
INTEGRAL FORMULAS FOR SUBMANIFOLDS AND 
THEIR APPLICATIONS 

KENTARO YANO 

Introduction. Liebmann [12] proved that the only ovaloids with constant 
mean curvature in a 3-dimensional Euclidean space are spheres. This result 
has been generalized to the case of convex closed hypersurfaces in an tri
dimensional Euclidean space by Alexandrov [1], Bonnesen and Fenchel [3], 
Hopf [4], Hsiung [5], and Suss [14]. 

The result has been further generalized to the case of closed hypersurfaces 
in an w-dimensional Riemannian manifold by Alexandrov [2], Hsiung [6], 
Katsurada [7; 8; 9], Otsuki [13], and by myself [15; 16]. 

The attempt to generalize the result to the case of closed submanifolds in 
an ra-dimensional Riemannian manifold has been recently done by Katsurada 
[10; 11], Kôjyô [10], and Nagai [11]. 

Our aim in the present paper is to obtain first of all the most general integral 
formulas for closed submanifolds in an m-dimensional Riemannian manifold, 
to specialize these formulas, and to apply these formulas to obtain a generali
zation of the theorem of Liebmann. We also discuss submanifolds of co-
dimension 2 in an (n + 2)-dimensional Euclidean space. 

In § 1, we recall formulas for the submanifolds in a Riemannian manifold 
which will be used in the later sections. In § 2, we prove integral formulas for 
closed submanifolds in their most general forms. We specialize these formulas 
in §§ 3, 4, and 5 and prove a theorem which is a generalization of the theorem 
of Liebmann quoted above. In the last section we study submanifolds of 
codimension 2 in an (n + 2)-dimensional Euclidean space. 

1. Preliminaries. We consider an ra-dimensional orientable differentiable 
Riemannian manifold M of class C°° covered by a system of coordinate 
neighbourhoods { U; xh) and denote by gjU {/*}, v\-, Kkji

n, and KjU the 
metric tensor, the Christoffel symbols formed with gjU the operator of co-
variant differentiation with respect to {/%•}, the curvature tensor, and the 
Ricci tensor respectively, where, throughout the paper, the indices h, i, j , k, I 
run over the range {1, 2, . . . , m}. 

We then consider an ^-dimensional compact and orientable differentiable 
submanifold N of class C°° covered by a system of coordinate neighbourhoods 
{ V; ua] and C° differentiably embedded in M, and denote by 

(1.1) xn = xh(ua) 
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the local expressions of N, where, throughout the paper, the indices a, b, c, d, e 
run over the range {1, 2, . . . , n) (1 < n < m). The Riemannian metric of N 
induced from that of M is given by 

(1.2) go = gaBJB 

where 

i 
b j 

(1.3) Bb
l = dbx\ db = d/du\ 

We denote by {/&}, V&, Kdcb
a, and Kcbj the Christoffel symbols formed with 

gcb, the operator of covariant differentiation with respect to {c
a
b], the curvature 

tensor, and the Ricci tensor of N, respectively. 
We put 

(1.4) VcBb
h = dcBb

h + {fJBjB»' - {c\}Ba\ 

and call this kind of covariant differentiation van der Waerden-Bortolotti 
covariant differentiation along the submanifold N. From (1.2) and (1.4), we 
find gjtiVaBc^B^ = 0, which shows that VcBb

h are orthogonal to the 
submanifold N. 

We assume that the mean curvature vector 

(1.5) IP = (l/n)gcbVcBb
h 

never vanishes on N and take a unit vector Ch in the direction of the mean 
curvature vector and then we put 

(1.6) (VeBftOC* = hcb. 

Ch is called the mean curvature unit normal and hcb the second fundamental 
tensor of the submanifold iV' with respect to the mean curvature unit normal. 
The eigenvalues ki, . . . , kn of hcb are called principal curvatures of the sub
manifold with respect to Ch. If k\ — . . . = kn = &, that is, hcb = kgcb, then 
the submanifold is said to be umbilical with respect to Ch. 

From (1.6), we have 

(1.7) gcbVcBb
h = ha

aC\ 

The scalar 

(1.8) H=~i ka = lV 
n a=i n 

is called the first mean curvature of N with respect to Ch. 
Now we put Ch = Cn+ih and choose m — n mutually orthogonal unit 

normals Cw+A • . . > Cm
h in such a way that (Bb

h, Cv
h) form a positively 

oriented frame along the submanifold N, where, throughout the paper, the 
indices u, v, w take the values n + 1, . . . , m. Then VcBb

h can be expressed as 

(1.9) VcBb
h = hcbvCv\ 

which are equations of Gauss, where hcbtn+i = hcb. 

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-046-9


378 KENTARO YANO 

On the other hand, if we put 

v c ^ v uc^v I \ j i]-LJc ^ v 

equations of Weingarten can be written as 

where hc
a

v = hcbvg
ha and lcvw = —lCWv is the so-called third fundamental 

tensor. The lcvw define the connection induced on the normal bundle. For 
v = n + 1, we have 

(1.11) VcC
h = -hc

aBa
h + lcwCw\ 

where lcw = lc,n+i,w From (1.9), (1.11), and the Ricci identity 

VtfV.C7* - VcVdC
h = Kkji

hBd
kBc

jC\ 

we find 

Vd(-hc
aBa

h + lcvCv
h) - Vc(-hd

aBa
h + ldvCv

h) = Kkji
nBd

kBJC\ 

"~ V^d^cjBa — hc
a(hdavCv ) + (VdhvjCv + hv\~~haa

vBa + ldvwCw ) 

i iych<ia)Ba -\- hd
a{hcavCv ) — {ycldv)Cv ldv\~~hcavBa ~\~ hvwCw

l) 

from which, taking the inner product with Bb
h, 

V d^ch i'cv^dbv ~T V Jfldb - [- ldvrlc~bv = -^JcjihBd Bc C 3b , 

or 

(1.12) Vdhcb - Vchdb - ldvhchv + lcvhdhv = KkjihBd*Bc'Bb
iCh, 

which are equations of Codazzi. 
Multiplying (1.12) by gcb and contracting, we find 

(1.13) V A a - V A a - Wa f l , + lavhd% = KkjihB/B^Ch, 

where 

An arbitrary vector field wh normal to the submanifold N is expressed as 

wh = Cu
hwu, 

and consequently 

Vcw
n = (-hc

a
uBa

h + lcuvCv
h)wu + Cu

hdcwu 

= —hc
a
uwuBa

h + (dcwv + lcuvwu)Cv
h. 

We put 

'Vcw
h = (!Vcwv)Cv

h = (dcwv + lCUvWu)Cv
h, 

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-046-9


INTEGRAL FORMULAS 379 

and say that the vector wh normal to the submanifold N is parallel with respect 
to the connection 'V induced on the normal bundle when 

'Vcw
h = 0, 

that is, when Vcw
h is tangent to the submanifold. 

In the latter sections, we assume that the mean curvature vector Hh is 
parallel with respect to the induced connection 'V. This assumption is 
equivalent to the fact that 

VCH" = - Vc(ha
aCh) = - (VXa)Cn + -ha

a(-hc
hBb

n + lcwCw
n) 

n n n 

= — - ha
ahc Bb + - (ycha

a)C + - ha
alcwCw n n n 

is tangent to the submanifold, that is, 

(1.14) ha
a = const ^ 0, lcw = 0. 

2. Integral formulas. We now assume the existence of a vector field 
vh in M and put 

(2.1) vb = Bjftt. 

From this equation we have 

(2.2) Vcvb = (VJBrfvt + BJBWflt), 

from which 

= hSCvt + JB'*(V^ f + Vtv,), 
or 

(2.3) gcbVcvb = aha
a + hBji(^vgji), 

where 

(2.4) a = C'Vi 

and oêf v denotes the Lie derivative with respect to vh. 
Integrating (2.3) over TV, we find 

(2.5) f aha
a dS+h f Bj\^vgn) dS = 0, 

where dS is the surface element of N. 
We next put 

(2.6) wb = hb
ava, 

from which 
Vcw6 = (Vchb

a)va + hb
aVcvUJ 
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and consequently, 

(2.7) gcbVcwb = (VCVK + hhch(ycvb + Vbvc). 

On the other hand, we have, from (2.2), 

i(Ve»6 + Vbvc) = (VcBrfvt + ïBc'BJÇVfli + VtVj), 

and consequently (2.7) becomes 

(2.8) gc»Vcwb = (VCVK + WVjBtfVi + \hc*BjBb\<£vgn). 

Substituting 

V c^b — Vbka Ibv^a v T" 'a»^& « <K-JcjihBb J3JlC 

obtained from (1.13) into (2.8), we obtain 

(2.9) gcbVcwb = (VAa - hJia
av + lavKv - KkjiflBb

kB^Chy 

+ (h'^Mvi + WBJBb\^vgji). 
Integrating this over TV, we find 

(2.10) f [v*Vbha
a + (h'^cBAv* + WBJBJ&XH) 

- KkmBtVBjiC" - livv%\ + lcvh\A dS = 0. 

On the other hand, we have, from (2.4), 

V6a = {-ht'Ba* + htC.^Vt + Bi
sCl{VJvi) 

= (-hava + /„»,) + BJC'iVfl,), 

where v, = Cv*vt and 

VcV*a = V e ( - V » . + /„»,) + (VA0C(Vyt () 

from which 

gc6VcV6a = gc6Vc(-/*sX + Z6W )̂ + thu'0C\Vfi>t + VtVj) 
- WB.'Bffîju, + Vtvj) + g'XvBJCJiVpt) + B^C\VtVjot), 

= gclVc{-hb"va + lbwva) + \{haaC'Cl - WBc'BrfCVflt + Vtvj) 

+ g'XwBJCJiVft) + B^C\VtVjot). 

Integrating over N, we find 

(2.11) f [J(VC'C - A ^ ' S » 4 ) ( i ^ 4 ) + g^SCS&flt) 

+ BkiCt(VkVjvi)]dS= 0. 
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3. The case in which vh is a conformai Killing vector field. We assume 
that vh is a conformai Killing vector field, that is, 

(3.1) &vgjt = Vjvt + VtVj = 2pgjU 

where p = (l/m)ViV\ and consequently 

(3.2) &AN = V , V ^ + KkjiV = ôjp, + bh
iPj - ph

gjil 

where pt = v\p, p^ = Pig*7*. In this case, (2.5) and (2.10) become 

(3.3) ( aha
adS + n ( PdS = 0, 

and 

(3.4) f b6VAfl + (AC6VC5&>, + pK - KkjihBbVBjiCn 

-hvv%\ + lcvhb
CvAdS = 0, 

respectively. From (3.2), we have 

5wC«(V*Vyp,) = BV&i-KtHfi1 + g,iPj + gJtPk - gkjPl) 

= -KujflWC - nPiC\ 

Substituting this into (2.11), we find 

f [phf - A ° + g'XvB^CJiVjVt) - KlwvlBkiCl - nPlC'] dS = 0, 

or 

(3.5) f [«PiC* + Kkjihv
kBjiCh - g c Xz*VCj(V^) ] <*S = 0. 

4. The case in which vh is a conformai Killing vector field and 
(VcBb^Vi = ahcb. The conformai Killing vector field vh can be expressed as 

(4.1) vh = Ba
hva + Cu

hau 

along the submanifold N, where an+i = a. Thus, from equations (1.9) of 
Gauss and (4.1), we have 

(VcBb^Vi = hcbu • au 

= hcb • a + ĉ& n+2 * «n+2 + • • • + hcb m ' Cim. 

We assume in the following that 

(4.2) hcb w+2 • (xn+2 + . . . + hcb m • am = 0, 

that is, 

(4.3) (VA*)»* = «*c». 
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The condition (4.2) or (4.3) is satisfied if 

(4.4) hcbn+2 = 0, . . . , hcbm = 0, 

or 

(4.5) an+2 = 0, . . . , am = 0, 

or 

(4.6) hcb n+2 = 0, . . . , &c& n+s = 0, <^+s+i = 0, . . . , am = 0. 

If (4.4) is satisfied, then equations (1.9) of Gauss take the form 

(4.7) VcBb
h = hcbC\ 

which means that the van der Waerden-Bortolotti covariant derivative 
VcBb

h of Bb
h is in the direction of mean curvature vector. If (4.5) is satisfied, 

then (4.1) takes the form 

(4.8) vh = J5aV + aC\ 

which means that the conformai Killing vector field vh is contained in the 
linear space spanned by vectors tangent to the submanifold N and the mean 
curvature vector. This case has been considered by Katsurada and Nagai [11]. 
We notice that the condition (4.2) or (4.3) is automatically satisfied for the 
case of hypersurface. 

Now, if we assume (4.3), then we have, from (3.4), 

(4.9) f [vbVbha
a + ahcbhcb + pha

a - Kkjihv'kBjiCh 

- hvV%av + hvhbCvVb] dS = 0, 
where v/1c is the tangent part of vh, that is, 

(4.10) v'k = Ba
hva = vh - Cu

hvu. 

5. The case in which vh is a conformai Killing vector field, (Vc2V)flz = 
ahcby and the mean curvature vector is parallel with respect to the 
connection induced in the normal bundle. We now assume that vh is 
a conformai Killing vector field, (VcIV)z>z = oihcb and, moreover, the mean 
curvature vector Hh = (l/n)gcbVcBb

h is parallel with respect to the con
nection induced in the normal bundle. 

In this case, we have (1.14) and consequently, from (3.3), (4.9), (3.5), 
we obtain 

(5.1) K j adS + n \ pdS = 0, 

(5.2) f [ahc%b + Pha
a - Kkmv'kBilCn] dS = 0, 

(5.3) f [nPiC
l + K^B^C} dS = 0, 

respectively. 
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Forming the difference (5.2)- (5.1) multiplied by (l/n)he
e, we find 

(5.4) j a[hcb - i he
egcb)(heb - ~ h/gcb) dS- J Kkjihv'kBjiCn dS = 0. 

Thus if a 9^ 0 has definite sign and Kkjihv'kBjiCh — 0, then hcb = (l/n)ha
agcb, 

which shows that the submanifold N is umbilical with respect to the mean 
curvature normal. Thus we have the following result. 

THEOREM 5.1. Suppose that an orientable Riemannian manifold M admits a 
conformai Killing vector field vh. If a closed and orientable submanifold N of M 
satisfies (4.2) or (4.3), the mean curvature vector is parallel with respect to the 
connection induced in the normal bundle, a ^ 0 does not change the sign, and 

(5.5) Kkjihv'kBjiCh = 0, 

then the submanifold is umbilical with respect to the mean curvature normal. 

We notice here that condition (5.5) is automatically satisfied when M is a 
space of constant curvature (see Katsurada and Nagai [11]). 

We now assume that M admits a homothetic Killing vector field vh, that is, 
p = const. Then we have from (5.3) 

Kkjihv
kBilCh dS = 0 

y"!BitChdS = 0, 

or 

f KWhv'lBHChdS + f KtJi.~"tB,tr* 
JN *JN 

where vffk is the normal part of vn. Thus the condition (5.5) in Theorem 5.1 
can be replaced by 

(5.6) Kkjihv"kBjiCh = 0. 

If, moreover, (4.5) is satisfied, that is, if vh has the form 

vh = Ba
hva + aCh, 

then (5.4) becomes 

JN<x(hcb -hSgeb)(heb -\hd
dgcb) dS + jNKkjihv"kBjiChdS = 0, 

or 

£ a L r * - »h/g Ah<» - l h J t g c i ) + KkmckB}ich\ ds = o. 
Thus condition (5.5) in Theorem 5.1 can be replaced by 

KkmCkB^C = 0, 
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or 

(5.7) -KwPBSC'BiY* = 0. 

This condition has the following geometrical interpretation. We choose n 
mutually orthogonal unit vectors Xi, X2, . . . , Xn tangent to the submanifold 
and consider the sectional curvatures y(C, Xi), y(C, X2)j . . . , y(C, Xn). 
Then (5.7) means that the sum of these sectional curvatures is zero. 

If N is a hypersurface, then (5.7) can be written as 

KjiC'C = 0, 

(see [15]). 

6. Submanifold of codimension 2 in an (n + 2)-dimensional Eucli
dean space. We consider a submanifold N of codimension 2 in an (n + 2)-
dimensional Euclidean space E and let the local expression of N be 

(6.1) X = X(ua), 

where X is the so-called position vector field. 
We put 

(6.2) Xa = daX; 

then the metric tensor gcb of N is given by 

(6.3) gcb = Xc • Xb, 

where Xc • Xb denotes the inner product of Xc and Xb. 
If we put 

VcXb = dcXb — \c b}Xai 

then the mean curvature vector field is given by 

(6.4) H = ±gc\cXb. 

We assume that H 5^ 0 and choose the first unit normal C to the sub
manifold N in this direction and denote by D the second unit normal. 

Then the equations of Gauss can be written as 

(6.5) VcXb = hcbC+kcbD, 

where (l/n)ha
a is the first mean curvature of N and 

(6.6) gcbkcb = 0. 

The equations of Weingarten take the form 

(6.7) VCC = -h*Xa + lcD, 

(6.8) VCD = -kc
aXa - lcC. 
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From the Ricci identity, 

V,VCX6 - VCV,X6 = -Kdcb
aXay 

we have, using (6.5), (6.7), and (6.8), 

<yjic*)C + hcb(-hd
aXa + ldD) + (Vdkcb)D + kcb(-kd

aXa - ldC) 

- (VMC - hdb(-hc
aXa + lcD) 

- (Vckdb)D - kdb(-kc
aXa - lcC) = -Kdcb

aXai 

from which 

(6.9) Kdcb
a = hd

ahcb - hc
ahdb + kd

akcb - kc
akdb, 

(6.10) Vdhcb — Vchdb — ldkcb + lckdb = 0, 

(6.11) Vdkcb — Vckdb + ldhcb — lchdb = 0. 

Equations (6.9) are those of Gauss and (6.10) and (6.11) those of Codazzi. 
In a similar way, from the Ricci identity 

VdVcC - VcVdC = 0, 
we find 

(6.12) Vdlc - Vcld + hd
ahca - hc

akda = 0, 

which are equations of Ricci. 
Now the position vector X is expressed as 

(6.13) X = Xav
a + aC + $Dy 

and consequently we have 

Xc = (hcbC + kcbD)v» + I a V / + (Vca)C + a(-h*Xa + lcD) 

+ (Vct3)D + P(-kc
aXa- lcQ, 

from which 

(6.14) Vcvb = gcb + ahcb + pkcb, 

(6.15) Vca + hcbv» - IS = 0, 

(6.16) Vc/3 + kcbv
h + lca = 0. 

From (6.14), we have 

gchVcvb = n + aha
a, 

from which, integrating over N, 

(6.17) n f dS+ f aha
adS= 0. 

We next put 

(6.18) wb = hb*va, 
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from which 
Vcwb = (Vchb

a)va + hb
a(Vcva), 

gctVcwb = (Vcha
c)va + hba(Vbva), 

= vaVahc
c + lckaV + ha

a + ahMhba + phiakba, 

by virtue of (6.10) and (1.14). Thus, integrating over N, we find 

(6.19) f [vaVahc
c + lckaV + K + <xhiahta + Phbakba] dS = 0. 

From (6.15), we have 

VcV6a + Vc{hbav
a) - (Vclb)0 - lbVcf3 = 0, 

VcV6a + Vc{hbav
a) - (Vclb)p + lb(kcav

a + lea) = 0, 

from which 

gc6VcV6a + Vc(haV) - (VC1C)I3 + kjcv» + lcVa = 0. 

Integrating over N, we obtain 

(6.20) f [alf - /3(V/) + kjV] dS = 0. 

We now assume that 

(6.21) (ycXb) -X = ahcb, 

which means that 

(hcbC + kcbD) (Xav
a + aC + /3D) = ahcb, 

or 

(6.22) 0keb = 0. 

We also assume that 

is tangent to the submanifold, which means that 

Vc(ha
aC) = (ycha

a)C+ha
a(-hc

bXb + lcD) 

is tangent to the submanifold, that is to say, 

(6.23) ha
a = const 9* 0, le = 0. 

Thus, taking account of (6.3) and (6.22), we have, from (6.17) and (6.19), 

(6.24) n ( dS + ha
a f a dS = 0, 

(6.25) j [ha
a + ahbahba] dS = 0. 

https://doi.org/10.4153/CJM-1970-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-046-9


INTEGRAL FORMULAS 387 

Forming the difference (6.25)- (6.26) multiplied by (l/n)hd
d, we find 

6.26) j a[hba - ih/g b a ) (h b a - i h/gtaj dS = 0. 

Thus, if a ^ 0 does not change the sign, we have 

hcb = (l/n)ha
agcbj 

from which we have the following result. 

THEOREM 6.1. Assume that a closed and orientable submanifold N of co-
dimension 2 in an (n + 2)-dimensional Euclidean space satisfies: 

(VcXb) - X = ahcbj 

Vc(-gbaVbXa) is tangent to N, 

and that a 9e 0 does not change the sign; then the submanifold is umbilical with 
respect to the mean curvature normal. 

Since N is umbilical with respect to the mean curvature normal, we can put 

(6.27) hcb = X£c6, 

where X is a constant different from zero. Since ha
c = \ôc

a and lc — 0, we have 
from (6.7) 

V C (C+XX) = 0 , 
from which 

(6.28) X + i C = Co, 

where Co is a constant vector, from which we can conclude that the sub-
manifold N is on a sphere with centre at Co and with the radius 1/|X|. From 
(6.5), we see that the equations of Gauss for N as a hypersurface of a sphere are 

"VcXh = kcbD, 

which shows that N is minimal in the sphere. Thus we have the following 
result. 

THEOREM 6.2. Under the same assumptions as in Theorem 6.1, the submanifold 
N is a minimal hypersurface of a sphere. 
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