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Abstract

For n = 1, 2, 3, . . . let S n be the sum of the first n primes. We mainly show that the sequence an =
n
√

S n/n (n = 1, 2, 3, . . .) is strictly decreasing, and moreover the sequence an+1/an (n = 10, 11, . . .) is
strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
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11J99, 11P83.
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1. Introduction

For n ∈ Z+ = {1, 2, 3, . . .} let pn denote the nth prime. The unsolved Firoozbakht
conjecture (see [R, p. 185]) asserts that

n√pn >
n + 1√pn+1 for all n ∈ Z+,

that is, the sequence ( n√pn)n>1 is strictly decreasing. This implies the inequality
pn+1 − pn < log2 pn − log pn + 1 for large n, which is even stronger than Cramér’s
conjecture pn+1 − pn = O(log2 pn). Let Pn be the product of the first n primes. Then
Pn < pn

n+1 and hence Pn+1
n < Pn

n+1. So the sequence ( n√Pn)n>1 is strictly increasing.
Now let us look at a simple example not related to primes.

E 1.1. Let an =
n√n for n ∈ Z+. Then the sequence (an)n>3 is strictly decreasing,

and the sequence (an+1/an)n>4 is strictly increasing. To see this we investigate the
function f (x) = log(x1/x) = (log x)/x with x > 3. As f ′(x) = (1 − log x)/x2 < 0, we
have f (n) > f (n + 1) for n = 3, 4, . . . . Since

f ′′(x) =
2 log x − 3

x3
> 0 for x > 4.5,
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the function f (x) is strictly convex over the interval (4.5, +∞) and so

2 f (n + 1) < f (n) + f (n + 2) (that is, a2
n+1 < anan+2) for n = 5, 6, . . . .

The inequality a2
5 < a4a6 can be verified directly.

A sequence (an)n>1 of nonnegative real numbers is said to be log-convex if a2
n+1 6

anan+2 for all n = 1, 2, 3, . . . . Many combinatorial sequences (such as the sequence of
Catalan numbers) are log-convex; the reader may consult [LW] for some results on
log-convex sequences.

For n ∈ Z+ let S n =
∑n

k=1 pk be the sum of the first n primes. For instance,

S 1 = 2, S 2 = 2 + 3 = 5, S 3 = 2 + 3 + 5 = 10, S 4 = 2 + 3 + 5 + 7 = 17.

Recently the author [S] conjectured that for any positive integer n the interval
(S n, S n+1) contains a prime. As S n < npn+1 for all n ∈ Z+, the sequence (S n/n)n>1

is strictly increasing.
In the next section we will state our theorems involving the sequence (an)n>1 with

an =
n√S n/n, and pose three related conjectures for further research. Section 3 is

devoted to our proofs of the theorems.

2. Our results and conjectures

T 2.1. The sequences ( n√S n)n>2 and ( n√S n/n)n>1 are strictly decreasing.

R 2.2. Note that S n/n is just the arithmetic mean of the first n primes. It is
interesting to compare Theorem 2.1 with Firoozbakht’s conjecture that ( n√pn)n>1 is
strictly decreasing.

For α > 0 and n ∈ Z+ define

S (α)
n =

n∑
k=1

pαk .

We actually obtain the following extension of Theorem 2.1.

T 2.3. Let α > 1 and n ∈ Z+ with n >max{100, e2×1.348α+1}. Then

n

√
S (α)

n

n
>

n + 1

√
S (α)

n+1

n + 1
(2.1)

and hence
n
√

S (α)
n >

n + 1
√

S (α)
n+1. (2.2)

R 2.4. In view of Example 1.1, (2.1) implies (2.2) if n > 3. We conjecture
that (2.1) holds for any α > 0 and n ∈ Z+.
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Note that be2×1.348+1c = 40 and we can easily verify that

n

√
S n

n
>

n + 1

√
S n+1

n + 1
for every n = 1, . . . , 99.

So Theorem 2.1 follows from Theorem 2.3 in the case α = 1.

C 2.5. For each α ∈ {2, 3, 4}, the sequences n

√
S (α)

n

n


n>1

and

(
n
√

S (α)
n

)
n>1

are strictly decreasing.

P. Observe that

be2×1.3482+1c = 102, be2×1.3483+1c = 364, be2×1.3484+1c = 2005.

In light of Theorem 2.3 and Example 1.1, it suffices to verify that

n

√
S (α)

n

n
>

n + 1

√
S (2)

n+1

n + 1

whenever α ∈ {2, 3, 4} and n ∈ {1, . . . , be2×1.348α+1c}. This can be easily done via
computer. �

The following theorem is more sophisticated than Theorem 2.3.

T 2.6. Let α > 1. Then the sequence(
n + 1
√

S (α)
n+1/(n + 1)

/
n
√

S (α)
n /n

)
n>N(α)

is strictly increasing, where

N(α) = max
{
350000, de((α+1)21.22α+1+(α+1)1.2α+1)/αe

}
. (2.3)

C 2.7. All the sequences(
n + 1
√

S n+1/(n + 1)
/

n
√

S n/n
)

n>10
,

(
n + 1
√

S n+1

/
n
√

S n

)
n>5

,(
n + 1
√

S (2)
n+1/(n + 1)

/
n
√

S (2)
n /n

)
n>13

,

(
n + 1
√

S (2)
n+1

/
n
√

S (2)
n

)
n>10

,(
n + 1
√

S (3)
n+1/(n + 1)

/
n
√

S (3)
n /n

)
n>17

,

(
n + 1
√

S (3)
n+1

/
n
√

S (3)
n

)
n>10

,(
n + 1
√

S (4)
n+1/(n + 1)

/
n
√

S (4)
n /n

)
n>35

,

(
n + 1
√

S (4)
n+1

/
n
√

S (4)
n

)
n>17

are strictly increasing.
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P. For N(α) given by (2.3), via computation

N(1) = 350000, N(2) = 974267, N(3) = 3163983273

and
N(4) = 2271069361863763.

Via computer we can verify that

n + 1
√

S (α)
n+1/(n + 1)

n
√

S (α)
n /n

<

n + 2
√

S (α)
n+2/(n + 2)

n + 1
√

S (α)
n+1/(n + 1)

for all α ∈ {1, 2, 3, 4} and n = N0(α), . . . , N(α) − 1, where

N0(1) = 10, N0(2) = 13, N0(3) = 17, N0(4) = 35.

Combining this with Theorem 2.6, we obtain that(
n + 1
√

S n+1/(n + 1)
/

n
√

S n/n
)

n>N0(α)

is strictly increasing for each α = 1, 2, 3, 4. Recall that (
n + 1√

n + 1/ n√n)n>4 is strictly
increasing by Example 1.1. So ( n + 1√S n+1/

n√S n)n>N0(α) is strictly increasing for any
α ∈ {1, 2, 3, 4}. It remains to check that

n + 1
√

S (α)
n+1

n
√

S (α)
n

<

n + 2
√

S (α)
n+2

n + 1
√

S (α)
n+1

for all α ∈ {1, 2, 3, 4} and n = n0(α), . . . , N0(α) − 1, where n0(1) = 5, n0(2) = n0(3) =

10, and n0(4) = 17. This can be easily done via computer. �

We conclude this section by posing three conjectures.

C 2.8. The two constants

s1 =

∞∑
n=1

1
S n

and s2 =

∞∑
n=1

(−1)n

S n

are both transcendental numbers.

R 2.9. Our computation shows that s1 ≈ 1.023476 and s2 ≈ −0.3624545778.

If p and p + 2 are both primes, then they are called twin primes. The famous twin
prime conjecture states that there are infinitely many twin primes.

C 2.10. (i) If {t1, t1 + 2}, . . . , {tn, tn + 2} are the first n pairs of twin
primes, then the first prime tn+1 in the next pair of twin primes is smaller than
t1+1/n
n , that is, n√tn >

n + 1√tn+1.
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(ii) The sequence (n + 1√Tn+1/
n√Tn)n>9 is strictly increasing with limit 1, where Tn =∑n

k=1 tk.

R 2.11. Via Mathematica the author has verified that n√tn >
n + 1√tn+1 for all n =

1, . . . , 500000, and n + 1√Tn+1/
n√Tn <

n + 2√Tn+2/
n + 1√Tn+1 for all n = 9, . . . , 500000. Note

that t500000 = 115438667.

Recall that a partition of a positive integer n is a way of writing n as a sum of
positive integers with the order of addends ignored. Also, a strict partition of n ∈ Z+

is a way of writing n as a sum of distinct positive integers with the order of addends
ignored. For n = 1, 2, 3, . . . we denote by p(n) and p∗(n) the number of partitions of n
and the number of strict partitions of n respectively. It is known that

p(n) ∼
eπ
√

2n/3

4
√

3n
and p∗(n) ∼

eπ
√

n/3

4(3n3)1/4
as n→ +∞

(see [HR] and [AS, p. 826]) and hence limn→∞
n
√

p(n) = limn→∞
n
√

p∗(n) = 1. Here we
formulate a conjecture similar to Conjecture 2.10.

C 2.12. For n ∈ Z+ let

q(n) =
p(n)

n
, q∗(n) =

p∗(n)
n

, r(n) =
n
√

q(n) and r∗(n) =
n
√

q∗(n).

Then the sequences (q(n + 1)/q(n))n>31 and (q∗(n + 1)/q∗(n))n>44 are strictly
decreasing, and the sequences (r(n + 1)/r(n))n>60 and (r∗(n + 1)/r∗(n))n>120 are strictly
increasing.

R 2.13. Via Mathematica we have verified the conjecture for n up to 105. In
light of Example 1.1, Conjecture 2.12 implies that all the sequences( p(n + 1)

p(n)

)
n>25

,
( p∗(n + 1)

p∗(n)

)
n>32

,
(

n
√

p(n)
)

n>6
,

(
n
√

p∗(n)
)

n>9

are strictly decreasing, and that the sequences (n + 1
√

p(n + 1)/ n
√

p(n))n>26 and
(n + 1

√
p∗(n + 1)/ n

√
p∗(n))n>45 are strictly increasing. The fact that (p(n + 1)/p(n))n>25 is

strictly decreasing was conjectured by Chen [C] and proved by Janoski [J, pp. 7–23].

3. Proofs of Theorems 2.3 and 2.6

L 3.1. Let α > 1 and n ∈ {2, 3, . . .}. Then

S (α)
n > 2α +

nα+1 logα n
α + 1

(
1 −

α

(α + 1) log n

)
. (3.1)

P. It is known that pk > k log k for k = 2, 3, . . . (see [Ro] and [RS, (3.12)]). Thus

S (α)
n − 2α =

n∑
k=2

pαk >
n∑

k=2

(k log k)α >
n∑

k=2

∫ k

k−1
(x log x)α dx =

∫ n

1
(x log x)α dx.
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Using integration by parts,∫ n

1
(x log x)α dx =

xα+1

α + 1
logα x

∣∣∣∣∣n
x=1
−

∫ n

1

( xα+1

α + 1
·
α(log x)α−1

x

)
dx

=
nα+1

α + 1
logα n −

α

α + 1

∫ n

1
xα(log x)α−1 dx

>
nα+1

α + 1
logα n −

α

α + 1

∫ n

1
xα(log n)α−1 dx

>
nα+1

α + 1
logα n −

αnα+1

(α + 1)2
(log n)α−1.

Therefore (3.1) holds. �

L 3.2. Let α > 1 and n ∈ Z+ with n > 55. Then

log S (α)
n > (α + 1) log n. (3.2)

P. Note that 54 < e4 < 55 6 n. As logα n > 4α = (2α)2 > (α + 1)2, by Lemma 3.1

S (α)
n >

nα+1 logα n
α + 1

(
1 −

α

α + 1

)
=

nα+1

(α + 1)2
logα n > nα+1

and hence (3.2) follows. �

P  T 2.3. It is known that

pm < m(log m + log log m)

for any m > 6 (see [RS, (3.13)] and [D, Lemma 1]). If m > 101, then

log log m
log m

6
log log 101

log 101
< 0.3314

and hence pm < 1.3314m log m. As n + 1 6 1.01n,

log(n + 1)
log n

= 1 +
log((n + 1)/n)

log n
6 1 +

log 1.01
log n

6 1 +
log 1.01
log 100

< 1.0022.

Therefore

pn+1 < 1.3314(n + 1) log(n + 1) < 1.3314 × 1.01n × 1.0022 log n < 1.348n log n.
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Combining Lemmas 3.1 and 3.2, we see that

S (α)
n

( n + 1
n1+1/n

n
√

S (α)
n − 1

)
= S (α)

n (e(log S (α)
n )/n+log(n+1)−(1+1/n) log n − 1)

> S (α)
n (e(log S (α)

n −log n)/n − 1) > S (α)
n (e(α log n)/n − 1)

>
nα+1 logα n
α + 1

(
1 −

α

(α + 1) log n

)
α log n

n

=
α

α + 1
(n log n)α

(
log n −

α

α + 1

)
>

(n log n)α

2
(log n − 1).

As (log n − 1)/2 > 1.348α, from the above

(n + 1)
(S (α)

n

n

)1+1/n

− S (α)
n > (1.348n log n)α > pαn+1

and hence (S (α)
n

n

)(n+1)/n

>
S (α)

n+1

n + 1
which yields (2.1). As mentioned in Remark 2.4, (2.2) follows from (2.1). This
concludes the proof. �

P  T 2.6. Fix an integer n > N(α). For any integer m > 350001,

log log m
log m

6
log log 350001

log 350001
< 0.1996

and hence

pm < m(log m)
(
1 +

log log m
log m

)
< 1.1996m log m.

As n > 350000,

log(n + 1)
log n

= 1 +
log(1 + 1/n)

log n
6

log 350001
log 350000

< 1 + 10−6.

Therefore

pn+1 < 1.1996(n + 1) log(n + 1)

< 1.1996 ×
350001
350000

n × (1 + 10−6) log n < 1.2n log n.

Since log n > log 350000 > 1/0.078335, Lemma 3.1 implies that

S (α)
n >

nα+1 logα n
α + 1

(1 − 0.078335) >
nα+1 logα n

1.085(α + 1)
.
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Therefore

q(α)
n :=

pαn+1

S (α)
n

<
cα
n
, (3.3)

where cα = 1.085(α + 1)1.2α.
By calculus,

x −
x2

2
< log(1 + x) < x for x > 0

and
−x − x2 < log(1 − x) < −x for 0 < x < 0.5.

Thus

log
S (α)

n+1/(n + 1)

S (α)
n /n

= log
(
1 −

1
n + 1

)
+ log(1 + q(α)

n ) < −
1

n + 1
+ q(α)

n

and

log
S (α)

n+2/(n + 2)

S (α)
n /n

> log
(
1 −

2
n + 2

)
+ log(1 + 2q(α)

n )

> −
2

n + 2
−

4
(n + 2)2

+ 2q(α)
n − 2(q(α)

n )2.

Hence

D(α)
n :=

2
n + 1

log
S (α)

n+1

n + 1
−

1
n

log
S (α)

n

n
−

1
n + 2

log
S (α)

n+2

n + 2

<
2

n + 1

(
log

S (α)
n

n
−

1
n + 1

+ q(α)
n

)
−

1
n

log
S (α)

n

n

−
1

n + 2

(
log

S (α)
n

n
−

2
n + 2

−
4

(n + 2)2
+ 2q(α)

n − 2(q(α)
n )2

)
=
−2 log(S (α)

n /n)
n(n + 1)(n + 2)

−
2

(n + 1)2
+

2
(n + 2)2

+
4

(n + 2)3
+

2q(α)
n

(n + 1)(n + 2)
+

2(q(α)
n )2

n + 2
.

Combining this with (3.2) and (3.3) and noting that (350001/350000)n2 > n(n + 1),

D(α)
n <

−2α log n
n(n + 1)(n + 2)

−
2(2n + 3)

(n + 1)2(n + 2)2
+

4
(n + 2)3

+
2cα

n(n + 1)(n + 2)
+

2c2
α

n2(n + 2)

<
−2α log n

n(n + 1)(n + 2)
−

4
(n + 1)(n + 2)2

+
4

(n + 1)(n + 2)2

+
2cα + 2(350001/350000)c2

α

n(n + 1)(n + 2)

=
2((350001/350000)c2

α + cα − α log n)
n(n + 1)(n + 2)

.
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Note that

350001
350000

c2
α + cα =

350001
350000

× 1.0852(α + 1)21.22α + 1.085(α + 1)1.2α

< 1.2(α + 1)21.22α + 1.2(α + 1)1.2α 6 α log N(α) 6 α log n.

So we have D(α)
n < 0 and hence

n + 1
√

S (α)
n+1/(n + 1)

n
√

S (α)
n /n

<

n + 2
√

S (α)
n+2/(n + 2)

n + 1
√

S (α)
n+1/(n + 1)

as desired. �
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