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The radiation force exerted on an object by an acoustic wave is a widely studied
phenomenon since the early work of Rayleigh, Langevin and Brillouin, and has led in
the last decade to tremendous developments for acoustic micromanipulation. Despite
extensive work on this phenomenon, the expressions of the acoustic radiation force applied
on a particle have so far been derived only for a steady particle, hence neglecting the effect
of its displacement on the radiated wave. In this work, we study the acoustic radiation force
exerted on a monopolar source translating at a constant velocity that is small compared to
the sound speed. We demonstrate that the asymmetry of the emitted field resulting from
the Doppler effect induces a radiation force on the source opposite to its motion.

Key words: bubble dynamics

1. Introduction

Since the seminal work by Rayleigh (1902, 1905) and Langevin (work reported later by
Biquard 1932a,b), much effort has been devoted to the derivation of theoretical expressions
of the acoustic radiation force exerted by an acoustic wave on a particle. Brillouin
(1925a,b) was the first to recognize the tensorial nature of the acoustic radiation force,
which is not necessarily orthogonal to the insonified interface. Later on, King (1934)
derived an expression of the axial acoustic radiation force exerted on a rigid spherical
particle by a plane wave. This expression was extended to the cases of a compressible
fluid sphere and an elastic particle by Yosika & Kawasima (1955) and Hasegawa & Yosika
(1969), respectively. The case of an incident focused wave was treated by Embleton (1954)
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for a rigid particle, and by Chen & Apfel (1996) for an elastic particle. Later on, the more
general case of the axial force exerted by a Bessel beam was addressed by Marston (2006,
2009).

In parallel, a general expression of the acoustic radiation force exerted by an arbitrary
wavefield on a spherical particle in the long wavelength regime (LWR; i.e. when ka � 1,
with k the wavenumber, and a the particle radius) was obtained by Gork’ov (1962). It was
shown up to third order (in ka) that the radiation force is proportional to the gradient of
an acoustic potential, which is proportional to the difference between the time-averaged
potential and kinetic acoustic energy weighed respectively by the monopole and dipole
scattering coefficients. This expression was extended to sixth order by Sapozhnikov &
Bailey (2013), which is necessary when the average potential and kinetic energy are
uniform in space (e.g. for plane propagating waves). This expression was also extended
by Doinikov (1997a,b,c) to consider the effect of the viscous and thermal boundary layers
in some asymptotic limits (of the boundary layer size compared to the particle size), and
in the general case by Settnes & Bruus (2012) and Karlsen & Bruus (2015). The cases
of non-spherical particles such as disks and spheroids were treated by Keller (1957) and
Silva & Drinkwater (2018), respectively, while the case of transient acoustic fields was
recently addressed by Wang et al. (2021). We can also note that some expressions for
the secondary radiation force (inter-particle force) have been derived by Silva & Bruus
(2011). The specific case of the radiation force exerted on a vibrating bubble known as
the primary Bjerknes force was treated separately by Bjerknes (1906), Blake (1949), Eller
(1968) and Crum (1975). Indeed, bubbles have some specificity: owing to their strong
compressibility compared to the surrounding liquid, their monopolar resonance appears
in the LWR. Hence bubbles can be attracted to the nodes or anti-nodes of a standing
wave depending on whether they are forced below or above their monopolar resonance
frequency (see Eller 1968).

Recently, there has been some renewed interest in the calculation of the acoustic
radiation force with the development of selective acoustical tweezers (see Baudoin &
Thomas (2020) for a review of the subject). Acoustical tweezers rely on the acoustic
radiation force to move objects. To reach selectivity, i.e. the ability to manipulate a
single object independently of other neighbouring objects, it is necessary to localize
the acoustic energy close to the target particle to affect it alone (see e.g. Baresch,
Thomas & Marchiano 2016; Baudoin et al. 2019, 2020). Hence such selectivity cannot
be reached in the LWR. In addition, to calculate the restoring force (i.e. the force that
brings back the particle towards the trap centre), it is necessary to compute the radiation
force when the particle is out-centred from the trap position. Yet all the aforementioned
expressions were limited either to the calculation of the radiation force for an axisymmetric
configuration or to the LWR. To cope with this issue, general expressions of the radiation
force exerted by an arbitrary incident field on a spherical particle, without restriction on
the particle size compared to the wavelength, were obtained by Sapozhnikov & Bailey
(2013) with an angular-spectrum-based method, and by Silva (2011) and Baresch, Thomas
& Marchiano (2013) with a multipole expansion method. The equivalence between the
formulas obtained with the different approaches was demonstrated by Gong & Baudoin
(2021). Note also that some general expressions have been proposed to compute the
acoustic radiation torque exerted by an arbitrary acoustic field on a particle of arbitrary
size by Silva, Lobo & Mitri (2012) and Gong & Baudoin (2020).

Yet in all the theoretical developments mentioned so far, the calculation of the radiation
force is made for a steady particle, hence neglecting the effect of its motion. Some account
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of the interaction between the oscillatory and translational motion of bubbles can be found
in the literature. First, erratic motion of bubbles resulting from complex coupling between
oscillatory and translational motion was reported by Gaines (1932), Kornfeld & Suvorov
(1944), Strasberg & Benjamin (1958), Eller & Crum (1970), and many others since. It
was first suggested by Benjamin & Strasberg (1958), and demonstrated quantitatively
by Eller & Crum (1970), that this erratic motion is related to some parametrically
excited shape oscillations of the bubble. In an attempt to rationalize this behaviour, and
following Saffman (1967), Benjamin & Ellis (1990) showed that even in an inviscid fluid,
self-propulsion of a bubble can be achieved by nonlinear interactions between adjacent
surface deformation modes. In their work, however, the surface mode deformations are
supposed to be known a priori. This work was extended later by Mei & Zhou (1991) to
account for the parametric excitation of surface modes by the isotropic volume mode,
and by Feng & Leal (1995), who considered the direct coupling between translational
motion, volume and shape modes. Finally, Doinikov (2004) obtained an expression of this
coupling whatever the shape modes, their natural frequency, and the type of excitation
(parametric forcing by the volume mode or direct excitation through externally induced
pressure gradients at the surface of the bubble). In parallel, it was also shown by Watanabe
& Kukita (1993) and Doinikov (2002) that even if the bubble oscillations remain spherical,
some complex coupling between volumetric oscillations and translational motion leading
to erratic motion of the bubble can still occur when the bubble is excited by acoustic
standing waves of high intensity. Finally, we can mention the work of Magnaudet &
Legendre (1998), who computed how the viscous drag applied on a translating bubble
is modified by its oscillation.

But none of these works considered the effect of the asymmetry of the acoustic wave
radiated by a translating source on the acoustic radiation force. In this paper, we consider
a monopolar source translating in a quiescent inviscid fluid at constant velocity U along
a fixed axis, and demonstrate that the asymmetry of the acoustic field due to the Doppler
effect (figure 1) induces a self-induced radiation force on the source resisting its motion.
This result is obtained by inserting the well-known solution of the wavefield radiated by a
moving monopolar source into a far-field integral expression of the radiation force exerted
on a moving source, and finally computing this integral within the approximation of slow
translating speed compared to the sound speed.

2. Wavefield radiated by a translating monopolar source

The first step to compute the self-induced radiation force exerted on a moving monopolar
source is to compute the wavefield radiated by this source in a fixed reference frame. This
classic calculation can be found in the acoustics textbook of Morse & Ingard (1968). In
this section, we recall the main steps of the derivation. Here, we suppose the fluid to be
inviscid.

2.1. Wave equation for a translating monopolar source
In acoustics, a monopolar source can be seen as a source of mass, whose strength is
specified by the instantaneous mass flow rate q(t) created by this source. In the following,
the source is supposed to be periodic of period T . For a punctual source translating at
velocity U = Ux = Mco x along a fixed axis x, the mass and momentum conservation
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Figure 1. Sketch illustrating the asymmetry of the acoustic field synthesized by a translating monopolar
source. The normalized field is calculated with (2.21), and for the sake of illustration, the asymmetry is
magnified by choosing Mach number M = 0.5.

equations become

∂ρ

∂t
+ ∇ · (ρv) = q(t) δ(x − Mc0t) δ( y) δ(z), (2.1)

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = ∇ · ¯̄σ, (2.2)

with R = (O, (x, y, z), t) a Galilean reference frame, M the Mach number, co the sound

speed, ρ the density, v the fluid velocity, ¯̄σ the stress tensor equal to −p¯̄I for an inviscid
fluid, ¯̄I the identity tensor, and p the pressure. If we (i) make the classic asymptotic
development of (2.1) and (2.2) up to first order,⎧⎪⎨

⎪⎩
ρ = ρ0 + ερ1, (2.3a)

p = p0 + εp1, (2.3b)

v = v0 + εv1, (2.3c)

with ε � 1, and obtain the linearized mass and momentum balance

∂ρ1

∂t
+ ρ0 ∇ · v1 = q(t) δ(x − Mc0t) δ( y) δ(z), (2.4)

ρ0
∂v1

∂t
= −∇p1, (2.5)

(ii) introduce the sound speed

c2
0 =

(
∂p
∂ρ

)
s
= p1

ρ1
, (2.6)
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where s is the entropy, and (iii) combine the time derivative of (2.4) with the divergence
of (2.5), then we obtain the wave equation

Δp1 − 1
c2

0

∂2p1

∂t2
= − ∂

∂t

[
q(t) δ(x − Mc0t) δ( y) δ(z)

]
. (2.7)

Note that to ease the resolution of this problem, it is convenient to introduce the velocity
potential ψ1 defined by v1 = −(1/ρ0)∇ψ1 such that p1 = ∂ψ1/∂t, which enables us to
suppress the time derivative in the right-hand side of (2.7),

Δψ1 − 1
c2

0

∂2ψ1

∂t2
= −q(t) δ(x − Mc0t) δ( y) δ(z), (2.8)

and will make the future change of variables easier.

2.2. Resolution of the wave equation and Lorentz transformation
The solution of the wave equation (2.8) is well-known for a fixed monopolar source
(M = 0):

ψ1(r, t) = q(t ± r/c0)

4πr
, (2.9)

with r =
√

x2 + y2 + z2 the radial distance. To solve the problem for the moving source,
the idea is to rewrite (2.8) in a reference frame wherein the source is fixed and the wave
equation remains unchanged. This can be achieved by using the invariance of the wave
equation by the Lorentz transformation, which is at the core of special relativity:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x′ = γ (x − Mc0t), (2.10a)

y′ = y, (2.10b)

z′ = z, (2.10c)

c0t′ = γ (c0t − Mx), (2.10d)

where γ , defined by γ−1 = √
1 − M2, is the ‘Lorentz acoustic boost’. With this

transformation, the wave equation (2.8) becomes

Δ′ψ1 − 1
c2

0

∂2ψ1

∂t′2
= −q

(
γ (t′ + Mx′/c)

)
δ(x′/γ ) δ( y′) δ(z′). (2.11)

Since the right-hand side of (2.11) is null when x′ /= 0 for all t′, and using
δ(x′/γ ) = γ δ(x′), we obtain

Δ′ψ1 − 1
c2

0

∂2ψ1

∂t′2
= −γ q(γ t′) δ(x′) δ( y′) δ(z′). (2.12)

If we now introduce a second set of variables,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′′ = γ x′, (2.13a)

y′′ = γ y′, (2.13b)

z′′ = γ z′, (2.13c)

c0t′′ = γ c0t′, (2.13d)
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then the wave equation becomes

Δ′′ψ1 − 1
c2

0

∂2ψ1

∂t′′2
= −γ 2 q(t′′) δ(x′′) δ( y′′) δ(z′′), (2.14)

which now resembles the static monopolar source problem, and whose solution is

ψ1(r′′, t′′) = γ 2 q(t′′ ± r′′/c0)

4πr′′ . (2.15)

If we now perform the inverse transformations to obtain the potential as a function of
(x, y, z, t), then we obtain

ψ1(r′, t′) = γ 2 q(γ (t′ ± r′/c0))

4πγ r′ , (2.16)

with

γ

(
t′ ± r′

c0

)
= γ

c0

[
γ (c0t − Mx)±

√
[γ (x − Mc0t)]2 + y2 + z2

]
(2.17)

= t − M(x − Mc0t)±
√
(x − Mc0t)2 + ( y2 + z2)(1 − M2)

c0(1 − M2)
. (2.18)

We can now introduce the distance R± between the emission and observation points:

R± = M(x − Mc0t)± R1

1 − M2 , (2.19)

with

R1 =
√
(x − Mc0t)2 + ( y2 + z2)(1 − M2). (2.20)

As R± is a distance (positive by definition), R = R+ when the Mach number is M < 1,
and R = R− for Mach numbers M > 1. Here, we consider only small Mach numbers so
that R± = R+. For an outgoing wave radiated by the source, the solution becomes

ψ1(r, t) = q(t − R/c0)

4πR1
. (2.21)

3. Integral expression of the radiation stress in the far field

The next step is to derive a far-field integral expression of the radiation stress exerted on
a moving source. Indeed, in acoustics, a monopolar point source constitutes a far-field
approximation of a real source of finite extent, hence the above expressions are valid only
in the far field.

3.1. Far-field expression of the radiation force for a moving source
The acoustic radiation stress exerted on an object of surface S(t) is by definition the time
average of the surface integral of the stress exerted by the acoustic wave on its surface:

〈F rad〉 =
〈∫∫

S(t)
¯̄σn dS

〉
, (3.1)

where 〈 f 〉 = (1/T)
∫ t+T

t f (t) dt is the time average of the function f , and T is the period
of the function f (t). In general, there are two difficulties when computing this integral:
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x

y

z

R

x∗

y∗

z∗

R∗

U
S

n

n∞

S∞

Figure 2. Here, S represents the source surface, varying over time. The surface S∞ is centred on the source
and moves with it at velocity U in R. The frame of the source is denoted R∗.

(i) the surface of the object is vibrating and hence depends on time (S = S(t)); and
(ii) an expression for the wave scattered by the object in the near field must be known.
Hence generally, this integral is converted into an integral over a closed surface at rest
surrounding the object in the far field by using the divergence theorem and Reynolds
transport theorem (see e.g. the review by Baudoin & Thomas (2020) for details of this
process). Here, an additional difficulty comes from the fact that the particle, in addition to
its vibration, is translating at a constant velocity U. To solve this issue, we will transpose
our integral of the stress on the surface of the object into an integral over a spherical
surface S∞ of radius r∞ 
 λ, centred on the source, and hence translating at velocity
U in R (see figure 2), with λ = c0/f the wavelength, and f the frequency. The volume
between S and S∞ is named V . The integral of (2.2) over V gives

∫∫∫
V

[
∂ρv

∂t
+ ∇ · (ρv ⊗ v − ¯̄σ )] dV = 0. (3.2)

Using the divergence theorem, this volume integral turns into

∫∫∫
V
∂ρv

∂t
dV −

∫∫
S

(
ρv ⊗ v − ¯̄σ )n dS +

∫∫
S∞

(
ρv ⊗ v − ¯̄σ )n∞ dS = 0, (3.3)

with n and n∞ the outgoing normal vectors to the surfaces S and S∞, respectively (see
figure 2). Another equation can be obtained by applying the Reynolds transport theorem
to the momentum density ρv, i.e.

d
dt

∫∫∫
V
ρv dV =

∫∫∫
V
∂ρv

∂t
dV −

∫∫
S
(v · n)ρv dS +

∫∫
S∞
(U · n∞)ρv dS, (3.4)

since the surface S follows the object surface displacement (equal to the fluid displacement
at the interface due to the continuity condition), and the surface S∞ is translating at a
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constant velocity v. If we study the steady regime, then

〈
d
dt

∫∫∫
V
ρv dV

〉
= 0. (3.5)

Finally, if we subtract the time average of (3.4) from the time average of (3.3), and take
into account (3.5), then we obtain

〈F rad〉 =
〈∫∫

S∞

( ¯̄σ − ρv ⊗ v
)

n∞ dS
〉
+
〈∫∫

S∞
(U · n∞)ρv dS

〉
. (3.6)

3.2. Expression as a function of the first-order acoustic field
In order to compute the previous integrals, and since the time average of first-order terms
is equal to 0 for a periodic signal, we need to express the terms appearing in (3.6) up to

second order. Here, we suppose again that the fluid is inviscid and hence ¯̄σ = −p¯̄I. If we
push the asymptotic development up to second order, i.e.

⎧⎪⎨
⎪⎩
ρ = ρ0 + ερ1 + ε2ρ2, (3.7a)

p = p0 + εp1 + ε2p2, (3.7b)

v = εv1 + ε2v2, (3.7c)

then the momentum balance (2.2) at second order in the volume V becomes

ρ0
∂v2

∂t
+ ρ1

∂v1

∂t
+ ρ0 (v1 ∇v1) = −∇p2. (3.8)

If we take the time average of this equation, then we obtain

〈−∇p2〉 =
〈
ρ1
∂v1

∂t
+ ρ0 (v1 ∇v1)

〉
, (3.9)

since 〈∂v2/∂t〉 = 0 in the steady regime. From the first-order momentum conservation
equation (2.5), we have ∂v1/∂t = −(1/ρ0)∇p1, and from the state equation (2.6), we
have ρ1 = p1/c2

0, leading to

ρ1
∂v1

∂t
= − 1

2ρ0c2
0

∇p2
1. (3.10)

And since the acoustic field is by definition irrotational, we have

ρ0 (v1 ∇v1) = ρ0

2
∇v2

1. (3.11)
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Finally, by replacing (3.10) and (3.11) in (3.9), we obtain

〈−∇p2〉 =
〈
− 1

2ρ0c2
0

∇p2
1 + ρ0

2
∇v2

1

〉
. (3.12)

From this equation, we obtain the second-order averaged stress tensor:

〈 ¯̄σ2
〉 = −

〈
p2

¯̄I
〉
=
〈(
ρ0
v2

1
2

− 1
ρ0c2

0

p2
1

2

)
¯̄I
〉
. (3.13)

Then at second order, we have

〈ρv ⊗ v〉 = 〈ρ0v1 ⊗ v1〉 , (3.14)

〈ρv〉 = 〈ρ1v1〉 , (3.15)

so that if we replace (3.13), (3.14) and (3.15) in (3.6), we obtain the final expression of the
radiation force as a function of the first-order acoustic fields:

〈F rad〉 =
〈∫∫

S∞

[(
ρ0
v2

1

2
− 1
ρ0c2

0

p2
1

2

)
¯̄I − ρ0v1 ⊗ v1

]
n dS

〉
+
〈∫∫

S∞
(U · n∞)ρ1v1 dS

〉
.

(3.16)

4. Expression of the radiation force for a slowly translating source

The final step is to compute this integral from the first-order acoustic field.

4.1. Pressure, density and velocity fields at first order
The first step to compute (3.16) is to determine the pressure, density and velocity fields at
first order from the expression of the velocity potential determined previously in (2.21).
First,

p1 = ∂ψ1

∂t
=

(
1 − 1

c0

∂R
∂t

)
q′(t − R/c0)

4πR1
−

q(t − R/c0)
∂R1

∂t
4πR2

1
. (4.1)

Moreover, the coordinate of the velocity v1i along the direction xi = (x, y, z) is

v1xi = − 1
ρ0

∂ψ1

∂xi
= − 1

ρ0

⎛
⎜⎜⎝

−1
c 0

∂R
∂xi

q′(t − R/c0)

4πR1
−

q(t − R/c0)
∂R1

∂xi

4πR2
1

⎞
⎟⎟⎠ . (4.2)

Of course, we have ρ1 = p1/c2
0. Here, R and R1 are time- and space-dependent functions.

To simplify the calculation of the derivatives and the force integral, we perform the change
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x

y

z

R

x∗

y∗

z∗

R∗

U
S

S∞

er∗

r∗ = r∞
θ∗ϕ∗

Figure 3. We make the change of variables corresponding to the Galilean transformation from R to R∗, and
then use the local spherical coordinates (r∗, θ∗, ϕ∗).

of variable corresponding to the Galilean transformation from R to R∗:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗ = x − Mc0t, (4.3a)

y∗ = y, (4.3b)

z∗ = z, (4.3c)

t∗ = t. (4.3d)

Then R1 and R become

R1 =
√

x∗2 + (y∗2 + z∗2)(1 − M2) and R = Mx∗ + R1

1 − M2 . (4.4a,b)

The Jacobian matrix J∗ of this transformation is

J∗ =

⎛
⎜⎝

1 0 0 −Mc0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , with det J∗ = 1. (4.5)

We use the spherical coordinates (r∗, θ∗, ϕ∗) to compute the integral (see figure 3 for the
notation):

⎧⎪⎨
⎪⎩

x∗ = r∗ cos θ∗, (4.6a)

y∗ = r∗ sin θ∗ cosϕ∗, (4.6b)

z∗ = r∗ sin θ∗ sinϕ∗. (4.6c)

The key point in the following derivation of the self-radiation force is that we consider
M � 1, which means that the source translates at low velocity compared to the sound
speed. This enables us to get simpler expressions of the pressure and velocity fields.
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First, we derive the expressions of R1 and R at first order in M:

R1 =
√

r∗2 − M2(y∗2 + z∗2) =
√

r∗2 − M2r∗2 sin2 θ∗

� r∗
(

1 − M2

2
sin2 θ∗

)
� r∗ + O(M) (4.7)

and

R �
Mx∗ + r∗

(
1 − M2

2
sin2 θ∗

)
1 − M2 � r∗ + Mx∗. (4.8)

In order to get the velocity and the pressure fields at first order in M, we compute at first
the different time derivatives of R1 and R:

∂R
∂t

= ∂x∗

∂t
∂R
∂x∗ + ∂t∗

∂t
∂R
∂t∗

= −Mc0

(
∂r∗

∂x∗ + M
)
, (4.9)

with
∂r∗

∂x∗ = x∗

r∗ = cos θ∗. (4.10)

Hence we obtain
∂R
∂t

= −Mc0(cos θ∗ + M). (4.11)

Then
∂R1

∂t
= ∂x∗

∂t
∂R1

∂x∗ + ∂t∗

∂t
∂R1

∂t∗
= −Mc0 cos θ∗. (4.12)

Finally, the acoustic pressure is

p1 =
[
1 + M (cos θ∗ + M)

]
q′(t − R/c0)

4πr∗ + q(t − R/c0) (Mc0 cos θ∗)
4πr∗2 . (4.13)

We choose a sphere S∞ with radius r∞ huge compared to all the other lengths of the
problem. We then write the acoustic pressure in the far-field approximation. At first order
in M, we obtain

p1 = 1 + M cos θ∗

4πr∗ q′(t − R/c0). (4.14)

In order to derive the velocity field, we compute the different space derivatives of R1 and
R: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂x

= ∂x∗

∂x
∂R
∂x∗ = cos θ∗ + M, (4.15a)

∂R
∂y

= ∂y∗

∂y
∂R
∂y∗ = sin θ∗ cosϕ∗, (4.15b)

∂R
∂z

= ∂z∗

∂z
∂R
∂z∗ = sin θ∗ sinϕ∗, (4.15c)
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and

∂R1

∂xi
= x∗

i
r∗ . (4.16)

We obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1x∗ = 1
ρ0c0

(
(cos θ∗ + M) q′(t − R/c0)

4πr∗ + c0
q(t − R/c0)

4πr∗2
x∗

r∗

)
, (4.17a)

v1y∗ = 1
ρ0c0

(
sin θ∗ cosϕ∗ q′(t − R/c0)

4πr∗ + c0
q(t − R/c0)

4πr∗2
y∗

r∗

)
, (4.17b)

v1z∗ = 1
ρ0c0

(
sin θ∗ sinϕ∗ q′(t − R/c0)

4πr∗ + c0
q(t − R/c)

4πr∗2
z∗

r∗

)
. (4.17c)

We finally write the velocity field in the far-field approximation:

v1x∗ = 1
ρ0c0

q′(t − R/c0)

4πr∗ (cos θ∗ + M),

v1y∗ = 1
ρ0c0

q′(t − R/c0)

4πr∗ sin θ∗ cosϕ∗,

v1z∗ = 1
ρ0c0

q′(t − R/c0)

4πr∗ sin θ∗ sinϕ∗.

(4.18)

(4.19)

(4.20)

4.2. Calculation of the integrals
With the change of variables (4.3a) and since the Jacobian of this change of variables is
equal to 1, the integral expression of the radiation force (3.16) becomes

〈F rad〉 =
〈∫∫

S∗∞

[(
ρ0
v2

1
2

− 1
ρ0c2

0

p2
1

2

)
¯̄I − ρ0v1 ⊗ v1

]
n∗ dS∗

〉

+
〈∫∫

S∗∞
(U · n∞∗)ρ1v1 dS∗

〉
, (4.21)

with S∗∞ the surface defined by r∗ = r∗∞, a constant radius, the infinitesimal element of
surface dS∗ = r∗∞

2 sin θ∗ dθ∗ dϕ∗, θ∗ ∈ [0,π] and ϕ∗ ∈ [0, 2π]. Finally, n∗ = n∗∞ = e∗
r ,

with (e∗
r , e∗

θ , e∗
ϕ) the spherical coordinates unit vector of R∗. Since we have already

expressed the pressure, velocity and density fields as a function of the spherical
coordinates (r∗, θ∗, ϕ∗), we can now compute integral (4.21). In the following
subsubsections, we compute separately each term of this integral.
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4.2.1. Potential energy term
We have〈∫∫

S∗∞

1
ρ0c2

0

p2
1

2
n∗ dS∗

〉

=
〈

1
2ρ0c2

0

∫ 2π

ϕ∗=0

∫ π

θ∗=0

[(
1 + M cos θ∗

4πr∗∞

)
q′(t − R/c0)

]2

e∗
r r∗

∞
2 sin θ∗ dθ∗ dϕ∗

〉
.

(4.22)

The integration over ϕ∗ along the y∗ and z∗ axes is null. Hence only the term along x∗
remains:〈∫∫

S∗∞

1
ρ0c2

0

p2
1

2
n∗ dS∗

〉

=
〈

π

ρ0c2
0

∫ π

0

[(
1 + M cos θ∗

4πr∗∞

)
q′(t − R/c0)

]2

cos θ∗ sin θ∗ dθ∗ x

〉
. (4.23)

If we swap the time and space integrals, and since the function q(t) is periodic, then we
obtain〈∫∫

S∗∞

1
ρ0c2

0

p2
1

2
n∗ dS∗

〉
=
〈
q′(t)2

〉
16πρ0c2

0

∫ π

0
(1 + M cos θ∗)2 cos θ∗ sin θ∗ dθ∗ x. (4.24)

Since the last integral is equal to 4M/3, we obtain〈∫∫
S∗∞

1
ρ0c2

0

p2
1

2
n∗ dS∗

〉
=
〈
q′2〉M

12πρ0c2
0

x. (4.25)

4.2.2. Kinetic energy term
We have〈∫∫

S∗∞
ρ0
v2

1
2

n∗ dS∗
〉

=
〈

1
2ρ0c2

0

∫ 2π

ϕ∗=0

∫ π

θ∗=0

(
q′(t − R/c0)

4πr∗∞

)2

×
(
(cos θ∗ + M)2 + sin2 θ∗

)
e∗

r r∗
∞

2 sin θ∗ dθ∗ dϕ∗
〉
. (4.26)

Using the same arguments as previously, we have〈∫∫
S∗∞
ρ0
v2

1
2

n∗ dS∗
〉

=
〈
q′2〉

16πρ0c2
0

∫ π

0
(1 + 2M cos θ∗ + M2) cos θ∗ sin θ∗ dθ∗ x.

(4.27)
Since the last integral is equal to 4M/3, we obtain〈∫∫

S∗∞
ρ0
v2

1
2

n∗ dS∗
〉

=
〈
q′2〉M

12πρ0c2
0

x. (4.28)
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4.2.3. Convective term
Due to the symmetry of the problem (invariance by rotation over angle ϕ∗), no force can
exist along the y and z directions. Hence we need only compute the following components
of v1 ⊗ v1:

(v2
1x∗)x ⊗ x + (v1x∗v1y∗)x ⊗ y + (v1x∗v1z∗)x ⊗ z. (4.29)

Then, due to the dependence of these terms over ϕ∗ given in (4.18)–(4.20), and since
e∗

r = cos θ∗x + sin θ∗ cosϕ∗y + sin θ∗ sinϕ∗y, we obtain〈∫∫
S∗∞

[ρ0v1 ⊗ v1]n∗ dS∗
〉

=
〈
q′2〉

8πρ0c2
0

∫ π

0

[(
cos θ∗ + M

)2 cos θ∗ + (cos θ∗ + M
)

sin θ∗2
]

sin θ∗ dθ∗ x. (4.30)

The integral term is equal to 8M/3, so

〈∫∫
S∗∞

[ρ0v1 ⊗ v1]n∗ dS∗
〉

=
〈
q′2〉M

3πρ0c2
0
vx. (4.31)

4.2.4. Source translation term
The term due the translation of the sphere S∞ is〈∫∫

S∗∞
(U · n∗

∞)ρ1v1 dS∗
〉

= M
〈
q′2〉

8πρ0c2
0

∫ π

0
(1 + M cos θ∗)(cos θ∗ + M) cos θ∗ sin θ∗ dθ∗ x.

(4.32)
Since at leading order the last integral is equal to 2/3, we finally obtain

〈∫∫
S∗∞
(U · n∞)ρ1v1 dS∗

〉
=
〈
q′2〉M

12πρ0c2 x. (4.33)

5. Final expression of the self-radiation force and discussion

5.1. Final expression of the self-radiation force
If we now replace (4.25), (4.28), (4.31) and (4.33) in (4.21), we obtain the final expression
of the self-acoustic radiation force exerted on a monopolar source:

〈F rad〉 = −
〈
q′2〉M

4πρ0c2
0

x. (5.1)

There are many interesting things to notice in the above calculations and final expression.
First, we see that the potential and kinetic energy terms cancel at leading order in M, so
that the self-radiation force is due solely to the convective and translation terms. Second,
the radiation force is proportional to the radiated intensity, and inversely proportional to
the sound speed squared, which is classical in radiation force calculations. In addition,
here the self-radiation force is proportional to the hydrodynamic Mach number M, which
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is expected since the force results from the asymmetry of the radiated field due to the
translation of the source. Finally, and most importantly, 〈F rad〉 · U is always negative,
which means that this force always slows down the movement of the bubble.

5.2. An example of a monopolar oscillator: a vibrating bubble
In this subsection, we estimate this force for a translating and oscillating bubble in a
liquid, which constitutes one example of an acoustic monopolar source. Indeed, bubbles
are exceptional resonators, which exhibit strong monopolar resonances in the LWR. Let us
consider a spherical bubble of mean radius rb in a liquid of density ρ0 and sound speed c0
vibrating periodically at its resonance frequency, called the Minnaert frequency:

ωM = 1
rb

√
3γ p0

ρ0
, (5.2)

with γ the heat capacity ratio of the gas in the bubble, and p0 the pressure of the
surrounding fluid. At resonance, λ/rb = 2πc0/ωMrb = 2πc0

√
ρ0/3γ p0 
 1 (of the order

of 5 × 102 for an air bubble in water). Since the bubble is very small compared to the
wavelength in this case, it can be considered as a point source a few wavelengths away
from the bubble surface. The oscillation of this bubble creates a periodic mass flux
q(t) = Q cos(ωMt), whose magnitude Q is basically equal to the surface of the bubble
4πr2

b, times the surrounding liquid mass density ρ0, times the amplitude of the oscillations
αrb (where α designates a dimensionless parameter fixing the magnitude of the bubble
oscillation), times the pulsation ωb:

Q ∼ 4πr2
bρ0αrb

1
rb

√
3γ p0

ρ0
= 4πr2

bα
√

3γ p0ρ0. (5.3)

Consequently, we have 〈
q′2
〉
∼ 1

2ω
2
MQ2 = 72(πγ p0αrb)

2 (5.4)

and

|〈F rad〉| =
〈
q′2〉

4πρ0c3
0

U ∼ 18πγ 2p2
0α

2r2
b

ρ0c3
0

U. (5.5)

For small bubbles, it is interesting to compare this radiation force to the Stokes drag:

|F Sto| = CπμrbU, (5.6)

with C = 4 for a bubble in a pure liquid moving at low Reynolds number, C = 6 if the
surface is polluted so that the slip boundary condition is turned into a no-slip boundary
condition (see e.g. Kim & Karilla 2005), and C = 12 for an undeformed bubble at large
Reynolds numbers (see Moore 1963). If we compare (5.5) to (5.6), then we obtain

|〈F rad〉|
|F Sto| ∼ 18

C
γ 2p2

0α
2

μρ0c3
0

rb. (5.7)

For a bubble rising in water at ambient temperature and pressure, we have ρ0 ∼ 1 ×
103 kg m3, μ ∼ 1 × 10−3 Pa s, c0 ∼ 1.5 × 103 m s−1, γ ∼ 1.4 and p0 = 1 × 105 Pa, so
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that with α ∼ 0.5, we obtain

|〈F rad〉|
|F Sto| ∼ 7m−1 × rb. (5.8)

Hence the self-radiation force would be small compared to the Stokes drag for a millimetric
bubble. However, the self-radiation force could become significant in cryogenic liquids
such as liquid nitrogen or superfluid helium. In liquid nitrogen at T � 77 K, we have ρ0 =
8 × 102 kg m−3, μ = 2 × 10−4 Pa s, c0 = 8 × 102 m s−1, γ ∼ 1 and p0 = 1 × 105 Pa, so
that for α ∼ 0.5, we obtain

|〈F rad〉|
|F Sto| ∼ 140m−1 × rb, (5.9)

which means that for a bubble of a few millimetres in radius, the two phenomena would
be of the same orders of magnitude. Note first that this calculation constitutes a rough
comparison of the radiation force and Stokes drag since (i) for large bubble oscillations, the
bubble dynamics becomes nonlinear, and (ii) the Stokes drag is also modified by the bubble
oscillations, as demonstrated by Magnaudet & Legendre (1998). Note also that the case of
bubbles moving in a liquid constitutes just one possibility over the many configurations
covered by (5.1) since the above theory applies for an arbitrary monopolar source moving
in an arbitrary fluid as soon as (i) the monopolar source emits a signal in the LWR, and
(ii) the source is moving at low speed compared to the sound speed.

6. Discussion, conclusion and perspectives

In this paper, we calculated the theoretical expression of the radiation force exerted on a
translating monopolar source by its own acoustic field. We showed that the asymmetry
of the radiated field due to the motion of the source creates a self-induced radiation
force opposite to its motion. This theoretical work opens many perspectives: First, the
self-radiation force could be measured in cryogenic liquids by studying the deviation of the
rising speed of bubbles with and without forced oscillations. Second, this calculation could
be extended (i) to different types of sources (different modes), (ii) to non-inviscid fluids,
or finally (iii) to include an incident field. This could unveil some new physical effects
of potential interest for subjects ranging from three-dimensional quantum analogues to
acoustophoresis. Indeed, for (i), the force calculated here for a monopolar source is
opposite to the source motion. But higher-order modes could lead to propulsive force
instead, and hence to an object transported by its own wave. This would resonate with
some recent experimental and theoretical investigations of essentially dipolar sources
surfing on their own capillary waves by Ho et al. (2021) and Benham et al. (2022).
For (ii), the fluid surrounding the source is considered as inviscid. It is well known
that thermo-viscous effects can modify the radiation force due to the presence of a
thermo-viscous boundary layer (see Doinikov 1997a,b,c; Settnes & Bruus 2012; Karlsen
& Bruus 2015). This boundary layer essentially modifies the expression of the scattering
coefficients that relate the phase and amplitude of the incident field to the one of the
scattered field. In our calculation, the scattering coefficients do not appear since we did
not consider any incident field. But thermo-viscous effects would appear when considering
the response of the source to an external excitation. Thermo-viscous effects can also
produce another nonlinear effect, called acoustic streaming. This streaming can result
from dissipation in the boundary layer (in which case it is called ‘boundary Rayleigh
streaming’) or from dissipation of the wave in the bulk (so-called ‘bulk Eckart streaming’).
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Nevertheless, for symmetry reasons, it is known that monopolar sources do not produce
any acoustic streaming (see e.g. Doinikov et al. 2019). The streaming produced by an
oscillating bubble generally results from parametric excitation of higher-order modes (see
Cleve et al. 2019; Doinikov et al. 2019; Regnault et al. 2021), or asymmetries produced
by the presence of a wall (Elder 1958; Marmottant & Hilgenfeldt 2003) or other bubbles
(Meeki-Berrada et al. 2016; Combriat et al. 2018; Doinikov et al. 2022). Finally, for (iii)
it is important to note that in the present calculation, only a wave emanating from the
source is considered (there is no incident wave). Hence the source is supposed to be either
activated by another type of field (not acoustic) – e.g. electromagnetic, gravity – or to be
self-powered. In the case of acoustophoresis (see e.g. Petersson et al. 2007) and acoustic
tweezers applications (see e.g. the review by Baudoin & Thomas 2020), objects are set
into motion by external acoustic waves. Hence the adaptation of the present calculation to
estimate the impact of the motion of the manipulated object on the experienced radiation
force would require to add the effect of the incident wave to the present formalism.
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