorem

(3.14), we constructed 9C as

Let A be an L -algebra and

be an infinitesimal deformation of the canonical morphism

so t h a t / :ί£—*A[[w, t]][t ] is a morphism of differential algebras. The morph-

ism / defines a differential morphism

f:£®L« A[[w]]-+A[[w, t]] [Γ1] (a ® b ^f(a)b)

and consequently a morphism

α : Spec A[[w, t]] [Γ 1 ] >£# A[[ιι;]] = 9Γ

of schemes with derivations. In particular if we take the trivial deformation

A[[w, tllίΓ1]

as /, then we get

and

~ca: Spec A[[w, ί\] [Γ 1 ] - 9Γ

Now we denoting % ®Lt A[[w]] by 81 so that

the morphism
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Cfa, ~ca) : Speci4[[w;, ί]][ί~1] —• X% χ%9C%

composed with the projection

gives an A[[M;, t\] [t ]-valued point

^0:SpecA[[w;, t\][Γι]-*G^

which is a morphism of schemes with derivations. So since G% is a scheme with

the trivial derivation, the i4[[w;, t]][t ]-valued point g0 factors through an

^-valued point

g : SpecA—• G^.

Since / is an infinitesimal deformation of the canonical morphism, the morphism £ 0

is, modulo N(A) [[w, t]] [t ], congruent to the constant morphism

SpecAίίw, rt][Γx]-^G^

that maps Spec A[[w, t]] [t ] to 1 of G^. Namely the composite morphism

SpecA[[w, ilUΓ^/NVOttw, ί]][Γx] — SpecA[[w, tmt'^^G^

of the natural morphism and £ 0 is the morphism that maps

SpecAllw, tmrι]/N(A)[[w9 t]][Γι]

to 1. So g is also, modulo N(A), congruent to the constant morphism Spec A

Gcβ that maps Spec A to 1 of G%. We notice here the ring extensions

Since G operates on 9C, the A-valued point g defines a ΰί ®<βA-automorphism φg

of the scheme

of scheme with derivations:

Ψg :

By base change, we get an automorphism
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It follows from the construction of φg that we have

ψg°C =f .

Since the reduction φg ®AA/N(A) of φg is the identity automorphism of X^® A>

the reduction φg 0 A A /N(A) is the identity automorphism of 9£χ®L# A[[w]] ®A

A/N(A). Let Spec ^ be an affine open set of the ^-scheme 9C. So 91 is a subring

of % such that the quotient field Q(90 is £ and closed under the set of deriva-

tions. Since

ψg®AA/N(A)

is the identity and since

is homeomorphic to

the automorphism φg leaves the open set

Spec 91 ®χ ( # <g)I# A[[w]]) = Spec 3? ®L#

of ^ invariant. For v ^ ^, we have

0*(t;) = t; + v e 3? ®z# A[[«;]]

with nilpotent 2λ In particular if 0 Φ v ^ 91, then

0^ (v) = v + zJ = f (1 + υ~ ϋ)

is invertible and is an element of 2E ®L# A [ M ] . Thus we get a ^-isomorphism

such that c = φg °f . We have thus proved that ^#/#(A) is a principal

homogeneous space of

G^(Λ) = {/e G^(A) | / Ξ lmodiV(A)}.

So the functor 2P:

£/^ is a principal homogeneous space of Gcg restricted on the

category (Alg/L ), which is nothing but GL* . The theorem now follows if we

notice that the # ®L# A[[w]]-automorphism

φg : ίP <8>I# A [ M ] — ί? Θ z # Aίίw]]

can be extended uniquely to a continuous # 0 L # A[[w]]-automorphism of the
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completion £ ® L

The invariant Inf-gal(Z,/iO ignores algebraic extensions and extensions

generated by constants.

THEOREM (5.16). Let L/K be an ordinary differential field extension satisfying

the condition (F.C) in §3 and L ^> M 3 K be a differential intermediate field.

(1) If the field L is algebraic over M, then Inf-gal(L/iD is canonical isomor-

phic to I n f - g a i α / 2 0 ®M> L".

(2) // the field L is generated by constants over M, then Inf - gal (L/K) is

canonically isomorphic to Inf-gsΛ(L/K) ®M> L .

Proof. The canonical morphism

(5.17) I n f - g a i α / i O — Inf-gaKL/iD ^ ^

is surjective by Theorem (5.14). It follows from the construction of J? and # that

if the field L is algebraic over K, then the field £L/K is algebraic over £M/K. So by

the proof of Lemma (4.5), the morphism (5.17) is injective. This proves the first

assertion of the theorem. Let us now assume that the field L is generated by con-

stants over M. The field of constants of the differential subfield £M/K of the ordin-

ary differential field (M* [ M Π Γ 1 ] , d/dt) is M* . Similarly the field of constants

of the differential subfield £L/K of the ordinary differential field (L [[i\][t~],

d/dt) is L V We consider (M* [[fl] [ Γ 1 ] , d/dt) as a differential subfield of

(L* [ M H Γ 1 ] , d/dt) and we apply Lemma (1.1) to <βL/κ and £M/K so that £M/K

and L are linearly disjoint over M . Hence

(5.18) * k

Since the field L is generated by constants over M, the subfield £M/K.L of the dif-

ferential field L ίίf\][t~ ] contains i(L). As the subfield £M/K.L of the differen-

tial field L [[ίΠU" ] is closed under the set of derivations and contains i(L), we

have

(5.19) £M/K.L* = <£UK.

(5.20) £UK

Similarly we have

(5.21) * M

It follows in particular from (5.20) and (5.21) that the field !£L/K is generated over
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•ML/κ by the canonical image of £M/K. So the canonical morphism (5.18) is injective

and the second assertion of the theorem is proved.

COROLLARY (5.22). Let L/K be an ordinary differential field extension satisfying

the condition (F.C) in §3.

(1) If the field L is algebraic over K, then we have Inf-gal(L/iO = 0.

(2) If the field L is generated by constants over K by constants, then we have

Inf-gaiα /K) = 0.

Proof. The corollary is a particular case of the theorem where the intermedi-

ate field M coincides with K.
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