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EXAMPLES FOR THE THEORY OF INFINITE 
ITERATION OF SUMMABILITY METHODS 

PERSI DIACONIS 

1. Introduction. Garten and Knopp [7] introduced the notion of infinite 
iteration of Césaro (Ci) averages, which they called Hœ summability. Flehinger 
[6] (apparently unaware of [7]) produced the first nontrivial example of an Hœ 

summable sequence: the sequence {a*}T=i where at is 1 or 0 as the lead digit of 
the integer i is one or not. Duran [2] has provided an elegant treatment of Hœ 

summability as a special case of summability with respect to an ergodic semi­
group of transformations. Duran showed that logarithmic summability con­
tains Hœ summability and that, for bounded sequences, the Hœ method was 
equivalent to Banach-Hausdorff summability introduced by Eberlein [3]. 

In Section 2 of this paper it is shown that a bounded sequence can be assigned 
a limit by a finite number of iterations of C\ density if and only if the sequence 
is C\ summable to the same limit. The logarithmic method is introduced and 
shown to be equivalent to the more widely used zeta (or Dirichlet) density. 
An elementary proof of the inclusion of the Hœ method in the logarithmic 
method is given. Similar results are given for iterates of the logarithmic 
method. 

In Section 3 examples are given of subsets of the integers which differentiate 
between the summability methods of Section 2. Roughly stated, any set of 
integers with polynomial gaps has C\ density; if the gaps are exponential then 
the set of integers has log density (but not d density). The set of integers will 
have Hœ density (but not d density) if and only if the gaps are linear expo­
nential. 

2. Definitions and basic theorems. Let M be the Banach space of all 
bounded sequences of real numbers (xïf x2, . . .) with norm ||x|| = supn |xw|. 
For x Ç M write 

1 n 

d(x, n, 1) = — J^ xt 
n i=i 

and inductively define 

1 n 

d(x, n, k) = — J2 ^(x> n, k — 1) 
n i=i 

for k > 1. Clearly lim infw d(x, n, k) ^ lim infw d(x, n, k — 1). Similarly the 
upper limits are decreasing in k. 
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490 PERSI DIACONIS 

Definition, x G M is said to be Hk summable to c if limn d(x, n, k) = c (Hi 
summability is usually called C\ summability). x is said to be Hœ summable to c 
if lim* lim infn d(x, n, i) = lim* lim sup^ d(x, n, i). 

LEMMA 1. For x £ if, k < oo, x is Hk summable to c if and only if x is d 
summable to c. 

Proof. Lemma 1 is immediate from Theorems 49, 55 and 92 of Hardy [9]. 

Hk summability is discussed at some length in Hardy [10]. A consequence of 
Lemma 1 is that C\ summability to c implies Hœ summability to c. 

Definition, x f i f is said to be log summable to c if 

f -L V""* X f 

hm : y, ~ — c. 
n lOgn fcï t 

x is zeta summable to c if 

°° x • 
lim (s - 1) X ~s = c. 
5->l+ 2=1 ^ 

Zeta summability is used fairly regularly in analytic number theory where 
it is also known as Dirichlet density or analytic density (see Hasse [10, pp. 
223-226], Serre [12, pp. 125], or Golomb [8]). Ishiguro [11] and Hardy [(10, 
p. 87]) discuss other summability methods equivalent to log summability. 

THEOREM 1. Log and zeta summability are equivalent on M. 

Proof. Let x £ M. Since the sequence xt is bounded, there is no loss in 
generality in assuming i j ^ 0. Define a measure on the positive real numbers 
with mass xji at the points log i. Let the distribution function of the measure 
be 

U(x) = X) ^ . 
tog i^x 1 

The Laplace transform of U is 

/ , \ V ^ Xi —tlogi V ^ Xi 

i=\ * x'=l ^ 

Theorem 2 in Feller [5, p. 445], implies that l im^œ / œ(t) = I if and only if 
l im^œ U(x)/x = /. Let s = t -\- 1, x = log y\ this becomes 

lim (s — 1) X ~* = I if a n d only if lim , Y) — = /. 
*->i+ <»i * ^ 0 0 l o g ^ ^ 1 / * 

Duran [2] gives a useful necessary and sufficient condition for a matrix 
method to dominate Hœ summability. The proof depends on a theorem an­
nounced by Eberlein [4]. As a special case, Duran showed that if x £ i f has 
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SUMMABILITY METHODS 491 

Hœ limit c then x is log summable to c. The next theorem is an elementary 
proof of this result. 

THEOREM 2. / / x Ç M is Hœ summable to I then x is log summable to I. 

Proof. Writing Sn = 2"=i xi} summation by parts shows that for m < n, 

(2-1) Z 7 = Z TJJ^TÛ + °(D 

Inductively from (2-1), for each fixed k, 

Ê T = { Ê d(x,i,k)-\ + Ok(l) 
i=m * V i=m * / 

= z ( - ) ' 
i^m \ I I I 

+ 0(1). 

(2-2) 
^ inf d(x, i, &){logw - logw + 0(1)} + 0*(1). 

Divide both sides of (2-2) by log n and let n go to oo to get 

1 n <V 1 W 

(2-3) liminfn: /C ~̂  = liminfn: Y" —: > inf d(x, i, k). 
log » fci i log n i^m i ^m 

As this last inequality holds for all m, we have for each k, 

1 A x-
lim infw — V, -r ^ lim inf * d(x, i, &). 

A similar inequality holds for the upper limits; thus 

1 A x 
lim lim infn dix. n. k) ^ lim infw, V, -r 

* logn f=1 i 

This proves the theorem. 

1 A x 
^ lim supn i zl ~r ^ lim lim supnd(x, n, k). 

logwfcî Î k 

Entirely similar results can be derived for iterates of log density. As an 
example the analog of Lemma 1 will be given in detail. The pi oof requires the 
following Tauberian theorem which is an extension of a theorem given by 
Ishiguro [11]. 

THEOREM 3. Let atbe a sequence of real numbers with 

n a • Z f = o(\ogn). 

If n log n\an — an_i| < k for some k > 0, then limn an = 0. 

Proof. Summation by parts yields 

*n+ 
at ^ kilog n. 
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Thus 

ll ~ \t~n\ S \*i-*»$<**}+ h£*> log: 

where kt are positive constants. Thus the hypothesis imply that the at are 
bounded. 

For notational simplicity let d = d(x, <5) = [x8] where 0 ^ ô ^ 1 and [y] is 
the greatest integer less than or equal to y. The hypothesis imply that 

X) y = o(\ogx) 

while summation by parts shows 

Z 7* = M Z 7) + Z , ) ( Z -•) (ar*+*] - ^[,+i+i]) \ 
x^iûd I \x^i^d î/ l^i^x^ + 8-x \\x^j^x+i ]l J 

= 0 j l o g ( ^ ) + 0 ( i ) 

+ Z , Vog (x + i) - log (*) + O I - ) ( (a[ar+i] - a[z+i+i]) 

^ * 1 i i . V^ log (x + i) — log x 
^ ôad\ogx + k 2^ , 7~ « -N-1 7—r^T 

l«Si<^+*.-s (* + t) log (x + l) 

\X i^i<5f+8_x {X + I) log (x + l)J \X] 

The sum in the error term is 0 ( l / x ) . The first sum is easily seen to be 

logx{5 - log(l + « ) } + 0 ( 1 / * ) . 

Combining these estimates and letting x go to infinity leads to 

0 ^ lim infn ô ad + {Ô - log(l + 5 ) } . 

Dividing by <5 and letting 5 go to zero leads to 

0 ^ lima lim infn ad 

from which it follows that 0 ^ lim infw an. Using an — an+1 ^ k/(n log n) 
above leads to the opposite inequality for the upper limit which proves the 
theorem. 

x Ç M is said to be logh summable to c if the kt\\ iterate of the log method 
converges to c. 

LEMMA 2. For x £ M, k < 00, x is logk summable to c if and only if x is log 
summable to c. 

Proof. It is elementary that if x is log summable to c then x is log/c summable 
to c for all k. For the converse, the Tauberian condition of Theorem 3 must be 
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checked. If 

n lOg ft fcl I 
where 

3=1 J 

then 

\jT{ j/\\ogi \ogi + l/ ^\ogi logi 

*aog*)(iogi + ^) n 
\ il a>i+i :<J (log i) (log i + 1) i log i i log i ' 

Similar arguments show 

k" 
bi+i — bt ^ -Tz . . 

i log i 
Thus Theorem 3 implies limn an = c. An induction completes the proof. 

The infinite iteration of log summability is dominated by the matrix method 
with 

2 < j < i 
(log log i)j l o g i ' ~ J - . 

0 elsewhere 
Details may be found in Diaconis [1]. Duran [2] discusses other related 
results. 

3. Examples. Let A be a subset of the integers {1, 2, 3, . . .} = N. Let 
di be the indicator function of the set A. The convergence properties associated 
with the vector a = (#i, a2, a3, . . .) £ M allow a natural definition of various 
notions of density of the set A. Thus A is said to have C\ density I if a is C\ 
summable to /. Similar conventions will be used for log and H^ summability. 

In this section [x] denotes the greatest integer less than or equal to x, 
{x} = x — [x] denotes the fractional part of x, and for real numbers s and t, 
{Sj t) = {i £ TV: s ^ i ^ /}. In what follows,/ and g will denote polynomials 
written 

f(x) = axn + bxn~l + 4-2Xw"2 + • • • + dQ, 
g(x) = axn + cxn~l + en-.2x

n~2 + . . . + e0. 

To rule out trivial cases, assume that 

(3-1) degf = deg g, both leading coefficients are positive and equal, 

and 0 < (c - b)/na < 1. 
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In all cases where one of the assumptions in (3-1) is violated it is straight­
forward to check that the set U?=i (f(i),g(i)) is either finite or has finite 
complement. 

THEOREM 4. Let f and g be polynomials satisfying the assumptions (3-1). 

Let A = Uï - i </(*"), g(*')>. ^ 
Case I. If n = 1 and a is irrational, then A has C\ density (c — b)/a. 
Case 2. If n ^ 2, then A has d density (c — b)/na. 

Proof. Case 1. The set (ai + b, ai + c) contains either \c — b] or [c — b] + 1 
points. It contains [c — b] + 1 points if and only i f l — {c — b} ^ {ai + b} 
^ 1. Since a is irrational, the number, y(k), of sets (ai + b, ai + c), 1 ^ i ^ k, 
which contains [c — b] + 1 points is k{c — b) + 0(fe). Thus 

l imsupn- 2 a< = lim sup*-777 S a* 

= lim sup* "T~T~ {k[c - b] + o(k)\ = . 

A similar argument yields the same lower limit, concluding the proof of Case 1. 
Case 2. The number of integers in the set (f(i), g(i)) is gii) — f(i) + 0(1) as 

i —* oo . Thus 

1 n 1 
l imsup„- Ya ai = limsup^-TTT ] £ at 

n t=i gW i£ffik) 

= limsup*-^ £ {gii) -f(i) + 0(1)} 

= lim sup, -±r i^zMi + 0 ( t - i ) + 0 ( 4 ) 1 = i d . 
g(«) v n ) na 

A parallel argument for the lower limit concludes the proof. 

THEOREM 5. Let f and g satisfy (3-1). Let A = U£Lo (10 / w , 10'<*>). Then A 
has log density (c — b)/na but not C\ density. 

Proof. To simplify notation, write t(x) = 10*. Standard bounds for the 
sum X!m=P l/m yield 

r 1 v^ ai r 1 \r^ &z 
lim SUpw : 2 ^ "=" = l i m SUP* Tj i n x /TT 2 ^ ~ • 

logw fcï i ^ (loglO)g(&) i^fet*» * 
The last sum is 

S »€<«,!r«c,c0» « = § llog^7^ + 0W(ïïï// 
= i o g i o E {«(»)-/(*)} +o ( i ) . 
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Making the substitution leads to 

t. 1 A at c — b 
hm sup„ : 1^ — = 

logn i^[ i na 
as required. Again, the lower limit follows from similar arguments. 

The proof of Theorem 6 below shows that A does not have C\ density in 
the case t h a t / and g are linear. In fact, the limit points of the sequence \/n 
2^=i ai form the interval 

1QC~& - 1 10 a + ( 6- c )(10 c- 6- 1)1 
10a - 1 ' 10a - 1 J 

in the linear case. If/ and g are quadratic or higher degree polynomials, argu­
ments similar to that of Theorem 7 show that A does not have Hœ density. 
Thus A does not have C\ density. Detailed proofs for the nonexistence of d 
density in those cases are recorded in Diaconis [1]. 

THEOREM 6. Let 0 < {c - b)/a < 1. Then A = U?=o <10G*+&, 10G*+C) has 
Hœ density (c — b)/a. 

Proof. Flehinger [6] proved this in the special case a = l,b = 0, c = logio 2. 
Flehinger's proof generalizes in a straightforward if somewhat longwinded way 
to yield the results stated. Further details can be found in Diaconis [1]. 

THEOREM 7. The set A = U?=o (10*2, 10(*+1/2)2) does not have Hœ density. 
Rather, lim infn d(a, n, k) = 0, lim sup„ d(a, n, k) = 1 for every k. 

Proof. Writing 1CF = t(y) and d(x, k) for d(a, x, k), consider x of the form 
x = t({n + s/2)2) where 5 is a real variable, 0 < 71 ^ s ^ 1, for 71 to be 
chosen later. 

+t{{n+îï) -^»2»}-
The largest term in the sum, when divided by x, is 

^ { ( W - | ) 2 - ( W + |)2} = 00(-W))> 

where the implied constant is independent of 5 and n. Thus, for 71 ^ 5 ^ 1, 

d(x, 1) = 1 + 0(nt(~n)) + 0(t(-n)) = 1 + o(l) 

where the implied constant may depend on 71, but is independent of 5 and n. 
This proves lim sup^ d(x, 1) = 1. Assume inductively yi} 0 ^ 71 ^ 72 • • • 
^ jj < 1, have been found such that for yt < s ^ 1, d(t((n + s/2)2), i) = 
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1 + o(l) as n —» 00. We now show for any e > 0, jj + e < s ^ 1 implies 
d(t(n + s/2)\j + 1) = 1 + o ( l ) , as w ^ o o . 

<7y+e)/2)2) «((n+s/2)2) "I 

E d(*,i)+ Z d(*,i) • 
fc=l K(n+(7y+€)/2)2) J 

Z((«+(7; + 0/2)2) 
2\ " 

fc=l «((n+(7y+«)/2)2) 

In the first sum, since 0 ^ d(k, j) ^ 1, dividing by /((n + s/2)2) shows the 
first sum is 0(t ((yj + e — s)n)) = 0(1), where the implied constant may de­
pend on e but not on n, s. All terms in the second sum are 1 + 0(1). Making 
this substitution, the second sum is Y + o(Y) where 

Combining these estimates gives 

d(t((n + s/2Y)J + 1) = 1 + (7(1) + o(l + o(l)) + o(l) = 1 + 0(1), 

as was to be shown. The result for upper limits now follows by taking 71 = e, 
72 = 71 + e/2, 73 = 72 + e/4, . . . . Essentially, the same estimates give the 
same results for the lower limits. Again x is chosen of the form x = 
t((n + s/2)2), but now 1 < 71 ^ 5 ^ 2. Then d(x, 1) = 0(t((l - s)n)) = 
o(l), the rest of the proof following similarly. 

Remarks. 1) In the linear case of Theorem 4 the set A always has d density 
even if the leading coefficient a is rational. Simple examples show that the 
density need not be equal to (c — b)/a. 

2) Theorem 5 shows that the set of integers with an even number of digits 
has log density 1/2. 

3) It is possible, but notationally awkward, to extend Theorem 7 to any 
polynomials f(x), g(x) of degree greater than 1. The set A of Theorem 7 is 
U?=o <10*2, 10*2+*+1/4). Theorem 5 shows that A has log density 1/2. 

3) A computation similar to Theorem 6 shows that sets of the form 
UJLo (1010/a), 10loo(k)), whe re / and g are linear, have Lœ density but not 
log density. 

5) Theorem 7 together with the results of Section 6 of Duran [2] show that 
the logarithmic method is not a Hausdorff method. 
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