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ABSTRACT. Wave ogives arise in a solution of the 
continuity equation by the method of characteristics. Steady 
ice flow is assumed. Ice velocity, channel width, and 
mass-balance functions combine to form a wave-excitation 
potential that yields the forcing func tion for wave ogives . 
This linear-systems formulat ion extends the ogive theory of 
Nye. Convolution of the temporal cumulative mass balance 
and spatial forcing functions gives the total wave pattern 
below an ice fall. Many ice falls do not generate ogives 
because the wave amplitude is modulated by a factor related 
to ice-fall length. The wave ogives at Austerdalsbreen, 
Norway, are due almost entirely to ice acceleration at the 
top of the ice-fall, i.e . the same zone that King and Lewis 
showed was responsible for forming Forbes bands. 

RESUME. Ogives de vague. Des ogives de vagues 
apparaissent comme solution de I'equation de continuite par 
la methode des caracteristiques, en supposant un ecoulement 
permanent. La vitesse de la glace, la largeur du courant et 
le bilan de masse s'ajustent pour former un potentiel 
d'excitation de vagues qui determine la fonction de foryage 
des ogives de vague. Cette formulation de systemes lineaires, 
developpe la theorie des ogives de Nye. Une convolution 
du bilan accumule au cours du temps allie a une fonction 
de foryage donne le comportement total d'une vague a la 
suite d'une chute de glace. Beaucoup de chutes de glace ne 

INTRODUCTION 

Ogives are transverse surface features that form at the 
rate of one per year at ice falls on some alpine glaciers. 
Ogives travel down-glacier at the surface velocity of the 
ice, so that the wavelength of an ogive pattern is the 
distance ice flows in one year. There are two related types 
of ogives: pairs of alternating light and coloured bands, 
called "Forbes bands", first described by Forbes (1843), and 
topographic waves called "wave ogives". Not all wave trains 
on glaciers are wave ogives. Trains of serac blocks formed 
in ice falls can cause wave patterns down-stream (Tyndall, 
1874, p. 180; Washburn, 1935; Fisher, 1947; Sharp, 1960; 
Vallon, unpublished), and compressive stress gradients can 
cause wave trains distinct from wave ogives (Holdsworth, 
1969; Hughes, 1971, 1975; Williams, 1979). Ogives occur in 
many parts of the world, e.g. the Alps (Forbes, 1843), 
Norway (King and Lewis, 1961), Iceland (Ives and King, 
1954; King and Ives, 1956), Greenland (Atherton, 1963), the 
Canadian Rockies (Sherzer, 1907, p. 50), the Andes 
(Lliboutry, 1957, 1958), the Karakoram (Yafeng and 
Wenying, 1980), the Himalaya (Haefeli, 1957), and Alaska 
(Leighton, 1951). 

King and Lewis (1961) described the origins of the 
coloured bands. In their view, crevasses near the top of 
Odinsbreen ice fall on Austerdalsbreen, Norway, collect dust 
in summer and snow in winter. Years later, when these 
closed and compressed crevasses are below the ice fall, they 
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donnent pas naissance a des ogives parce que l'amplitude 
des vagues est modulee par un facteur lie a la longueur de 
la chute de glace. Les ogives de vague de I'Austerdalsbreen, 
Norvege, sont pratiquement entieremement dues a 
I'acceleration de la glace au sommet de la chute, c'est-a-dire 
la mllme zone que King et Lewis ont trouvee responsable 
de la formation des bandes de Forbes. 

ZUSAMMENFASSUNG. Wellen-Ogiven. Wellen-Ogiven treten 
in einer LOsung der Kontinuitlltsgleichung mit der Methode 
der Charakteristiken auf. Es wird stetiger Eisfluss 
angenommen. Funktionen der Eisgeschwindigkeit, der Kanal­
weite und der Massenbilanz ergeben kombiniert ein Potential 
der Wellenerregung, das die Erzeugungsfunktion fur Wellen­
Ogiven darstellt. Diese Formulierung in !inearen Systemen 
erweitert die Ogiven-Theorie von Nye. Die Konvolution der 
zeitlich kumulierten Massenbilanz und der rllumlichen 
Zwangsfunktionen liefert das vollstllndige Wellenmuster unter 
einem Eisbruch. Viele Eisbruche erzeugen keine Ogiven, 
weil die Wellenamplitude durch einen Faktor, der von der 
Lllnge des Eisbruchs abhllngt, moduliert wird. Die Wellen­
Ogiven am Austerdalsbreen in Norwegen stammen fast ganz 
von der Beschleunigung des Eises am Beginn des Eisbruchs, 
also derselben Zone, die nach King und Lewis fur die 
Bildung von Forbes-Bllndern verantwortlich ist. 

are seen as narrow structural bands (1-100 cm thick) of 
dirty and bubbly ice, respectively, extending to a large 
depth in the glacier. The Forbes bands are the result of 
variations in the numbers of these narrow structural bands 
per unit distance down the glacier. Leighton (1951), 
Lliboutry (1957), Fisher (1951, 1962), Vallon (unpublished), 
Reynaud (1979), and Lliboutry and Reynaud (1981) 
discussed the foliated structure of ogives. The view that the 
banded structure is sedimentary in origin (Agassiz, 1840, p. 
40; Vareschi, 1942; Fisher, 1947; Godwin, 1949) is now 
largely discredited. 

It has long been known that there is some connection 
between wave ogives and Forbes bands. Tyndall (1874, p. 
131) and King and Lewis (1961) associated the dark bands 
with the troughs of the wave ogives and the light bands 
with the crests. Atherton (1963) and Elliston (1957), who 
worked in a variety of different climatic regions, associated 
the dark bands with the leading slopes of the waves. 

Typical wave ogives may have a crest-to-trough 
amplitude of 10 m right below the ice fall. The amplitude 
usually decays with distance travelled down the glacier, so 
that often only 10-20 waves are seen. Differential mass 
balance due to snow drifts in the troughs (Nye, 1958; Lick, 
1970) and, possibly, viscous relaxation of the waves (Glen, 
1958; Vallon, unpublished) reduce the wave amplitude. these 
processes usually dominate the wave amplification caused by 
longitudinal compression down-glacier from the ice fall . 
Some wave-ogive trains persist, however, for many more 
years, e.g. Trimble Glacier North Branch, Alaska Range 
(Fig . I). 

Early theories of ogive-wave formation (Forbes, 1843; 
Haefeli, 1951[a], [b], 1957; Streiff-Becker, 1952) favoured a 
seasonally varying longitudinal stress at the foot of the ice 
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Fig. J. Wave ogives on Trimble Glacier, Alaska. (Photograph by A.S. Post; U.S.G.S. Project 
o ffice-Glaciology negative # F654-94.) 

fall' these variatIOns were assumed to be caused by seasonal 
cha~ges in the sliding velocity. From strain observations on 
Austerdalsbreen, however, Nye (1959[a], [b]) calculated the 
distribution of stress and found that the ogives there could 
not be explained by seasonal pressure changes. Nye (1958) 
proposed another mechanism for creating wave ogives. He 
showed that, even when the flow was steady, annual waves 
should be expected below an ice fall, due to interaction 
between the annually periodic seasonal mass balance and the 
large plastic deformations taking place in the ice fall. A 
vertical column of ice passing through an ice fall in 
summer is stretched horizontally by the local high velocity 
gradients, thus exposing a larger surface area than ice 
columns of equal volume immediately above and below the 
ice fall. This ice in the ice fall in summer loses a larger 
fraction of its volume to ablation, becoming a trough in an 
ogive-wave train down-glacier from the ice fall. Vallon 
(unpublished, p. 51) applied Nye's theory to the generation 
of ogives from Seracs du Geant on the Mer de Glace. 
Martin (1977) showed that this mechanism could also 
generate kinematic waves at ice falls in response to fluctua­
tions of climate. The Nye theory is the basis of the 
developments reported here. Washburn (1935) also suggested 
that the annual mass-balance cycle could cause wave ogives 
but he did not attempt to formulate the principle 
mathematically. 

Large seasonal variations in velocity exist on many 
glaciers and these seasonal changes may well cause 
additional annual waves. However, to quote Nye (1958), "If 
the waves from an icefall are thought to be due entirely to 
some other process, it is then necessary to explain why the 
ablation mechanism is absent." Because the mechanism des­
cribed by Nye is capable of generating large annual waves 
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that adequately explain observed wave ogives, I will restrict 
further attention to the simple case of steady ice flow. The 
existence of waves caused by unsteady flow merits attention 
but is not examined here. 

QUANTITATIVE TREATMENT 

Let x be the coordinate in the direction of ice flow 
and U(x) be the forward velocity of the ice. Because the 
theory concerns regions of thin and rapidly sliding ice, U(x) 
is approximately equal to the ice-surface velocity. 

Since the wavelength of wave ogives where they 
become visible below an ice fall rapidly becomes less than 
the ice thickness (due to compressive flow), the wave forms 
are too short to propagate as kinematic waves (Langdon and 
Raymond, 1978) (Nye (1958) discussed this .possibility), and 
the waves do not perturb the flow. This is consistent with 
the assumption that U(x) is independent of time, i.e. 
au l at = O. The waves are simply carried forward at the 
velocity of the ice surface, which is treated strictly as a 
"conveyor belt" in this theory. Letting h(x,t) be ice 
thickness, Nye defined an Annually Repeating State (ARS) 
by h(x,t) = h(x,t + I) for time in years. W(x) is the 
transverse width between two flow lines, A(x,t) the mass­
balance rate, and Q(x,t) the ice flux given by 

Q(x,t) = h(x,t)U(x)W(x). (I) 

Following a section of ice moving at U(x) in channel of 
unit width, Nye used the steady-velocity assumption to con­
vert the continuity equation 

ah(x.t) _1_ aQ(x,t) 
+ 

W(x) at ax 
A(x,t) (2) 
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to the total derivative form 

DQ(x,t)/ Dx = A(x,t). (3) 

Odinsbreen ice fall at Austerdalsbreen is in the ablation 
zone. Nye assumed that the amount of winter snowfall there 
was unimportant to the wave-generation process, being 
merely a protective covering for the true glacier surface. 
To simplify the analysis, he also assumed that the net 
annual ablation of ice occurred instantaneously each year at 
time to' i.e. 

'" 
A(x, t) b(x) 2 S(l -to + n) (4) 

11=-00 

where S(l) is the Dirac delta function, n is an integer, and 
b(x) is the net annual balance given by 

b(x) = r A(x.l)dt. 
o 

(5) 

He then derived a recursion relation for the glacier­
thickness profile h(x) in an ARS immediately after the 
ablation at to 

U(x - ).) 
h(x) = h(x -).) - b(x) (6) 

U(x) 

for ice that was at position (x -).) one year previously. Nye 
assumed a constant input ice thickness of 13.8 m at the 
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Fig. 2. (a) Austerdalsbreen velocity and mass balance. 
Odinsbreen ice fall; curves redrawn from Nye (1958). 
T( x) is the time in years for ice to flow from the origin 
/0 position x. ( b) Wave-excitation potential for W = I m. 
Arrows indicate approximately linear sections in Table I. 
(c) Austerdalsbreen ice thickness h(T) at the midpoint of 
the ablation season. Solid curve: numerical solution with 3 
months ablatioll season. Brokell curve: Nye (1958) with 
instantaneous ablation. 

Waddington: Wave ogives 

ortgm x = 0 for Odinsbreen ice fall and used Equation (6) 
to predict the wave pattern at Austerdalsbreen (Fig. 2c). 
The annual mass balance b(x) and the surface velocity U(x) 
shown in Figure 2a are redrawn from Nye (1958). 

The agreement was good between the observed and 
predicted wavelength and phase. The theory does not 
attempt to predict the decay of the waves. The sharpness of 
the troughs resulted from the unrealistic assumption in 
Equation (4); the ablation season at Austerdalsbreen actually 
lasts about 3 months (Nye, 1958). 

Wave ogives have been reported in accumulation areas 
(Atherton, 1963; Post and LaChapelle. 1971, p. 57). 
Although Nye formulated the theory in terms of instant­
aneous ablation, the same combination of seasonal mass 
balance and plastic deformation can produce waves above 
the fim line. 

The ablation})lastic deformation mechanism is capable 
of producing very large waves at ice falls anywhere on a 
glacier. The question that arises (e.g. Post and LaChapelle, 
1971. p. 57) is: why are large ogives not present below 
many active ice falls? 

WA VE-OGIVE SOLUTION USING METHOD OF 
CHARACTERISTICS 

The continuity Equation (2) with steady velocity U(x) 
can be solved in a more general form that includes the 
wave ogives caused by the mechanism Nye described, and 
explains the absence of waves below many ice falls. 

Multiplying the continuity Equation (2) by U(x) and by 
W(x). and using Equation (I) gives 

aQ(x.t)/at + U(x)aQ(x,t)/ax - A(x,/)U(x)W(x). (7) 

Now. I change the distance variable x to a new 
variable T(x), the time required for ice to flow from the 
origin (x = 0) to position x. T and x are related by 

T(x) 
r.: ds 
~U(s) , 

T 
x(T) = 1 U(t)dt. 

(8) 

Nye also used this transformation when evaluating Equation 
(6). T will be treated as the independent space variable 
with the understanding that for any spatially varying 
function f, f(T) ;: f(x(D). 

Using the chain rule with Equations (8) gives 

aQ( x, t) 
U(x) ax 

dxaQ aQ( T, t ) 
--= 
dTax aT 

so that Equation (7) becomes 

aQ(T,t) 

at 
+ aQ( T, t) = A(T,t)U(T)W(T). 

aT 

(9) 

(10) 

This equation is readily solved by the method of character­
istics (e.g. Whitham. 1974. p. 19) to give 

dQ 

dT 
A(T.t)U(T)W(D (11 ) 

along the characteristic curves dT Idt = 1. i.e. along 
T = t - ~ where ~ is an integration constant. 

These characteristics (Fig. 3) are the trajectories of the 
vertical ice columns. Each characteristic is labelled by a 
unique value of 4>. the time when that ice passed the 
origin. 

Equation (l1) is a single total derivative in one spatial 
variable T. It resembles Equation (3) used by Nye and is 
easily integrated to give 
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Fig. 3. Characteristics in (T,t) space. T(x) is the time taken 
by ice to flow from the origin to x, so it measures 
position on the glacier, and t is time. Each characteristic, 
representing the trajectory of an ice column, is 
parameterized by ~, the time the ice passed the origin 
T = O. 

T 
Q(T,T +~) - Q(To,To +~) = I A(s,s + ~)U(s)W(s)ds 

To 
(12) 

where To is a reference position at which the boundary 
condition is applied. 

To represent wave ogives, the solution in Equation (12) 
must contain terms that correspond to wave forms travelling 
down the glacier at the speed of the ice, i.e. at 1 year's 
flow distance per year. This requires the form Q(I - T). 
Below the ice fall, this propagating solution must also have 
a spatial periodicity of 1 year's flow distance. 

To proceed further, I will assume that the mass balance 
A(T,t) is separable into the summation 

A(T,t) = 2 Xi(T)Yi(t). 

i=l 

(13) 

This form includes, as a special case, 

(14) 

where the annual cycle Y(t) is weighted by the annual net 
balance X(T) at each position T. The mass balance in 
Equation (4) that Nye used for Austerdalsbreen had this 
form. Because Equation (12) is linear in the mass balance, 
the summation in Equation (13) will carry through all the 
linear operations which follow. To keep the expressions as 
simple as possible, I can consider the case N = I, and drop 
the subscripts, without loss of generality. 

It is possible to introduce travelling wave forms into 
the solution through propagating mass-balance waves having 
the form A(T,t) = b(t - T) when N is larger than unity in 
Equation (13). In fact, the disappearance of the wave ogives 
can be represented by such terms; zones of excessive 
ablation rate propagate down the glacier so as to remain on 
wave crests. I have not included this effect in the examples 
I show. Any propagating waves formed between To and T 
in the examples arise from the ablation-stretching 
mechanism. 

It will be useful, subsequently, to define a function 
8(t) as an integral of the temporal variation Y(t) of the 
mass balance 

t 
8(t) = I Y(s)ds. (15) 

o 

To simplify the appearance of the equations, I will 
define a "wave-ogive excitation potential" 'I'(T) 
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'I'(T) = U(T)W(T)X(T) (16) 

which comprises the total spatial dependence of the 
integrand in Equation (12). The gradient of this potential 
will be the forcing function for wave ogives. 

The input flux at the up-stream boundary T = To is 
used as a boundary condition. Substituting the mass balance 
in Equation (14) into the continuity Equation (10) evaluated 
at the boundary To, gives 

(17) 

Integrating this from time zero to time t = To + ~, i.e. up 
the vertical boundary line at To in the (T,t) plane (Fig. 3) 
using Equation (15), gives 

Q(To,To + ~) = Q(To ,0) + 'I'(To)8(To + ~) 

_ ITo+~ aQ(To's) 
aT ds. 

o 

(18) 

This is the input flux at the boundary To for the 
characteristic ~. There are three terms. The first is a 
constant datum flux equal to the flux that crossed the 
boundary To at time t = O. The second term is the change 
in flux at the boundary due to the synchronous rise and 
fall 8(t) of the whole surface in response to the seasonal 
changes. The final term gives the flux changes at the 
boundary To due to advection of spatial wave forms 
through the boundary. 

Substituting the mass balance in Equation (14) into the 
flux solution of Equation (12) using the excitation potential 
in Equation (16), and recalling that Y(t) = d8/dt, gives 

IT dB(s +~) 
Q(T,T + 4l) - Q(To,To + t) = 'I'(s)ds. 

dt 
To 

Integrating by parts on the right-hand side, 

( 
d'l'(s) 

= 'I'(T)8(T + 4l) - 'I'(To)8(To + 4l) - --8(s + 4l)ds. 
ds 

To 

(\9) 

(20) 

After substituting the boundary condition Equation (18), and 
setting T + 4l = t, 

I

To+4l aQ(T ,s) 
Q(T,t) = Q(To'O) - as 0 ds + 'I'(T)8(t) -

o 
(21) 

IT d'l'(s) 
- -- B(s + [I - T)ds. 

ds 
To 

If the summation is carried through from Equation (13), 

I TO+~ aQ(Tp,s) 
Q(T.t) = Q(To'O) - as ds + 

o 
(22) 

To find the waves in the ice-thickness profile h(T,t), divide 
through by U(x(T»W(x(T». To see the waves as a function 
of distance x rather than the travel time T, stretch the T 
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axis by the inverse transformation in Equation (8). Equation 
(22) is the solution for the flux at all times t and positions 
T > To with the assumptions: 

(I) velocity is steady everywhere, and 
(2) mass balance is separable as in Equation (13). 

The first three terms in Equation (21) were discussed 
above. The final term, defined as P(ToT,[t - T]), yields the 
wave ogives. The dependence on [t - T] indicates that this 
term contains a disturbance propagating in the positive x 
direction at the same speed as the ice. 

To represent wave ogives, it must also be an ARS. 
Because the seasonal balance variation Y(t) has a period of 
I year, so does its integral B(t) (Equation (15», provided 
that the mean of Y(t) is made zero by a suitable choice of 
the terms in Equation (13); then substituting B(t) = B(t + I) 
into the propagation term P yields P(To,T,[t - T) = 
P(To,T,[t + I - T]), i.e. the wave form is an ARS. 
Furthermore, for T in a region below the ice fall where 
the forcing function d'i'/dT vanishes, P(To,T + I,[t -T + I)) z 

P(To,T,[t - T]), i.e. the propagating disturbance is a wave 
that repeats with a wavelength of I year's flow distance. 

LINEAR SYSTEMS FORMULA nON FOR OGIVES 

Green's function 
Any incremental step change tl'i' in the excitation 

potential 'i'(T) at position T 1, or equivalently, an impulse 
tl'i'6(T-T1) in the forcing function d'i'/dT, generates a set 
of waves given by 

G([t - T);T1) = t.'i'B(Tl + [t - T]). (23) 

The function B(T1 + [t - T]) is the Green's function (e.g. 
Morse and Feshbach, 1953, p. 791) or impulse solution for 
wave ogives. The total wave pattern is the Green's function 
multiplied by the forcing function integrated over the whole 
up-stream region where the excitation potential varies. 

Annual waves are not seen on all glaciers because all 
the small waves due to gradients in velocity, mass balance, 
or channel width tend to have differing phase; this makes 
them interfere destructively. Only on glaciers where the 
gradients are large and localized, such as in an ice fall, can 
these waves add together constructively to give observable 
wave ogives. 

Physical interpretation 
Nye (1958) illustrated the wave-generating mechanism 

by the ARS shown in Figure 4. The ice velocity (Fig. 4a) 
is doubled to U1 = 2Uo between Band c. Ice travels this 

u(x) 

~~1 ~ ~l...----a 
X 

B C 

h(x) 
b --

Fig. 4. Double-step ice-fall model. The ice travels the 
distance BC ill 6 mOllths. The mass balallce is COllstant alld 
is applied illstantaneously each year . (a) Ice velocity . (b ) 
Ice thicklless: immediately before ablatioll ( solid line ) ; 
immediately after ablatioll (dashed line) . 

Waddillgtoll : Wave ogives 

distance in 6 months. The mass-balance function is spatially 
constant and is applied instantaneously each year at the 
same time. The ice thickness (Fig. 4b) immediately before 
ablation occurs is shown by the solid line. The ice thickness 
immediately after ablation is shown by the broken line. 
Before ablation, the volumes of elements So and Wo are 
equal. So is on the fast section BC during the summer 
ablation, while Wo is not. Ablation removes approximately 
twice as much mass from the element So as from the 
elements Wo and W 1 on either side, because So has 
approximately twice as much surface area exposed to 
ablation. Down-stream, the volumes S j that were in the ice 
fall in summer are shorter than the elements Wj , that 
passed the ice fall in the winter, so the S j volumes form 
troughs. 

However, the result in Equation (23) indicates that 
there is an even simpler wave-generating model. If the 
velocity merely increases or decreases, but not both, waves 
are still generated. This model is shown in Figure 5 for a 
decreasing velocity step from Uo to U l '" Uo/2, with an 
instantaneous, spatially constant mass balance. As before, the 
solid curve in Figure 5b is the ice thickness immediately 
before ablation and the broken curve is immediately after. 

U(x) 

~:1 a 

x(T1) 
x 

h(x) 

Ao 

Fig. 5. Single-step model. The constant mass balance is 
applied instantaneously each year. (a) Ice velocity. (b) Ice 
thickness: immediately before ablation (solid line); 
immediately after ablation (dashed line). 

In this case, the ablation removes twice the volume 
from the column Ao' directly up-glacier from x(T1), as 
from the column Bo of equal volume directly down-glacier. 
Later, when both Ao and Bo have moved down-glacier, and 
are travelling at the same velocity, Bo will stand higher 
than A

Q
• A new discontinuity is generated in this way every 

year, giving the saw-tooth pattern. 
From the definition in Equation (16) of the excitation 

potential, it is apparent that longitudinal gradients of mass 
balance and channel width contribute annual waves in the 
same manner as do velocity gradients. Nye (1958) noted that 
variations in width and mass balance could generate waves. 
However, the relative changes in these factors on glaciers 
are usually less than the relative velocity changes in an ice 
fall. 

These three factors would be expected to influence 
the wave amplitude on simple physical grounds. If I 
consider the ice in terms of vertical prisms, the waves arise 
because the mass balance removes or adds a different 
amount to prisms immediately above and below the position 
x(T l )· 

As illustrated in Figure 6a, a change of velocity 
achieves this by stretching the ice prism in the down-stream 
direction to expose a different surface area. A change in 
glacier width achieves this by stretching the ice prism 
laterally (Fig. 6b) to expose a different surface area. A 
change in mass balance achieves this by removing ice to a 
different depth in prisms presenting equal surface area (Fig. 
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c 

r 

Velocity 
Change 

Width 

Mass balance 

Change 

Fig. 6. Three factors generating waves. (a) A change of 
velocity U(x). (b) A change of width W(x) . (c) A change 
of mass balance Xix). The ARS profiles are shown 
immediately before instantaneous ablation is applied. The 
shaded volumes indicate the mass about to be ablated from 
previously equal volumes of ice above and below the 
transition point x(T 1)' 

6c). A longer ablation season would generate smoother 
waves. 

Convolution relation 
If I define a reversed cumulative- balance function 

B (t) = B( -t) and if the excitation potential 'I'(T) is constant 
u~-glacier from the boundary To and down-glacier from the 
observation point T, the ogive term P takes the standard 
form of a linear convolution of the time-dependent term Br 
with the space-dependent term d'l'/dT. The variable is 
[t-T]=~ 

P(t -T) J
"d'l'(S) 
-- B ([t - T] - s)ds. 

ds r 
-<0 

(24) 

The theory of convolutions, and algorithms to do 
convolutions, is widely known. For example, the forcing 
function d'l'/dT may be treated as a smoothing filter applied 
to the wave term Br 

If the forcing function d'l'/ dT is non-zero down-stream 
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from T, the truncated convolution with finite limits must be 
used for the exact solution. However, if below T the 
forcing function is small, or is uniform for a large distance, 
the convolution in Equation (24) is a good approximation. I 
will show this in the next section. The only significant 
effect of a small negative velocity gradient is to cause 
longitudinal compression. This amplifies eXlstmg waves 
expressed in terms of ice thickness and has no effect on 
waves expressed in terms of ice flux. 

IMPLICATIONS 

I will consider two types of driving functions, and use 
the convolution Equation (24) to illustrate how destructive 
interference can occur, even on active ice falls, to prevent 
the formation of observable waves. Combinations of these 
simple velocity patterns can be applied to any ice fall to 
get a convenient estimate of the expected ogive-wave 
amplitude. 

Constant potential gradient 
A generalization of the impulsive step change in 

excitation potential in Equation (23) is a constant potential 
gradient from "0 at To to '1'1 at Tl as shown in Figure 7a. 
For example, the potential gradient could be due to a 
velocity gradient. 

111 ~ . 
WIT:"O _ ~ ~ ~ ~ ~ _ J~~ ____ a_ 
. ~l _ ~ ; 

dill 
dT 

~I~------

T 
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To T1 T 

t-- T ~ 

A C 
Ql 
U 
c 
.9 
o 

CD 

-AL-~~~~--~~--~~--r-~~ 

1.0 

a. 
EO.S 
o 
Ql 

> o 
~ 

o 

o 

2 3 4 S 
t (years) 

2 3 4 S 
T (years) 

Fig. 7. Amplitude of ogives from a velocity, width, or 
mass-balance gradient. T is a measure of distance 
down-glacier, and t is time. (a) Wave-excitation potential. 
(b) Forcing functioll. (c) Seasonal mass balance. (d) 
Normalized crest-to-trough wave amplitude as function 0/ 
length T , over which the potential varies. The triangles 
show the amplitudes 0/ waves in numerical solutions (Fig. 
8). 
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The forcing function d'l'/dT in Figure 7b is a "box-
car" function of length T = TI - To' 

d'l' '1') - '1'0 
-= To < T < TI 
dT T (25) 

0 T < To or T> T1 • 

For this forcing function, some general results are 
immediately apparent. First, the wave amplitude will, in 
general, tend to decrease as the gradient decreases, i.e. as T 

lengthens, or as '1'0 approaches "1' Secondly, because 
convolution using Equation (25) is (except for a constant 
factor) just a running average over a distance T, Equation 
(24) must be identically zero whenever T is an integer and 
the mass-balance integral 8(t) is an annually repeating 
function with zero mean. 

If, for example, the mass balance in Equation (13) is a 
simple harmonic function 

Y(t) = A cos(2m) 

as shown in Figure 7c, then 

A 
Br(t) - - - sin(2m). 

2n 

(26) 

(27) 

Performing the convolution in Equation (24) using Equations 
(25), (27), and the addition formula for cosines, gives 

A('I') - 'IQ) tSin(7fT)] 
P(t-T) = - -- sin(2T1[t -T]+n(T1 + To]}' 

2n 7fT 

(28) 

The final factor is the propagating annual wave train. The 
crest-to-trough amplitude of this wave train is modulated 
by 

(29) 

which is shown in Figure 7d. A velocity gradient over an 
integer number of years generates no waves at all, and the 
amplitude of the ogive waves falls rapidly with increasing 
length of the gradient region between zero and 1 year. It 
remains small for lower gradients, i.e. larger T. Because 
differential ablation can destroy wave ogives, waves formed 
by gradients longer than 6 months may, in most cases, be 
too small to be observable. 

I have used the finite-difference numerical model 
described by Waddington (unpublished) to solve the 
continuity Equation (10) for flow past constant potential 
gradients of four different lengths T . The terms in the 
analytical solution in Equation (21) can be identified in 
these numerical solutions shown in Figure 8. The first term 
Q(To'O) = Qo is the amplitude at the up-stream boundary 
T = To = 0, as the ice surface passes through its average 
level in the middle of the accumulation season. The second 
term is zero, because there are no input wave forms at the 
boundary T = O. The third term is the synchronous rise 
and fall of the surface with the seasons (clearest in Figure 
8c). The fourth term describes the wave ogives, annually 
repeating waves propagating at a velocity of unity. The tri­
angular points on Figure 7d are the wave amplitudes from 
these numerical solutions. Figure 8 illustrates the 
differences in wave amplitude due to differences in the 
driving functions. 

Double-step ice-fall model 
Nye (1958) illustrated the ablation-stretching mechanism 

with the model in Figure 4a. The amplitude of the waves is 
a function of T, the length of the "ice fall", as shown in 
Figure 9a. The driving function d'l'/dT is two Dirac delta 
functions of opposite polarity (Fig. 9b). Note that if Br is 
annually repeating, and if T is an integer, these two delta 
functions contribute equal and opposite amounts to the 
convolution in Equation (24), and no waves are formed. 

Waddington: Wave ogives 

Fig . 8. Flow past a velocity gradient. Numerical solution for 
ice flux Q(T,t) for various gradient lengths T. T is a 
measure of distance down-glacier, and t is time. Ice-flux 
profiles are shown at intervals of 1.5 months. The velocity 
and the mass balance have the form in Figure 7. (a) 
T = 0.2; (b) T " 0.5; (e) T = 1.0; (d) T '" 1.5. 
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Fig. 9. Double-step ice-fall model. T is a measure of 
distance down-glacier, and t is time. The mass balance is 
given in Figure 7c. (a) Wave-excitation potential. (b) 
Forcing function . (c) Normalized crest-to-trough amplitude 
of waves as a function of ice-fall length T. 
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Using the harmonic mass balance in Equation (26), the 
convolution in Equation (24) becomes 

P(t -T) A( "i - 'IQ) sin(7lT) sin(2n[t - T] + n[Tl + To])' 
n 

(30) 

The peak-to-trough amplitude is given by 

M(T) 1-2A-(;:..."i ..... 
n
-_'I'..ILo.:....) sin(7lT) I. (31) 

This function is shown in Figure 9c. Even when the 
velocity changes are abrupt, the wave interference from the 
speed-up phase and from the deceleration phase modulates 
the ogive amplitude, depending on the length of the ice 
fall. 

AUSTERDALSBREEN 

King and Lewis (1961) attributed the Forbes bands on 
Austerdalsbreen to seasonal differences in dust accumulation 
melting, and snow accumulation in the crevasses formed i~ 
the upper part of the Odinsbre ice fall, where the ice 
undergoes a longitudinal extension. This region is between 
x = 500 m and x '"' 1000 m in Figure 2. Since wave ogives 
are often associated with Forbes bands, it is interesting to 
see which sections of the Odinsbre ice fall are most 
important for forming the waves. 

If I assume that the width variations are unimportant 
(Nye (1958) also assumed this), then, multiplying the curve 
U(x) by b(x) (Fig. 2a), and using the transformation in 
Equation (8), gives the excitation potential 'I'(T) for unit 
width on Odinsbreen (Fig. 2b). This curve can be 
approximated by four sections of constant gradient. Table I 
gives the relative wave-amplitude function M(T) for each 
section. Although Equation (29) is exact only for the mass 
balance in Equation (26), other annually varying mass­
balance functions would show similar dependence of wave 
amplitude on T. Table I suggests that the largest contribu­
tion to the generation of the waves comes from the initial 

TABLE I. ODINSBREEN EXCITATION POTENTIAL 'I' 
APPROXIMATED BY LINEAR SECTIONS. THE END 
POINTS ARE SHOWN BY ARROWS ON FIGURE 2b. 
W = I m, M(T) IS GIVEN BY EQUATION (29). M(O) FOR 
SECTION I IS USED TO NORMALIZE ALL SECTIONS 

Section To Tl T '1'1 - '1'0 M(T)jM(O) 

a a a mS a- 2 

I 0.5 0.9 0.4 -5500 0.76 
2 0.9 1.6 0.7 2200 0.15 
3 1.6 2.6 1.0 1100 0.0 
4 2.6 5.0 2.4 400 0.01 

section of the ice fall as the ice accelerates to maximum 
speed. This is the same section that King and Lewis (1961) 
identified as the region responsible for the formation of the 
Forbes bands. 

To test this idea, I have used the Odinsbre ice-fall 
profile (Fig. 2a) to solve the continuity Equation (10) with 
the numerical model from Waddington (unpublished). The 
up-stream boundary condition was satisfied by a constant 
input flux using Nye's (1958) values of ice thickness 
(h = 13.8 m) and ice velocity (U = 1375 m a-I). (For Nye's 
model of Austerdalsbreen, the input flux was constant in 
time because the mass balance at the top of the ice fall 
was zero.) 

Because the finite-difference model cannot accurately 
represent an instantaneous mass balance of the form in 
Equation (4), 1 used a constant ablation rate for 3 months 
each year. This is a more realistic representation of the 
Austerdalsbre mass balance (Nye, 1958). Figure lOa shows 
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Fig. 10. Austerdalsbreen wave ogives. The numerical solution 
using the excitation potential in Figure 2b. with constant 
input flux at T = 0 and a 3 month constant ablation 
season. Profiles at 1.5 month intervals. T is a measure of 
distance down-glacier and t is time. (a) lee flux Q(T,t); 
(b) lee thickness h(x,t). 

the computed ice flux Q(T,t). Figure lOb shows the trans­
formation to ice thickness h(x,t). The amplification of the 
wave height due to compressive flow is apparent. The solid 
curve in Figure 2c shows the ice-thickness profile h(D in 
the middle of the ablation season. For comparison, the 
broken line is the wave pattern found by Nye using an 
instantaneous ablation season. The longer ablation season 
smooths out the sharp troughs on the waves. 

To test whether the steep gradient of 'I'(T} in the 
upper ice fall causes the wave ogives, I then used the 
numerical model with two modified forcing functions . To 
generate the annual repeating state in Figure II a, I brought 
the ice into the ice fall already travelling rapidly to give 
constant excitation potential of -5500 mS a-2, i.e. on the 
dotted horizontal curve AC in Figure 2b. Then 1 let the ice 
slow down following the observed Odinsbre potential curve 
(CD). The up-stream boundary condition in Equation (18) 
for this model is time-dependent, because '1'(0) is no longer 
zero. The waves generated in this model have only 15-20% 
of the amplitude of those in Figure lOa. The prediction in 
Table I was 15%. 

Next, I used the standard Odinsbre excitation potential 
(solid line BC) up to the peak. Then 1 let the ice leave the 
ice fall and travel down Austerdalsbreen without slowing 
down (dashed horizontal line CE) . The flux decreases rapidly 
down-glacier because the ice remains thin, and ablation 
takes a larger proportion of the mass each year. In fact, the 
ice thickness becomes zero at T = 4 year, but I continued 
the simulation to negative depths to show the waves clearly. 
The amplitude of the waves (Fig. lib) is approximately 80% 
of the amplitude in Figure lOa. The prediction in Table I 
was 76%. The rapid velocity increase in the upper region of 
Odinsbreen causes the waves, and the subsequent 
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Fig. I I . Isolating the wave-generating region on Odinsbreen 
ice fall. T is a measure of distance down-glacier, and t is 
time. (a) Ice follows the excitation potential ACD in Figure 
2b, i.e. no acceleration as it enters the ice fall. The wave 
amplitude is small. (b) Ice follows BCE in Figure 2b, i.e. 
no deceleration as it leaves the ice fall. The wave 
amplitude is comparable to that in Figure lOa. Thus the 
interval over which the ice speeds up (x = 500-1000 m) is 
largely responsible for the wave ogives. 

deceleration of the ice merely amplifies the wave height by 
compressive flow . It appears that the rapid extension, that is 
responsible for the Forbes bands, is also responsible for the 
formation of wave ogives. 

The velocity and ablation data for Seracs du Geant in 
Vallon (unpublished, p. 52) suggest that the deceleration 
phase at Mer de Glace also contributes very little to the 
wave ogives on that glacier. 

CONCLUSIONS 

The ablation-plastic stretching mechanism of Nye (1958) 
has been extended by using the method of characteristics to 
solve the continuity equation. The total wave-ogive pattern 
on a glacier can be written as a convolution of a spatial 
term, the velocity-width-mass- balance gradient (forcing 
function), with a temporal term, the cumulative mass 
balance. The convolution describes their interaction, 

The forcing function can be viewed as a spatial filter 
applied to the annually periodic mass balance. Wave ogives 
appear in the filter output (the glacier-flux profile) only if 
the filter does not heavily attenuate the annual periodic 

Waddington: Wave ogives 

component. The theory predicts that magnitude and spatial 
extent of velocity changes in an ice fall modulate the 
amplitude of the resulting wave ogives. The modulation 
factor may go to zero. 

Since small annual waves may go unnoticed, or be 
rapidly obliterated by differential ablation, this modulation 
may explain why some ice falls with rapid ice velocities 
and large annual balance variations do not generate observ­
able wave ogives by the ablation-stretching mechanism. 

Several points of physical interest can also be made: 

1. Longitudinal variation of ice velocity, channel width, and 
mass balance all can generate annual waves in the same 
way. The waves due to velocity changes are usually the 
largest. 

2. Every incremental change with x of any of these three 
factors generates a wave train down-glacier. This 
annually periodic wave train is the Green's function for 
the total wave pattern. 

3. Waves are not observed on all glaciers, because the 
velocity gradients are small, and waves generated over a 
large spatial range tend to be out of phase and to 
interfere destructively. 

4. Only large and localized gradients traversed by the ice 
in 6 months or less can generate waves sufficiently 
coherent to form large wave ogives. 

5. Wave ogives and Forbes bands are often found together, 
because, while the physical processes causing them are 
different, they both depend on the occurrence of a 
short zone of rapid ice acceleration, such as the upper 
stretch of some ice falls. 
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