ON THE DIMENSION OF MODULES AND ALGEBRAS, V. DIMENSION OF RESIDUE RINGS

SAMUEL EILENBERG and TADASI NAKAYAMA

We shall consider a semi-primary ring A with radical N (i.e. N is nilpotent and A / N is semi-simple (with minimum condition)). All modules considered are left Λ-modules. We refer to [1] for all notions relevant to homological algebra.

The objective of this paper is to establish the following two theorems:
Theorem I. Let a be a two-sided ideal in 1 such that

$$
a \subset N^{2}, \quad \operatorname{gl.dim}(\Lambda / a) \leqq 1 .
$$

Then $a=0$.
Theorem II. Let r be a right ideal in 4 such that

$$
r N \subset N r \subset N^{2}, \quad \operatorname{gl.dim}(\Lambda / N r) \leqq n, \quad n>1 .
$$

Then $N r^{n-1} N=0$.
Taking $r=N^{k-1}, k>1$ we obtain
Corollary II'. If $\operatorname{gl.dim}\left(A / N^{k}\right) \leqq n, k>1, n>1$, then $N^{(n-1)(k-1)+2}=0$.
Corollary II' . If $\operatorname{gl} \cdot \operatorname{dim}\left(\Lambda / N^{2}\right) \leqq n, n \geqq 0$, then $N^{n+1}=0$.
In this last corollary we admitted also the cases $n=0$ (since $N / N^{2}=0$ implies $N=0$) and $n=1$ (by Theorem I). The result stated in Corollary II' is the best possible. Indeed, in [3, Proposition 12 and Corollary 11], for each $n \geqslant 0$, a semi-primary ring Λ was constructed such that

$$
\text { gl.dim } \Lambda \leqq 1, \quad \operatorname{gl} . \operatorname{dim}\left(\Lambda / N^{2}\right)=n, \quad N^{n+1}=0, \quad N^{n} \neq 0 .
$$

Let $\varphi: P \rightarrow A$ be an epimorphism of Λ-modules. We say that φ is minimal if P is projective and $\operatorname{Ker} \varphi \subset N P$. We see without much difficulty
(i) For each A-module A there is a minimal epimorphism $\varphi: P \rightarrow A$;

Received January 20, 1956.
(ii) If $\varphi^{\prime}: P^{\prime} \rightarrow A$ is another minimal epimorphism then there exists an isomorphism $\pi: P \rightarrow P^{\prime}$ such that $\varphi^{\prime} \pi=\varphi$;
for the detailed account under a more general setting, see [2].
Let a be any subset of Λ. We define the orthogonality relation $a \perp A$ by the condition $a P=0$, where P is the projective module occuring in the minimal epimorphism for A. Clearly $a \perp A$ implies $a A=0$.

Lemma 1. If $B \subset N A$ then the relations $a \perp A$ and $a \perp A / B$ are equivalent.
Lemma 2. If $B \subset N A$ and A / B is projective then $B=0$.
Proof. Consider the composition

$$
P \xrightarrow{\varphi} A \xrightarrow{\psi} A / B
$$

where φ is the minimal epimorphism for A and ψ is the natural factorization epimorphism. Since $\operatorname{Ker} \varphi \subset N P$ we have $\varphi^{-1}(B) \subset \varphi^{-1}(N A)=N P$. Thus $\operatorname{Ker}(\psi \varphi) \subset N P$ and $\psi \varphi$ is a minimal epimorphism for A / B. Consequently each of the conditions $a \perp A, a \perp A / B$ is equivalent with $a P=0$. If A / B is projective, then, by (ii) $\psi \varphi$ is an isomorphism. Thus ψ is an isomorphism and $B=0$.

Lemma 3. Let a be a two-sided ideal in Λ, A a 1 -module and B a submodule such that

$$
a A \subset B \subset N A, \quad A / B \text { is }(A / a) \text {-projective }
$$

Then $a A=B$.
Proof. Consider the ring $\Lambda^{\prime}=\Lambda / a$ with radical $N^{\prime}=(N+a) / a$. The Λ^{\prime}-modules $A^{\prime}=A / a A, B^{\prime}=B / a A$ then satisfy

$$
B^{\prime} \subset N^{\prime} A^{\prime}, \quad A^{\prime} / B^{\prime} \text { is } \Lambda^{\prime} \text {-projective. }
$$

Thus, by Lemma 2, $B^{\prime}=0$ i.e. $a A=B$.
Proof of Theorem I. Since $\operatorname{gl.dim}(\Lambda / a) \leqq 1$ we have $1 . \operatorname{dim}_{\wedge / a}(\Lambda / N) \leqq 1$. From the exact sequence $0 \rightarrow N / a \rightarrow \Lambda / a \rightarrow \Lambda / N \rightarrow 0$ it follows that N / a is (Λ / a). projective. Since $a N \subset a \subset N N$ we may apply Lemma 3 with (A, B) replaced by (N, a). Thus $a N=a$ and $a=0$.

Proposition 4. Let r be a right ideal in Λ and A a left Λ-module. If

$$
r N \subset N r, \quad r A=0, \quad 1 \cdot \operatorname{dim}_{\Delta / N r} A \leqq n, \quad n>0
$$

then $N r^{n} \perp A$.

Proof. Let $\varphi: P \rightarrow A$ be ą minimal epimorphism. Since $r A=0$ it follows that $r P \subset \operatorname{Ker} \varphi$. If we write $C=\operatorname{Ker} \varphi$, there results an exact sequence

$$
0 \rightarrow C \rightarrow P \xrightarrow{\varphi} A \rightarrow 0
$$

such that

$$
r P \subset C \subset N P
$$

Since $N r P \subset \operatorname{Ker} \varphi$ we derive an exact sequence

$$
0 \rightarrow c / N r P \rightarrow P / N r P \rightarrow A \rightarrow 0
$$

of ($\Lambda / N r$)-modules. Since $P / N r P$ is ($\Lambda / N r$)-projective (see [3, Prop. 1]), we have
(*)

$$
\text { 1. } \operatorname{dim}_{\Delta / N r}(C / N r P) \leqq n-1
$$

Now consider the case $n=1$. Since

$$
N r C \subset N r P \subset N C
$$

we may apply Lemma 3 with (A, B, a) replaced by ($C, N r P, N r$). We obtain $N r C=N r P$. Since $C \subset N P$ and $r N \subset N r$ we have

$$
N r P=N r C \subset N r N P \subset N^{2} r P
$$

Thus $N r P=0$ i.e. $N r \perp A$.
For $n>1$ we proceed by induction and assume the proposition valid for $n-1$. Since $r C \subset r N P \subset N r P$ we have $r(C / N r P)=0$ and thus $(*)$ yields

$$
N r^{n-1} \perp C / N r P
$$

However $N r P \subset N C$, so that, by Lemma 1, $N r^{n-1} \perp C$. Consequently $N r^{n} P \subset$ $N r^{n-1} C=0$ and $N r^{n} \perp A$.

Proof of Theorem II. Since $\operatorname{gl} \cdot \operatorname{dim}(\Lambda / N r) \leqq n$ we have $1 \cdot \operatorname{dim}_{\Delta / N r}(\Lambda / N) \leqq n$. From the exact sequence $0 \rightarrow N / N r \rightarrow \Lambda / N r \rightarrow \Lambda / N \rightarrow 0$ it follows

$$
1 . \operatorname{dim}_{\Delta / N r}(N / N r) \leqq n-1 .
$$

Since $r N \subset N r$ we have $r(N / N r)=0$ and thus, by Proposition 4,

$$
N r^{n-1} \perp N / N r
$$

Since $N r \subset N N$, it follows from Lemma 1 that

$$
N r^{n-1} \perp N
$$

Thus $N r^{n-1} N=0$, as required.

References

[1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956.
[2] S. Eilenberg, Homological dimension and syzygies, Ann. Math., 64 (1956), 328-336.
[3] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras, IV, Nagoya Math. J., 10 (1956), 87-95.

Columbia University

Nagoya University and The Institute for Advanced Study

