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1. It is convenient to begin with a brief statement of the nota-
tion which will be used throughout this paper.

Let k be any positive number and let

SJ*»= S Af_vav,

where A{® is the coefficient of xn in the formal expansion of
(1 — z ) - * - \ and let

Then the series 2 an is said to be summable- (C, k) if 2 a<f> is con-
vergent, that is, if cf> tends to a limit, and absolutely summable
(C, k), or summable | C, k \, if Sa® is absolutely convergent.

The symbols S(Mp, c^p, a(^p denote respectively the values of
S^, c<-® and o® for the series 2wpan. Whenever p and p occur it is
to be assumed that p is a positive integer and that 0 < p < 1.

2. This paper may be regarded from one point of view as a
continuation of a paper1 of mine which appeared recently in these
Proceedings. In that paper it was shown that the two conditions

(1) cW = a + o{n-»),
(2) Sfi 'd , is summable (C, p),

were closely connected. When p = 1 they are equivalent and when
0 < p < 1 the first is slightly more general than the second. For
absolute summability we naturally expect the analogues of (1) and
(2) to be

(4) 2 | An^cjf' — s}|< oo,

(5) 2 np an is summable | C, p \.

1 J. M. Hyslop, Proc. Edinburgh Math. Soc. (2), 5 (1938), 182-201.
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I do not propose to discuss here whether or not the theorems of my
former paper carry over without material alteration to the absolute
summability case, but am concerned with another condition allied to
(4) and (5), namely

(6) S n? | a™ | < oo .

It will be shown in fact that (5) and (6) are equivalent for 0 < p < 1
and that modifications are necessary in the case p = 1.

Dr Bosanquet, to whom I communicated this result, has pointed
out that its analogue for ordinary summability, at any rate in the
case 0 < p < l , can be deduced from a theorem of Andersen1, the
analogue of (6) being of course

(3) Sn p o® is convergent.

3. Several lemmas will be required for the proofs of the main
theorems.

LEMMA 1. If k > 0 we have

This result is well known and easy to prove.

LEMMA 2. We have2 formally, for k > 0,

£ nAfafxn = (1 - x)-* S nanx
n.

«=1 n=0

LEMMA 3. / / r is any real member and p is a positive integer3

V^IJ.
 n~" "~* '' (7=o \ q

where

LEMMA 4. i / O ^ ( j < & - f l and i / S na \ a^ \ is convergent then so also

is Z n" | o^+S) | , for every S > 0.

This lemma reduces simply to the theorem of consistency for
absolute Cesaro summability in the case when a = 0.

1 A. F. Andersen, Proc. London Math. Soc. (2), 27(1928), 39-71.
2 E. Kogbefclianbz, Bull, des Sciences Math. (2), 49 (1925), 234-256.
3 See A. F. Andersen, Studier over Cesaro's Summabilitetsmetode (Copenhagen, 1921),

42, and J. M. Hyslop, loc. cit., 187.
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We have, from Lemma 2,

a«*+8) = S A«lla

whence1, taking § < 1, as we obviously may,

2 7i" |o^+ s ) |< A 2 (»+ l )—*-« - i | 2
n = 1 n = 1 i' = l

| a!,*'| 2 (n+l)"-*-«-i(n-v+ I)8"1

00 f "

i v|oi,*>| f jr

4. We proceed now to obtain the equivalence theorem.

THEOREM 1. / / the series S w ^ a ^ ' l is convergent then the series
S np an is summable \C, p\.

From Lemma 2 we have

n

n

--= 2

l

where

\k=n— p~rl

M- = 1 f=/x

Clearly 2 n"1""1 j JBJ I is convergent and we have to prove that the
same is true of E2.

1 Here as elsewhere A is independent of the variables under consideration and has
not necessarily the same value each time it occurs.
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By Lemma 3 we may write

E2 = Yyutf a™i(P) A*!?., A"y?
l 0 \? /

where

Fq = " s ' / x ^ o?> A%=?_q A* UP.

Now ^0 = ° since - 4 ^ = 0. Using the inequality

A"^ <Ai3?-*

we obtain, for 5 = 1, 2 , j?,

S » - J ' - 1 | l I j | < i4 S M-P-1 S /iP + 1+'>-» (n - / x —g + I)'"11
l + l l

<A S /x'la^l

The theorem is therefore proved and we turn now to the
converse.

T H E O R E M 2. If the series ~Lnpan is summable \C,p\ then the series
2 np I a<f> I is convergent.

As in the proof of the previous theorem we may write

where

a™,

a™9 2

Clearly S n ' " ' " 1 1 -E?] j is convergent and we must prove that this
is also true of E%.

By Lemma 3 we may write
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where

Now î 0 = ° aQd. for g = 1, 2, . . . . , p,

The theorem is therefore proved and the equivalence of (5) and
(6) is established.

5. We now consider the case p = 1 of the preceding theorems.

THEOREM 3. / / the series S n | a ^ | is convergent then the series
Snan is summable \C, p\.

This may be obtained simply by putting p = 1 in the proof of
Theorem 1. The theorem, however, is true not merely when p is a
positive integer but also when p is any positive number, as the
following simple argument shows.

We have
n

n anl — 2a
1

= S pAMa? S

/X = l (

n - 1

Hence

= n2 .4^ o ^ - p "s
l

S | a*', | < A i n | a<?
n = 2 ' n = 2

< A.
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THEOREM 4. If the series 2 nan is summable \C,p\ then

ijna^-^-c^l
is convergent.

As in the proof of Theorem 2 we have
n n

(P) _ 2

where

Now
5 1

P-\

9

n-p

d = l

Y^
0 \ 1

Fg flW

A V | O

Also Fo = 0 and, for q = 1, 2, .. .., p — 1,
00 1 X 00

•f» < -4 2J UP ? \d,, i | S

•/! I I

119

n<=ti+p

I t follows t h a t

M = P + 1

and, since

1 n-p
y n(.v)

a 1

we obtain
- 1 - ! ,

Now

to

2
n=p

2 n-p

oo 1 n-p
y I y i /j(p-i) ^(p-i) l _(p)

(n -
M = 1

IP) I
c. l I
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and it therefore follows tha t
a — I) n—p

2
n=p

that is,

Since c%\ tends to a finite limit as n -> oo it is clear that the
series

co x n

71 I ^*i 1 i ^^ "* "* *" ^ u . 1 I

are convergent. Moreover
to n to f+P

2 ™ — 1 V 1 (P} I ^ V I ^ (p) I V —1 A

The theorem is therefore proved.
The theorem shows that , when the series 2 nan is summable

\C,p\ to a non-zero sum, the series 2w|a*f)| is always divergent.
When the sum of the series 2 nan is zero the convergence or divergence
of 2 n | of*) | depends on the convergence or divergence of the series
2 n ~ 1 \c%\ | . That either alternative may occur is easily seen by
considering the example

«o = «i = °>

an = n-^ 2 Ai-_p-2)A^(logv)~% (n ^ 2).

For this series

When a = 1,

so that the series 2 nan is summable \C, p\ to the sum zero and

2 n'11 <4fi | is divergent. When a = 2,

so that the series 2 nan is again summable | C, p | to the sum zero but
2n~ 1 1 c^\ | is convergent.

6. We conclude by proving a theorem which is rather more
precise than Theorem 4. For the proof we require two lemmas.
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LEMMA 5. / / the series S nan is summable \C,p\ then

na(
n

p+x)-| ? f | ,
n=l n

where X is zero or any positive integer.
This is an immediate corollary from Theorem 4 and the consistency

theorem for absolute Cesaro summability.
LEMMA 6. If k> 0 we have

lc + n (Jfe + n)
From Lemma 1 we have

whence
(*) „(* + !) _ °n, 1 c n - l , 1

a a TT^
_ a n , 1 i

which yields the required result.

THEOREM 5. Suppose that the series £na n ts summable \C, p\.
If the series 1ln~1\c(^\\ is convergent then E n | a ® | is convergent for
k = p. If the series S n~l \ c%\ \ is divergent then S n \ a^ | is divergent
for every value of k.

The first part of the theorem has already been proved. We
proceed to prove the second part.

Suppose that Era"1 \c%\ | = oo . Then, from Lemma 5, with
X = 0, we have S n \ a(p) | — oo . From Lemma 6, we may write

1 *«. 1

)J n>1 p + n
Now

while

S { £ + 5 1 Ic«« I = oo
\ n (p + »)(p + » + 1)J "•1|

I t follows that
S?i|ajf+1»| = oo,

and from Lemma 5, with A = 1, we obtain
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Repetition of the above argument then yields
Snja£H-»| = oo,

and so on.
The theorem is therefore proved for any integral value of h ̂  p

and the proof for general k > 0 follows at once from this and Lemma 4.

7. It will be observed that in this paper no attempt has been
made to deal exhaustively with all the relations connecting condi-
tions (4), (5) and (6). Indeed (4) has merely been mentioned since
it seems to be the natural analogue of (1). I hope to discuss condi-
tion (4) in a later communication and also to obtain a complete set
of relations between the conditions in each of the two groups. It
has already been shown1 that the groups themselves are to some
extent inter-related.

1 J . M. Hyslop, Proc. Edinburgh Math. Soc. (2), 6 (1939), 51-56.
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