INTEGRAL FORMULAS FOR SUBMANIFOLDS AND THEIR APPLICATIONS

KENTARO YANO

Introduction. Liebmann [12] proved that the only ovaloids with constant mean curvature in a 3 -dimensional Euclidean space are spheres. This result has been generalized to the case of convex closed hypersurfaces in an m dimensional Euclidean space by Alexandrov [1], Bonnesen and Fenchel [3], Hopf [4], Hsiung [5], and Süss [14].

The result has been further generalized to the case of closed hypersurfaces in an m-dimensional Riemannian manifold by Alexandrov [2], Hsiung [6], Katsurada $[7 ; 8 ; 9]$, Ōtsuki $[13]$, and by myself $[15 ; 16]$.

The attempt to generalize the result to the case of closed submanifolds in an m-dimensional Riemannian manifold has been recently done by Katsurada [10; 11], Kôjyô [10], and Nagai [11].

Our aim in the present paper is to obtain first of all the most general integral formulas for closed submanifolds in an m-dimensional Riemannian manifold, to specialize these formulas, and to apply these formulas to obtain a generalization of the theorem of Liebmann. We also discuss submanifolds of codimension 2 in an ($n+2$)-dimensional Euclidean space.

In § 1, we recall formulas for the submanifolds in a Riemannian manifold which will be used in the later sections. In § 2, we prove integral formulas for closed submanifolds in their most general forms. We specialize these formulas in $\S \S 3,4$, and 5 and prove a theorem which is a generalization of the theorem of Liebmann quoted above. In the last section we study submanifolds of codimension 2 in an $(n+2)$-dimensional Euclidean space.

1. Preliminaries. We consider an m-dimensional orientable differentiable Riemannian manifold M of class C^{∞} covered by a system of coordinate neighbourhoods $\left\{U ; x^{h}\right\}$ and denote by $g_{j i},\left\{{ }_{j}{ }_{i}\right\}, \nabla_{i}, K_{k j i}{ }^{h}$, and $K_{j i}$, the metric tensor, the Christoffel symbols formed with $g_{j i}$, the operator of covariant differentiation with respect to $\left\{{ }_{j}{ }_{i}{ }_{i}\right\}$, the curvature tensor, and the Ricci tensor respectively, where, throughout the paper, the indices h, i, j, k, l run over the range $\{1,2, \ldots, m\}$.

We then consider an n-dimensional compact and orientable differentiable submanifold N of class C^{∞} covered by a system of coordinate neighbourhoods $\left\{V ; u^{a}\right\}$ and C^{∞} differentiably embedded in M, and denote by

$$
\begin{equation*}
x^{h}=x^{h}\left(u^{a}\right) \tag{1.1}
\end{equation*}
$$

[^0]the local expressions of N, where, throughout the paper, the indices a, b, c, d, e run over the range $\{1,2, \ldots, n\}(1<n<m)$. The Riemannian metric of N induced from that of M is given by
\[

$$
\begin{equation*}
g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{i}, \tag{1.2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
B_{b}^{i}=\partial_{b} x^{i}, \quad \partial_{b}=\partial / \partial u^{b} . \tag{1.3}
\end{equation*}
$$

 $g_{c b}$, the operator of covariant differentiation with respect to $\left\{\begin{array}{c}\left.a{ }_{c}{ }^{a}\right\}\end{array}\right\}$, the curvature tensor, and the Ricci tensor of N, respectively.

We put

$$
\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}
{ }^{h} \tag{1.4}\\
j
\end{array}\right\} B_{c}{ }^{j} B_{b}{ }^{i}-\left\{\begin{array}{c}
a \\
c
\end{array}\right\} B_{a}{ }^{h},
$$

and call this kind of covariant differentiation van der Waerden-Bortolotti covariant differentiation along the submanifold N. From (1.2) and (1.4), we find $g_{j i}\left(\nabla_{d} B_{c}{ }^{j}\right) B_{b}{ }^{i}=0$, which shows that $\nabla_{c} B_{b}{ }^{h}$ are orthogonal to the submanifold N.

We assume that the mean curvature vector

$$
\begin{equation*}
H^{h}=(1 / n) g^{c b} \nabla_{c} B_{b}{ }^{h} \tag{1.5}
\end{equation*}
$$

never vanishes on N and take a unit vector C^{h} in the direction of the mean curvature vector and then we put

$$
\begin{equation*}
\left(\nabla_{c} B_{b}{ }^{i}\right) C_{i}=h_{c b} . \tag{1.6}
\end{equation*}
$$

C^{h} is called the mean curvature unit normal and $h_{c b}$ the second fundamental tensor of the submanifold N with respect to the mean curvature unit normal. The eigenvalues k_{1}, \ldots, k_{n} of $h_{c b}$ are called principal curvatures of the submanifold with respect to C^{h}. If $k_{1}=\ldots=k_{n}=k$, that is, $h_{c b}=k g_{c b}$, then the submanifold is said to be umbilical with respect to C^{h}.

From (1.6), we have

$$
\begin{equation*}
g^{c b} \nabla_{c} B_{b}{ }^{h}=h_{a}{ }^{a} C^{h} \tag{1.7}
\end{equation*}
$$

The scalar

$$
\begin{equation*}
H=\frac{1}{n} \sum_{a=1}^{n} k_{a}=\frac{1}{n} h_{a}{ }^{a} \tag{1.8}
\end{equation*}
$$

is called the first mean curvature of N with respect to C^{h}.
Now we put $C^{h}=C_{n+1}{ }^{h}$ and choose $m-n$ mutually orthogonal unit normals $C_{n+1}{ }^{h}, \ldots, C_{m}{ }^{h}$ in such a way that $\left(B_{b}{ }^{h}, C_{0}{ }^{h}\right.$) form a positively oriented frame along the submanifold N, where, throughout the paper, the indices u, v, w take the values $n+1, \ldots, m$. Then $\nabla_{c} B_{b}{ }^{h}$ can be expressed as

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=h_{c b v} C_{v}{ }^{h} \tag{1.9}
\end{equation*}
$$

which are equations of Gauss, where $h_{c b, n+1}=h_{c b}$.

On the other hand, if we put

$$
\nabla_{c} C_{v}{ }^{h}=\partial_{c} C_{v}{ }^{h}+\left\{\begin{array}{l}
\\
j^{h}
\end{array}{ }_{i}\right\} B_{c}{ }^{j} C_{v}{ }^{i}
$$

equations of Weingarten can be written as

$$
\begin{equation*}
\nabla_{c} C_{v}{ }^{h}=-h_{c}{ }^{a}{ }_{v} B_{a}{ }^{h}+l_{c v w} C_{w}{ }^{h}, \tag{1.10}
\end{equation*}
$$

where $h_{c}{ }^{a}{ }_{v}=h_{c b v} g^{b a}$ and $l_{c v w}=-l_{c w v}$ is the so-called third fundamental tensor. The $l_{c v w}$ define the connection induced on the normal bundle. For $v=n+1$, we have

$$
\begin{equation*}
\nabla_{c} C^{h}=-h_{c}{ }^{a} B_{a}{ }^{h}+l_{c w} C_{w}{ }^{h}, \tag{1.11}
\end{equation*}
$$

where $l_{c c o}=l_{c, n+1, w}$. From (1.9), (1.11), and the Ricci identity

$$
\nabla_{d} \nabla_{c} C^{h}-\nabla_{c} \nabla_{d} C^{h}=K_{k j i}{ }^{h} \mathcal{B}_{d}{ }^{k} B_{c}{ }^{j} C^{i},
$$

we find

$$
\begin{array}{r}
\nabla_{d}\left(-h_{c}{ }^{a} B_{a}{ }^{h}+l_{c v} C_{v}{ }^{h}\right)-\nabla_{c}\left(-h_{d}{ }^{a} B_{a}{ }^{h}+l_{d v} C_{v}{ }^{h}\right)=K_{k j i}{ }^{h} B_{d}{ }^{k} B_{c}{ }^{j} C^{i}, \\
-\left(\nabla_{d} h_{c}{ }^{a}\right) B_{a}{ }^{h}-h_{c}{ }^{a}\left(h_{d a v} C_{v}{ }^{h}\right)+\left(\nabla_{d} l_{c v}\right) C_{v}{ }^{h}+l_{c v}\left(-h_{d}{ }^{a}{ }_{v} B_{a}{ }^{h}+l_{d v w} C_{w}{ }^{h}\right) \\
+\left(\nabla_{c} h_{d}{ }^{a}\right) B_{a}{ }^{h}+h_{d}{ }^{a}\left(h_{c a v} C_{v}{ }^{h}\right)-\left(\nabla_{c} l_{d v}\right) C_{v}{ }^{h}-l_{d v}\left(-h_{c}{ }^{a}{ }_{v} B_{a}{ }^{h}+l_{c v w} C_{w}{ }^{h}\right) \\
\\
=K_{k j i}{ }^{h} B_{d}{ }^{k} B_{c}{ }^{j} C^{i},
\end{array}
$$

from which, taking the inner product with $B_{b}{ }^{h}$,

$$
-\nabla_{d} h_{c b}-l_{c v} h_{d b v}+\nabla_{c} h_{d b}+l_{d v} h_{c b v}=K_{k j i h} B_{d}{ }^{k} B_{c}{ }^{j} C^{i} B_{b}{ }^{h},
$$

or

$$
\begin{equation*}
\nabla_{d} h_{c b}-\nabla_{c} h_{d b}-l_{d v} h_{c b v}+l_{c v} h_{d b v}=K_{k j i h} B_{d}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} C^{h}, \tag{1.12}
\end{equation*}
$$

which are equations of Codazzi.
Multiplying (1.12) by $g^{c b}$ and contracting, we find

$$
\begin{equation*}
\nabla_{d} h_{a}{ }^{a}-\nabla_{a} h_{a}{ }^{a}-l_{d v} h_{a}{ }^{a}{ }_{v}+l_{a v} h_{d}{ }^{a}{ }_{v}=K_{k j i n} B_{d}{ }^{k} B^{j i} C^{h}, \tag{1.13}
\end{equation*}
$$

where

$$
B^{j i}=g^{c b} B_{c}{ }^{j} B_{b}{ }^{i} .
$$

An arbitrary vector field w^{h} normal to the submanifold N is expressed as

$$
w^{h}=C_{u}{ }^{h} w_{u},
$$

and consequently

$$
\begin{aligned}
\nabla_{c} w^{h} & =\left(-h_{c}{ }^{a}{ }_{u} B_{a}{ }^{h}+l_{c u v} C_{v}{ }^{h}\right) w_{u}+C_{u}{ }^{h} \partial_{c} w_{u} \\
& =-h_{c}{ }^{a}{ }_{u} w_{u} B_{a}{ }^{h}+\left(\partial_{c} w_{v}+l_{c u} w_{u}\right) C_{v}{ }^{h} .
\end{aligned}
$$

We put

$$
{ }^{\prime} \nabla_{c} w^{h}=\left({ }^{\prime} \nabla_{c} w_{v}\right) C_{v}{ }^{h}=\left(\partial_{c} w_{v}+l_{c u v} w_{u}\right) C_{v}{ }^{h},
$$

and say that the vector w^{h} normal to the submanifold N is parallel with respect to the connection ' ∇ induced on the normal bundle when

$$
{ }^{\prime} \nabla_{c} w^{h}=0
$$

that is, when $\nabla_{c} w^{h}$ is tangent to the submanifold.
In the latter sections, we assume that the mean curvature vector H^{h} is parallel with respect to the induced connection ${ }^{\prime} \nabla$. This assumption is equivalent to the fact that

$$
\begin{aligned}
\nabla_{c} H^{h}=\frac{1}{n} \nabla_{c}\left(h_{a}{ }^{a} C^{h}\right)=\frac{1}{n}\left(\nabla_{c} h_{a}{ }^{a}\right) C^{h} & +\frac{1}{n} h_{a}{ }^{a}\left(-h_{c}{ }^{b} B_{b}{ }^{h}+l_{c w} C_{w}{ }^{h}\right) \\
& =-\frac{1}{n}{h_{a}{ }^{a} h_{c}{ }^{b} B_{b}{ }^{h}+\frac{1}{n}\left(\nabla_{c} h_{a}{ }^{a}\right) C^{h}+\frac{1}{n} h_{a}{ }^{a} l_{c w} C_{w}{ }^{h}}^{h}
\end{aligned}
$$

is tangent to the submanifold, that is,

$$
\begin{equation*}
h_{a}{ }^{a}=\text { const } \neq 0, \quad l_{c w}=0 \tag{1.14}
\end{equation*}
$$

2. Integral formulas. We now assume the existence of a vector field v^{h} in M and put

$$
\begin{equation*}
v_{b}=B_{b}{ }^{i} v_{i} . \tag{2.1}
\end{equation*}
$$

From this equation we have

$$
\begin{equation*}
\nabla_{c} v_{b}=\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}+B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} v_{i}\right), \tag{2.2}
\end{equation*}
$$

from which

$$
\begin{aligned}
g^{c b} \nabla_{c} v_{b} & =\left(g^{c b} \nabla_{c} B_{b}{ }^{i}\right) v_{i}+B^{j i}\left(\nabla_{j} v_{i}\right) \\
& =h_{a}{ }^{a} C^{i} v_{i}+\frac{1}{2} B^{j i}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right),
\end{aligned}
$$

or

$$
\begin{equation*}
g^{c b} \nabla_{c} v_{b}=\alpha h_{a}{ }^{a}+\frac{1}{2} B^{j i}\left(\mathscr{L}_{v} g_{j i}\right), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=C^{i} v_{i} \tag{2.4}
\end{equation*}
$$

and \mathscr{L}_{v} denotes the Lie derivative with respect to v^{h}.
Integrating (2.3) over N, we find

$$
\begin{equation*}
\int_{N} \alpha h_{a}{ }^{a} d S+\frac{1}{2} \int_{N} B^{j i}\left(\mathscr{L}_{v} g_{j i}\right) d S=0 \tag{2.5}
\end{equation*}
$$

where $d S$ is the surface element of N.
We next put

$$
\begin{equation*}
w_{b}=h_{b}{ }^{a} v_{a}, \tag{2.6}
\end{equation*}
$$

from which

$$
\nabla_{c} w_{b}=\left(\nabla_{c} h_{b}^{a}\right) v_{a}+h_{b}{ }^{a} \nabla_{c} v_{a},
$$

and consequently,

$$
\begin{equation*}
g^{c b} \nabla_{c} w_{b}=\left(\nabla_{c} h_{b}{ }^{c}\right) v^{b}+\frac{1}{2} h^{c b}\left(\nabla_{c} v_{b}+\nabla_{b} v_{c}\right) . \tag{2.7}
\end{equation*}
$$

On the other hand, we have, from (2.2),

$$
\frac{1}{2}\left(\nabla_{c} v_{b}+\nabla_{b} v_{c}\right)=\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}+\frac{1}{2} B_{c}{ }^{j} B_{b}{ }^{j}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right),
$$

and consequently (2.7) becomes

$$
\begin{equation*}
g^{c b} \nabla_{c} w_{b}=\left(\nabla_{c} h_{b}^{c}\right) v^{b}+\left(h^{c b} \nabla_{c} B_{b}{ }^{i}\right) v_{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathscr{L}_{v} g_{j i}\right) . \tag{2.8}
\end{equation*}
$$

Substituting

$$
\nabla_{c} h_{b}{ }^{c}=\nabla_{b} h_{a}{ }^{a}-l_{b v} h_{a}{ }^{a}{ }_{v}+l_{a v} h_{b}{ }^{a}{ }_{v}-K_{k j i n} B_{b}{ }^{k} B^{j i} C^{h}
$$

obtained from (1.13) into (2.8), we obtain

$$
\begin{align*}
& g^{c b} \nabla_{c} w_{b}=\left(\nabla_{b} h_{a}{ }^{a}-l_{b v} h_{a}{ }^{a}{ }_{v}+l_{a v} h_{b}{ }^{a}{ }_{v}-K_{k j i h} B_{b}{ }^{k} B^{j i} C^{h}\right) v^{b} \tag{2.9}\\
&+\left(h^{c b} \nabla_{c} B_{b}{ }^{i}\right) v_{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathscr{L}_{v} g_{j i}\right) .
\end{align*}
$$

Integrating this over N, we find

$$
\left.\begin{array}{rl}
\int_{N}\left[v^{b} \nabla_{b} h_{a}{ }^{a}+\left(h^{c b} \nabla_{c} B_{b}{ }^{i}\right) v_{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathscr{L}_{v} g_{j i}\right)\right. \tag{2.10}\\
& \left.\quad-K_{k j i h} B_{b}{ }^{k} v^{b} B^{j i} C^{h}-l_{b v} v^{b} h_{a}{ }^{a}{ }_{v}+l_{c v} h_{b}{ }^{c}{ } v^{b}\right]
\end{array}\right] S=0.0 .
$$

On the other hand, we have, from (2.4),

$$
\begin{aligned}
\nabla_{b} \alpha & =\left(-h_{b}{ }^{a} B_{a}{ }^{i}+l_{b v} C_{v}{ }^{i}\right) v_{i}+B_{b}{ }^{j} C^{i}\left(\nabla_{j} v_{i}\right) \\
& =\left(-h_{b}{ }^{a} v_{a}+l_{b v} v_{v}\right)+B_{b}{ }^{j} C^{i}\left(\nabla_{j} v_{i}\right),
\end{aligned}
$$

where $v_{v}=C_{v}{ }^{i} v_{i}$ and

$$
\begin{aligned}
\nabla_{c} \nabla_{b} \alpha=\nabla_{c}\left(-h_{b}{ }^{a} v_{a}+l_{b v} v_{v}\right) & +\left(\nabla_{c} B_{b}{ }^{j}\right) C^{i}\left(\nabla_{j} v_{i}\right) \\
& +B_{b}{ }^{j}\left(-h_{c}{ }^{a} B_{a}{ }^{i}+l_{c w} C_{w}{ }^{i}\right)\left(\nabla_{j} v_{i}\right)+B_{c}{ }^{k} B_{b}{ }^{j} C^{i}\left(\nabla_{k} \nabla_{j} v_{i}\right)
\end{aligned}
$$

from which

$$
\begin{aligned}
& g^{c b} \nabla_{c} \nabla_{b} \alpha= g^{c b} \nabla_{c}\left(-h_{b}{ }^{a} v_{a}+l_{b w} v_{w}\right)+\frac{1}{2} h_{a}{ }^{a} C^{j} C^{i}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right) \\
& \quad-\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right) \\
&=g^{c b} g_{c w} B_{b}{ }^{j} C_{w}{ }^{i}\left(\nabla_{j} v_{i}\right)+B^{k j} C^{i}\left(\nabla_{k} \nabla_{j} v_{i}\right), \\
&\left.h_{b}{ }^{a} v_{a}+l_{b w} v_{w}\right)+\frac{1}{2}\left(h_{a}{ }^{a} C^{j} C^{i}-h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\right)\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right) \\
&+g^{c b} l_{c w} B_{b}{ }^{j} C_{w}{ }^{i}\left(\nabla_{j} v_{i}\right)+B^{k j} C^{i}\left(\nabla_{k} \nabla_{j} v_{i}\right) .
\end{aligned}
$$

Integrating over N, we find

$$
\begin{align*}
& \int_{N}\left[\frac{1}{2}\left(h_{a}{ }^{a} C^{j} C^{i}-h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\right)\left(\mathscr{L}_{v} g_{j i}\right)+g^{c b} l_{c w} B_{b}{ }^{j} C_{w}{ }^{i}\left(\nabla_{j} v_{i}\right)\right. \tag{2.11}\\
& \left.\quad+B^{k j} C^{i}\left(\nabla_{k} \nabla_{j} v_{i}\right)\right] d S=0 .
\end{align*}
$$

3. The case in which v^{h} is a conformal Killing vector field. We assume that v^{h} is a conformal Killing vector field, that is,

$$
\begin{equation*}
\mathscr{L}_{v} g_{j i}=\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \rho g_{j i} \tag{3.1}
\end{equation*}
$$

where $\rho=(1 / m) \nabla_{i} \nu^{i}$, and consequently

$$
\begin{equation*}
\mathscr{L}_{v\left\{j_{i}{ }_{i}\right\}=\nabla_{j} \nabla_{i} v^{h}+K_{k j i}{ }^{h} v^{k}=\delta_{j p_{i}}^{h}+\delta_{i}^{h} \rho_{j}-\rho^{h} g_{j i}, ~, ~}^{\text {, }} \tag{3.2}
\end{equation*}
$$

where $\rho_{i}=\nabla_{i} \rho, \rho^{h}=\rho_{i} g^{i h}$. In this case, (2.5) and (2.10) become

$$
\begin{equation*}
\int_{N} \alpha h_{a}{ }^{a} d S+n \int_{N} \rho d S=0, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{N}\left[v^{b} \nabla_{b} h_{a}{ }^{a}+\left(h^{c b} \nabla_{c} B_{b}{ }^{i}\right) v_{i}+\rho h_{a}{ }^{a}-K_{k j i h} B_{b}{ }^{k} v^{b} B^{j i} C^{h}\right. \tag{3.4}\\
&\left.-l_{b v} v^{b} h_{a}{ }^{a}{ }_{v}+l_{c v} h_{b}{ }^{c} v^{b}{ }^{b}\right] d S=0,
\end{align*}
$$

respectively. From (3.2), we have

$$
\begin{aligned}
B^{k j} C^{i}\left(\nabla_{k} \nabla_{j} v_{i}\right) & =B^{k j} C^{i}\left(-K_{l k j i} v^{l}+g_{k i} \rho_{j}+g_{j i} \rho_{k}-g_{k j} \rho_{i}\right) \\
& =-K_{l k j i} v^{l} B^{k j} C^{i}-n \rho_{i} C^{i} .
\end{aligned}
$$

Substituting this into (2.11), we find

$$
\int_{N}\left[\rho h_{a}{ }^{a}-\rho h_{a}^{a}+g^{c b} l_{c w} B_{b}{ }^{j} C_{w}{ }^{i}\left(\nabla_{j} v_{i}\right)-K_{l k j i} v^{l} B^{k j} C^{i}-n \rho_{i} C^{i}\right] d S=0
$$

or

$$
\begin{equation*}
\int_{N}\left[n \rho_{i} C^{i}+K_{k j i n} v^{k} B^{j i} C^{h}-g^{c b} l_{c w} B_{b}{ }^{j} C_{w}{ }^{i}\left(\nabla_{j} v_{i}\right)\right] d S=0 . \tag{3.5}
\end{equation*}
$$

4. The case in which v^{h} is a conformal Killing vector field and $\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}=\alpha h_{c b}$. The conformal Killing vector field v^{h} can be expressed as

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+C_{u}{ }^{h} \alpha_{u} \tag{4.1}
\end{equation*}
$$

along the submanifold N, where $\alpha_{n+1}=\alpha$. Thus, from equations (1.9) of Gauss and (4.1), we have

$$
\begin{aligned}
\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i} & =h_{c b u} \cdot \alpha_{u} \\
& =h_{c b} \cdot \alpha+h_{c b n+2} \cdot \alpha_{n+2}+\ldots+h_{c b m} \cdot \alpha_{m} .
\end{aligned}
$$

We assume in the following that

$$
\begin{equation*}
h_{c b n+2} \cdot \alpha_{n+2}+\ldots+h_{c b m} \cdot \alpha_{m}=0, \tag{4.2}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}=\alpha h_{c b} \tag{4.3}
\end{equation*}
$$

The condition (4.2) or (4.3) is satisfied if

$$
\begin{equation*}
h_{c b n+2}=0, \ldots, \quad h_{c b m}=0, \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{n+2}=0, \ldots, \quad \alpha_{m}=0 \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
h_{c b n+2}=0, \ldots, h_{c b n+s}=0, \quad \alpha_{n+s+1}=0, \ldots, \alpha_{m}=0 . \tag{4.6}
\end{equation*}
$$

If (4.4) is satisfied, then equations (1.9) of Gauss take the form

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=h_{c b} C^{h}, \tag{4.7}
\end{equation*}
$$

which means that the van der Waerden-Bortolotti covariant derivative $\nabla_{c} B_{b}{ }^{h}$ of $B_{b}{ }^{h}$ is in the direction of mean curvature vector. If (4.5) is satisfied, then (4.1) takes the form

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+\alpha C^{h}, \tag{4.8}
\end{equation*}
$$

which means that the conformal Killing vector field v^{h} is contained in the linear space spanned by vectors tangent to the submanifold N and the mean curvature vector. This case has been considered by Katsurada and Nagai [11]. We notice that the condition (4.2) or (4.3) is automatically satisfied for the case of hypersurface.

Now, if we assume (4.3), then we have, from (3.4),

$$
\begin{align*}
\int_{N}\left[v^{b} \nabla_{b} h_{a}{ }^{a}+\alpha h^{c b} h_{c b}+\rho h_{a}{ }^{a}-K_{k j i h^{v}} v^{k}\right. & B^{j i} C^{h} \tag{4.9}\\
& \left.-l_{b v} v^{b} h_{a}{ }^{a}{ }_{v}+l_{c v} h_{b}{ }^{c}{ }_{v} v^{b}\right] d S=0,
\end{align*}
$$

where $v^{\prime k}$ is the tangent part of v^{h}, that is,

$$
\begin{equation*}
v^{\prime k}=B_{a}{ }^{h} v^{a}=v^{h}-C_{u}{ }^{h} v_{u} . \tag{4.10}
\end{equation*}
$$

5. The case in which v^{h} is a conformal Killing vector field, $\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}=$ $\alpha h_{c b}$, and the mean curvature vector is parallel with respect to the connection induced in the normal bundle. We now assume that v^{h} is a conformal Killing vector field, $\left(\nabla_{c} B_{b}{ }^{i}\right) v_{i}=\alpha h_{c b}$ and, moreover, the mean curvature vector $H^{h}=(1 / n) g^{c b} \nabla_{c} B_{b}{ }^{h}$ is parallel with respect to the connection induced in the normal bundle.

In this case, we have (1.14) and consequently, from (3.3), (4.9), (3.5), we obtain

$$
\begin{gather*}
h_{a}{ }^{a} \int_{N} \alpha d S+n \int_{N} \rho d S=0 \tag{5.1}\\
\int_{N}\left[\alpha h^{c b} h_{c b}+\rho h_{a}{ }^{a}-K_{k j i h v^{\prime k}} B^{j i} C^{h}\right] d S=0, \tag{5.2}\\
\int_{N}\left[n_{\rho_{i}} C^{i}+K_{k j i n} v^{k} B^{j i} C^{h}\right] d S=0 \tag{5.3}
\end{gather*}
$$

respectively.

Forming the difference (5.2)-(5.1) multiplied by $(1 / n) h_{e}{ }^{e}$, we find

$$
\begin{equation*}
\int_{N} \alpha\left(h^{c b}-\frac{1}{n} h_{e}{ }^{e} g^{c b}\right)\left(h_{c b}-\frac{1}{n} h_{d}{ }^{a} g_{c b}\right) d S-\int_{N} K_{k j i h^{\prime}} v^{k} B^{j i} C^{h} d S=0 \tag{5.4}
\end{equation*}
$$

Thus if $\alpha \neq 0$ has definite sign and $K_{k j i n} v^{\prime k} B^{j i} C^{h}=0$, then $h_{c b}=(1 / n) h_{a}{ }^{a} g_{c b}$, which shows that the submanifold N is umbilical with respect to the mean curvature normal. Thus we have the following result.

Theorem 5.1. Suppose that an orientable Riemannian manifold M admits a conformal Killing vector field v^{h}. If a closed and orientable submanifold N of M satisfies (4.2) or (4.3), the mean curvature vector is parallel with respect to the connection induced in the normal bundle, $\alpha \neq 0$ does not change the sign, and

$$
\begin{equation*}
K_{k j i h} v^{\prime k} B^{j i} C^{h}=0, \tag{5.5}
\end{equation*}
$$

then the submanifold is umbilical with respect to the mean curvature normal.
We notice here that condition (5.5) is automatically satisfied when M is a space of constant curvature (see Katsurada and Nagai [11]).

We now assume that M admits a homothetic Killing vector field v^{h}, that is, $\rho=$ const. Then we have from (5.3)

$$
\int_{N} K_{k j i h} v^{k} B^{j i} C^{h} d S=0
$$

or

$$
\int_{N} K_{k j i h} v^{\prime k} B^{j i} C^{h} d S+\int_{N} K_{k j i n} v^{\prime \prime k} B^{j i} C^{h} d S=0
$$

where $v^{\prime \prime k}$ is the normal part of v^{h}. Thus the condition (5.5) in Theorem 5.1 can be replaced by

$$
\begin{equation*}
K_{k j i n} \nu^{\prime \prime k} B^{j i} C^{h}=0 \tag{5.6}
\end{equation*}
$$

If, moreover, (4.5) is satisfied, that is, if v^{h} has the form

$$
v^{h}=B_{a}{ }^{h} v^{a}+\alpha C^{h},
$$

then (5.4) becomes

$$
\int_{N} \alpha\left(h^{c b}-\frac{1}{n} h_{e}^{e} g^{c b}\right)\left(h_{c b}-\frac{1}{n}{h_{d}}_{d} g_{c b}\right) d S+\int_{N} K_{k j i h} v^{\prime \prime k} B^{j i} C^{h} d S=0
$$

or

$$
\int_{N} \alpha\left[\left(h^{c b}-\frac{1}{n} h_{e}{ }^{e} g^{c b}\right)\left(h_{c b}-\frac{1}{n} h_{d}{ }^{d} g_{c b}\right)+K_{k j i h} C^{k} B^{j i} C^{h}\right] d S=0
$$

Thus condition (5.5) in Theorem 5.1 can be replaced by

$$
K_{k j i h} C^{k} B^{j i} C^{h}=0,
$$

or

$$
\begin{equation*}
-K_{k j i h} C^{k} B_{c}{ }^{j} C^{i} B_{b}{ }^{h} g^{c b}=0 . \tag{5.7}
\end{equation*}
$$

This condition has the following geometrical interpretation. We choose n mutually orthogonal unit vectors $X_{1}, X_{2}, \ldots, X_{n}$ tangent to the submanifold and consider the sectional curvatures $\gamma\left(C, X_{1}\right), \gamma\left(C, X_{2}\right), \ldots, \gamma\left(C, X_{n}\right)$. Then (5.7) means that the sum of these sectional curvatures is zero.

If N is a hypersurface, then (5.7) can be written as

$$
K_{j i} C^{j} C^{i}=0
$$

(see [15]).
6. Submanifold of codimension 2 in an $(n+2)$-dimensional Euclidean space. We consider a submanifold N of codimension 2 in an $(n+2)$ dimensional Euclidean space E and let the local expression of N be

$$
\begin{equation*}
X=X\left(u^{a}\right), \tag{6.1}
\end{equation*}
$$

where X is the so-called position vector field.
We put

$$
\begin{equation*}
X_{a}=\partial_{a} X \tag{6.2}
\end{equation*}
$$

then the metric tensor $g_{c b}$ of N is given by

$$
\begin{equation*}
g_{c b}=X_{c} \cdot X_{b}, \tag{6.3}
\end{equation*}
$$

where $X_{c} \cdot X_{b}$ denotes the inner product of X_{c} and X_{b}.
If we put

$$
\nabla_{c} X_{b}=\partial_{c} X_{b}-\left\{\begin{array}{cc}
a \\
c & b
\end{array}\right\} X_{a},
$$

then the mean curvature vector field is given by

$$
\begin{equation*}
H=\frac{1}{n} g^{c b} \nabla_{c} X_{b} . \tag{6.4}
\end{equation*}
$$

We assume that $H \neq 0$ and choose the first unit normal C to the submanifold N in this direction and denote by D the second unit normal.

Then the equations of Gauss can be written as

$$
\begin{equation*}
\nabla_{c} X_{b}=h_{c b} C+k_{c b} D \tag{6.5}
\end{equation*}
$$

where $(1 / n) h_{a}{ }^{a}$ is the first mean curvature of N and

$$
\begin{equation*}
g^{c b} k_{c b}=0 \tag{6.6}
\end{equation*}
$$

The equations of Weingarten take the form

$$
\begin{align*}
\nabla_{c} C & =-h_{c}{ }^{a} X_{a}+l_{c} D \tag{6.7}\\
\nabla_{c} D & =-k_{c}{ }^{a} X_{a}-l_{c} C \tag{6.8}
\end{align*}
$$

From the Ricci identity,

$$
\nabla_{d} \nabla_{c} X_{b}-\nabla_{c} \nabla_{d} X_{b}=-K_{d c b}^{a} X_{a}
$$

we have, using (6.5), (6.7), and (6.8),

$$
\begin{aligned}
\left(\nabla_{d} h_{c b}\right) C+h_{c b}\left(-h_{d}{ }^{a} X_{a}+l_{d} D\right)+\left(\nabla_{d} k_{c b}\right) D & +k_{c b}\left(-k_{d}{ }^{a} X_{a}-l_{d} C\right) \\
& -\left(\nabla_{c} h_{d b}\right) C-h_{d b}\left(-h_{c}{ }^{a} X_{a}+l_{c} D\right)
\end{aligned}
$$

$$
-\left(\nabla_{c} k_{d b}\right) D-k_{d b}\left(-k_{c}^{a} X_{a}-l_{c} C\right)=-K_{d c b}{ }^{a} X_{a}
$$

from which

$$
\begin{gather*}
K_{d c b}{ }^{a}=h_{d}{ }^{a} h_{c b}-h_{c}{ }^{a} h_{d b}+k_{d}{ }^{a} k_{c b}-k_{c}{ }^{a} k_{d b}, \tag{6.9}\\
\nabla_{d} h_{c b}-\nabla_{c} h_{d b}-l_{d} k_{c b}+l_{c} k_{d b}=0, \tag{6.10}\\
\nabla_{d} k_{c b}-\nabla_{c} k_{d b}+l_{d} h_{c b}-l_{c} h_{d b}=0 . \tag{6.11}
\end{gather*}
$$

Equations (6.9) are those of Gauss and (6.10) and (6.11) those of Codazzi.
In a similar way, from the Ricci identity

$$
\nabla_{d} \nabla_{c} C-\nabla_{c} \nabla_{d} C=0,
$$

we find

$$
\begin{equation*}
\nabla_{d} l_{c}-\nabla_{c} l_{d}+h_{d}{ }^{a} h_{c a}-h_{c}{ }^{a} k_{d a}=0, \tag{6.12}
\end{equation*}
$$

which are equations of Ricci.
Now the position vector X is expressed as

$$
\begin{equation*}
X=X_{a} v^{a}+\alpha C+\beta D \tag{6.13}
\end{equation*}
$$

and consequently we have

$$
\begin{aligned}
X_{c}=\left(h_{c b} C+k_{c b} D\right) v^{b}+X_{a} \nabla_{c} v^{a}+\left(\nabla_{c} \alpha\right) C & +\alpha\left(-h_{c}{ }^{a} X_{a}+l_{c} D\right) \\
& +\left(\nabla_{c} \beta\right) D+\beta\left(-k_{c}{ }^{a} X_{a}-l_{c} C\right),
\end{aligned}
$$

from which

$$
\begin{gather*}
\nabla_{c} v_{b}=g_{c b}+\alpha h_{c b}+\beta k_{c b}, \tag{6.14}\\
\nabla_{c} \alpha+h_{c b} v^{b}-l_{c} \beta=0, \tag{6.15}\\
\nabla_{c} \beta+k_{c b} v^{b}+l_{c} \alpha=0 .
\end{gather*}
$$

From (6.14), we have

$$
g^{c b} \nabla_{c} v_{b}=n+\alpha h_{a}{ }^{a},
$$

from which, integrating over N,

$$
\begin{equation*}
n \int_{N} d S+\int_{N} \alpha h_{a}{ }^{a} d S=0 \tag{6.17}
\end{equation*}
$$

We next put

$$
\begin{equation*}
w_{b}=h_{b}{ }^{a} v_{a} \tag{6.18}
\end{equation*}
$$

from which

$$
\begin{aligned}
\nabla_{c} w_{b} & =\left(\nabla_{c} h_{b}{ }^{a}\right) v_{a}+h_{b}{ }^{a}\left(\nabla_{c} v_{a}\right), \\
g^{c b} \nabla_{c} w_{b} & =\left(\nabla_{c} h_{a}{ }^{c}\right) v^{a}+h^{b a}\left(\nabla_{b} v_{a}\right), \\
& =v^{a} \nabla_{a} h_{c}{ }^{c}+l_{c} k_{a}{ }^{c} v^{a}+h_{a}{ }^{a}+\alpha h^{b a} h_{b a}+\beta h^{b a} k_{b a},
\end{aligned}
$$

by virtue of (6.10) and (1.14). Thus, integrating over N, we find

$$
\begin{equation*}
\int_{N}\left[v^{a} \nabla_{a} h_{c}{ }^{c}+l_{c} k_{a}{ }^{c} v^{a}+h_{a}^{a}+\alpha h^{b a} h_{b a}+\beta h^{b a} k_{b a}\right] d S=0 . \tag{6.19}
\end{equation*}
$$

From (6.15), we have

$$
\begin{gathered}
\nabla_{c} \nabla_{b} \alpha+\nabla_{c}\left(h_{b a} v^{a}\right)-\left(\nabla_{c} l_{b}\right) \beta-l_{b} \nabla_{c} \beta=0 \\
\nabla_{c} \nabla_{b} \alpha+\nabla_{c}\left(h_{b a} v^{a}\right)-\left(\nabla_{c} l_{b}\right) \beta+l_{b}\left(k_{c a} v^{a}+l_{c} \alpha\right)=0
\end{gathered}
$$

from which

$$
g^{c b} \nabla_{c} \nabla_{b} \alpha+\nabla_{c}\left(h_{a}{ }^{c} v^{a}\right)-\left(\nabla_{c} l^{c}\right) \beta+k_{c b} l^{c} v^{b}+l_{c} l^{c} \alpha=0
$$

Integrating over N, we obtain

$$
\begin{equation*}
\int_{N}\left[\alpha l_{c} c^{c}-\beta\left(\nabla_{c} l^{c}\right)+k_{c b} c^{c} v^{b}\right] d S=0 \tag{6.20}
\end{equation*}
$$

We now assume that

$$
\begin{equation*}
\left(\nabla_{c} X_{b}\right) \cdot X=\alpha h_{c b}, \tag{6.21}
\end{equation*}
$$

which means that

$$
\left(h_{c b} C+k_{c b} D\right)\left(X_{a} v^{a}+\alpha C+\beta D\right)=\alpha h_{c b}
$$

or

$$
\begin{equation*}
\beta k_{c b}=0 . \tag{6.22}
\end{equation*}
$$

We also assume that

$$
\nabla_{a}\left(\frac{1}{n} g^{c b} \nabla_{c} X_{b}\right)
$$

is tangent to the submanifold, which means that

$$
\nabla_{c}\left(h_{a}{ }^{a} C\right)=\left(\nabla_{c} h_{a}{ }^{a}\right) C+h_{a}{ }^{a}\left(-h_{c}{ }^{b} X_{b}+l_{c} D\right)
$$

is tangent to the submanifold, that is to say,

$$
\begin{equation*}
h_{a}{ }^{a}=\text { const } \neq 0, \quad l_{c}=0 . \tag{6.23}
\end{equation*}
$$

Thus, taking account of (6.3) and (6.22), we have, from (6.17) and (6.19),

$$
\begin{align*}
n \int_{N} d S+h_{a}^{a} \int_{N} \alpha d S & =0 \tag{6.24}\\
\int\left[h_{a}^{a}+\alpha h^{b a} h_{b a}\right] d S & =0
\end{align*}
$$

Forming the difference (6.25)-(6.26) multiplied by $(1 / n) h_{d}{ }^{d}$, we find

$$
\begin{equation*}
\int_{N} \alpha\left(h^{b a}-\frac{1}{n} h_{e}{ }^{e} g^{b a}\right)\left(h_{b a}-\frac{1}{n} h_{d}{ }^{a} g_{b a}\right) d S=0 \tag{6.26}
\end{equation*}
$$

Thus, if $\alpha \neq 0$ does not change the sign, we have

$$
h_{c b}=(1 / n) h_{a}{ }^{a} g_{c b},
$$

from which we have the following result.
Theorem 6.1. Assume that a closed and orientable submanifold N of codimension 2 in an $(n+2)$-dimensional Euclidean space satisfies:

$$
\begin{gathered}
\left(\nabla_{c} X_{b}\right) \cdot X=\alpha h_{c b}, \\
\nabla_{c}\left(\frac{1}{n} g^{b a} \nabla_{b} X_{a}\right) \text { is tangent to } N,
\end{gathered}
$$

and that $\alpha \neq 0$ does not change the sign; then the submanifold is umbilical with respect to the mean curvature normal.

Since N is umbilical with respect to the mean curvature normal, we can put

$$
\begin{equation*}
h_{c b}=\lambda g_{c b}, \tag{6.27}
\end{equation*}
$$

where λ is a constant different from zero. Since $h_{c}^{a}=\lambda \delta_{c}{ }^{a}$ and $l_{c}=0$, we have from (6.7)

$$
\nabla_{c}(C+\lambda X)=0
$$

from which

$$
\begin{equation*}
X+\frac{1}{\lambda} C=C_{0} \tag{6.28}
\end{equation*}
$$

where C_{0} is a constant vector, from which we can conclude that the submanifold N is on a sphere with centre at C_{0} and with the radius $1 /|\lambda|$. From (6.5), we see that the equations of Gauss for N as a hypersurface of a sphere are

$$
{ }^{\prime \prime} \nabla_{c} X_{b}=k_{c b} D,
$$

which shows that N is minimal in the sphere. Thus we have the following result.

Theorem 6.2. Under the same assumptions as in Theorem 6.1, the submanifold N is a minimal hypersurface of a sphere.

References

1. A. D. Alexandrov, Uniqueness theorems for surfaces in the large. V, Vestnik Leningrad. Univ. 13 (1958), no. 19, 5-8.
2. - A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962), 303-315.
3. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Springer, Berlin, 1934).
4. H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232-249.
5. C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.
6. Some integral formulas for closed hypersurfaces in Riemannian space, Pacific J. Math. 6 (1956), 291-299.
7. Y. Katsurada, Generalized Minkowskiformulas for closed hypersurfaces in Riemann space, Ann. Mat. Pura Appl. (4) 57 (1962), 283-293.
8. -On a certain property of closed hypersurfaces in an Einstein space, Comment. Math. Helv. 38 (1964), 165-171.
9. ————On the isoperimetric problem in a Riemann space, Comment. Math. Helv. 41 (1966/ 67), 18-29.
10. Y. Katsurada and H. Kôjyô, Some integral formulas for closed submanifolds in a Riemann space, J. Fac. Sci. Hokkaido Univ. Ser. I $2 \mathscr{2}$ (1968), 90-100.
11. Y. Katsurada and T. Nagai, On some properties of a submanifold with constant mean curvature in a Riemann space, J. Fac. Sci. Hokkaido Univ. Ser. I 22 (1968), 79-89.
12. H. Liebmann, Über die Verbiegung der geschlossen Flächen positiver Krümmung, Math. Ann. 53 (1900), 91-112.
13. T. Ōtsuki, Integral formulas for hypersurfaces in a Riemannian manifold and their applications, Tôkoku Math. J. (2) 17 (1965), 335-348.
14. W. Süss, Zur relativen Differentialgeometrie. V, Tôhoku Math. J. 30 (1929), 202-209.
15. K. Yano, Closed hypersurfaces with constant mean curvature in a Riemannian manifold, J. Math. Soc. Japan 17 (1965), 333-340.
16. -_Notes on hypersurfaces in a Riemannian manifold, Can. J. Math. 19 (1967), 439-446.

University of Illinois, Urbana, Illinois

[^0]: Received January 27, 1969. This paper was written while the author was a G. A. Miller Visiting Professor at the University of Illinois.

