ON THE DIMENSION OF MODULES AND ALGEBRAS, V. DIMENSION OF RESIDUE RINGS

SAMUEL EILENBERG and TADASI NAKAYAMA

We shall consider a semi-primary ring Λ with radical N (i.e. N is nilpotent and Λ/N is semi-simple (with minimum condition)). All modules considered are left Λ -modules. We refer to [1] for all notions relevant to homological algebra.

The objective of this paper is to establish the following two theorems:

THEOREM I. Let a be a two-sided ideal in Λ such that

 $a \subset N^2$, gl.dim $(\Lambda/a) \leq 1$.

Then a = 0.

THEOREM II. Let r be a right ideal in Λ such that

 $rN \subset Nr \subset N^2$, gl.dim $(\Lambda/Nr) \leq n$, n > 1.

Then $Nr^{n-1}N = 0$.

Taking $r = N^{k-1}$, k > 1 we obtain

COROLLARY II'. If gl.dim $(\Lambda/N^k) \le n, k > 1, n > 1, then N^{(n-1)(k-1)+2} = 0.$

COROLLARY II". If gl.dim $(\Lambda/N^2) \leq n$, $n \geq 0$, then $N^{n+1} = 0$.

In this last corollary we admitted also the cases n = 0 (since $N/N^2 = 0$ implies N = 0) and n = 1 (by Theorem I). The result stated in Corollary II" is the best possible. Indeed, in [3, Proposition 12 and Corollary 11], for each $n \ge 0$, a semi-primary ring Λ was constructed such that

gl.dim
$$\Lambda \leq 1$$
, gl.dim $(\Lambda/N^2) = n$, $N^{n+1} = 0$, $N^n \neq 0$.

Let $\varphi: P \to A$ be an epimorphism of Λ -modules. We say that φ is *minimal* if P is projective and Ker $\varphi \subset NP$. We see without much difficulty

(i) For each Λ -module A there is a minimal epimorphism $\varphi: P \to A$;

Received January 20, 1956.

(ii) If φ': P' → A is another minimal epimorphism then there exists an isomorphism π: P → P' such that φ'π = φ;

for the detailed account under a more general setting, see [2].

Let *a* be any subset of Λ . We define the orthogonality relation $a \perp A$ by the condition aP = 0, where *P* is the projective module occuring in the minimal epimorphism for *A*. Clearly $a \perp A$ implies aA = 0.

LEMMA 1. If $B \subset NA$ then the relations $a \perp A$ and $a \perp A/B$ are equivalent. LEMMA 2. If $B \subset NA$ and A/B is projective then B = 0.

Proof. Consider the composition

$$P \xrightarrow{\varphi} A \xrightarrow{\Psi} A/B$$

where φ is the minimal epimorphism for A and ψ is the natural factorization epimorphism. Since Ker $\varphi \subset NP$ we have $\varphi^{-1}(B) \subset \varphi^{-1}(NA) = NP$. Thus Ker $(\psi\varphi) \subset NP$ and $\psi\varphi$ is a minimal epimorphism for A/B. Consequently each of the conditions $a \perp A$, $a \perp A/B$ is equivalent with aP = 0. If A/B is projective, then, by (ii) $\psi\varphi$ is an isomorphism. Thus ψ is an isomorphism and B = 0.

LEMMA 3. Let a be a two-sided ideal in Λ , A a Λ -module and B a submodule such that

 $aA \subset B \subset NA$, A/B is (A/a)-projective.

Then aA = B.

Proof. Consider the ring $\Lambda' = \Lambda/a$ with radical N' = (N+a)/a. The Λ' -modules A' = A/aA, B' = B/aA then satisfy

 $B' \subset N'A'$, A'/B' is Λ' -projective.

Thus, by Lemma 2, B' = 0 i.e. aA = B.

Proof of Theorem I. Since gl.dim $(\Lambda/a) \leq 1$ we have $1.\dim_{\Lambda/a}(\Lambda/N) \leq 1$. From the exact sequence $0 \to N/a \to \Lambda/a \to \Lambda/N \to 0$ it follows that N/a is (Λ/a) -projective. Since $aN \subset a \subset NN$ we may apply Lemma 3 with (A, B) replaced by (N, a). Thus aN = a and a = 0.

PROPOSITION 4. Let r be a right ideal in Λ and A a left Λ -module. If

$$rN \subset Nr$$
, $rA = 0$, $1.\dim_{\Lambda/Nr}A \leq n$, $n > 0$

then $Nr^n \perp A$.

Proof. Let $\varphi: P \to A$ be a minimal epimorphism. Since rA = 0 it follows that $rP \subset \text{Ker } \varphi$. If we write $C = \text{Ker } \varphi$, there results an exact sequence

$$0 \to C \to P \stackrel{\varphi}{\to} A \to 0$$

such that

$$rP \subset C \subset NP$$
.

Since $NrP \subset \text{Ker } \varphi$ we derive an exact sequence

$$0 \rightarrow c/NrP \rightarrow P/NrP \rightarrow A \rightarrow 0$$

of (Λ/Nr) -modules. Since P/NrP is (Λ/Nr) -projective (see [3, Prop. 1]), we have

(*)
$$1.\dim_{A/Nr}(C/NrP) \leq n-1.$$

Now consider the case n = 1. Since

$$NrC \subset NrP \subset NC$$

we may apply Lemma 3 with (A, B, a) replaced by (C, NrP, Nr). We obtain NrC = NrP. Since $C \subseteq NP$ and $rN \subseteq Nr$ we have

$$NrP = NrC \subset NrNP \subset N^2 rP.$$

Thus NrP = 0 i.e. $Nr \perp A$.

For n > 1 we proceed by induction and assume the proposition valid for n-1. Since $rC \subset rNP \subset NrP$ we have r(C/NrP) = 0 and thus (*) yields

$$Nr^{n-1} \perp C/NrP.$$

However $NrP \subset NC$, so that, by Lemma 1, $Nr^{n-1} \perp C$. Consequently $Nr^nP \subset Nr^{n-1}C = 0$ and $Nr^n \perp A$.

Proof of Theorem II. Since $gl.\dim(\Lambda/Nr) \leq n$ we have $l.\dim_{\Lambda/Nr}(\Lambda/N) \leq n$. From the exact sequence $0 \rightarrow N/Nr \rightarrow \Lambda/Nr \rightarrow \Lambda/N \rightarrow 0$ it follows

$$1.\dim_{\Lambda/Nr}(N/Nr) \leq n-1.$$

Since $rN \subset Nr$ we have r(N/Nr) = 0 and thus, by Proposition 4,

$$Nr^{n-1} \perp N/Nr$$
.

Since $Nr \subset NN$, it follows from Lemma 1 that

 $Nr^{n-1} \perp N.$

Thus $Nr^{n-1}N = 0$, as required.

References

[1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956.

[2] S. Eilenberg, Homological dimension and syzygies, Ann. Math., 64 (1956), 328-336.

[3] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras, IV, Nagoya Math. J., 10 (1956), 87-95.

Columbia University

Nagoya University and The Institute for Advanced Study