OSCILLATION ON FINITE OR INFINITE INTERVALS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS ${ }^{1}$)

BY
D. WILLETT

1. Introduction. Recently, Ronveaux [11] has shown how to use a combination of a Riccati transformation and a homographic transformation to estimate both from below and above the distance between a zero and the succeeding or preceding extremum (zero of y^{\prime}) of solutions of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y=0 \tag{1.1}
\end{equation*}
$$

In this paper, we show how such transformations can be used to derive an equation from which the distance between successive zeros of a solution y of (1.1) can be estimated directly.

More precisely, we consider the equation

$$
\begin{equation*}
\left[r(t) y^{\prime}\right]^{\prime}+q(t) y=0 \tag{1.2}
\end{equation*}
$$

with $r \in C^{1}, q \in C, r>0, q \geq 0$. Suppose that $y(t)$ is a positive solution of (1.2) on (a, b) with $y(a)=y(b)=0$. We derive sequences b_{n} and c_{n}, which are functions of r, q, and a, such that

$$
b_{n} \downarrow b \quad \text { and } \quad c_{n} \uparrow b, \quad \text { as } n \uparrow \infty .
$$

The numbers b_{n} and c_{n} are defined in terms of the solutions of transcendental equations. For example, the number c_{0} relative to equation (1.1) with $a=0$ satisfies

$$
\begin{equation*}
\int_{0}^{c_{0}} t\left(c_{0}-t\right) p_{+}(t) d t=c_{0} \tag{1.3}
\end{equation*}
$$

where $p_{+}(t)=\max \{p(t), 0\}$. Condition (1.3) is originally due to Hartman and Wintner [6].

The problem of determining b goes back to at least Lyapunov [8] and de la Vallée Poussin [12]. Considerable work (cf. the bibliography and the references therein) has been carried out over the years.

In §4, we obtain similar convergent sequences for the problem involving the distance between a zero and adjacent extremes. This problem is one order less difficult than the problem of distance between zeros, the meaning of which will become clear in $\S 4$.

[^0]Finally, we derive some new necessary and sufficient criteria for disconjugacy of (1.2) on a finite or infinite interval $[a, b)$. Actually, in this regard, Theorems 1 through 3 are further results of the general method derived in Willett [14]. For a general survey of the oscillation results for (1.2), see (Willett [13], [14]).
2. Disconjugacy and the distance between zeros. Throughout the remainder of this paper, we consider equation (1.2) under the assumptions $q \in C[a, b), r \in C^{1}[a, b)$, $r>0$, and with

$$
\begin{aligned}
R(t) & =\int_{a}^{t} r^{-1}(s) d s, \quad M(t)=\int_{a}^{t} R^{2}(s) q(s) d s \\
P(t) & =\int_{a}^{t} R(s)[R(t)-R(s)] q(s) d s \\
P_{0}(t) & =M(t) P(t) R^{-1}(t)=M(t) \int_{a}^{t} M(s) r^{-1}(s) R^{-2}(s) d s \\
P_{1}(t) & =\int_{a}^{t} P(s)[P(s)-R(s)] q(s) d s \\
P_{n}(t) & =\int_{a}^{t} R^{2}(s) M^{-2}(s) P_{n-1}(s)\left[P_{n-1}(s)+2 \sum_{k=0}^{n-2} P_{k}(s)\right] q(s) d s, \quad n=2, \ldots, \\
Q_{0}(t) & =P_{0}(t)-\int_{a}^{t} R(s) P(s) q(s) d s=\int_{a}^{t} M^{2}(s) r^{-1}(s) R^{-2}(s) d s \\
Q_{1}(t) & =\int_{a}^{t} P(s)\left[P(s)-R(s) M^{-1}(t) \int_{a}^{t} R(\tau) P(\tau) q(\tau) d \tau\right] q(s) d s, \\
Q_{n}(t) & =\int_{a}^{t} R^{2}(s) M^{-2}(s) Q_{n-1}(s)\left[Q_{n-1}(s)+2 \sum_{k=0}^{n-2} Q_{k}(s)\right] q(s) d s, \quad n=2, \ldots
\end{aligned}
$$

From the definition of $M(t)$, we note that $M(t)=0$ for $t>a$ can occur only if $q(t)=0$. Hence, we define $q(t) M^{-1}(t)=0$ when $t>a$ and $M(t)=0$, and assume q is not identically zero on $[a, b)$. We also assume that all integrals are improper integrals at a. Since

$$
\begin{equation*}
\lim _{t \rightarrow a+} \frac{M(t)}{R^{3}(t)}=\lim _{t \rightarrow a+} \frac{R^{2}(t) q(t) r(t)}{3 R^{2}(t)}=\frac{q(a) r(a)}{3} \tag{2.0}
\end{equation*}
$$

it is a simple matter to show that all the above functions are well-defined continuous functions on $[a, b)$.

Theorem 1. Assume $q \geq 0$ and $a<b \leq \infty$. Equation (1.2) is disconjugate on $[a, b)$, if and only if $\sum_{k=0}^{\infty} Q_{k}(t)$ converges for $a \leq t<b$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty} Q_{k}(t)<M(t) \text { or } M(t)=0, \quad a<t<b \tag{2.1}
\end{equation*}
$$

Corollary 1. Assume $q \geq 0$ and $a<b<\infty$. Equation (1.2) has a positive solution y on (a, b) such that

$$
y(a)=0=y(b)
$$

if and only if

$$
\begin{equation*}
\sum_{k=0}^{\infty} Q_{k}(b)=M(b) . \tag{2.2}
\end{equation*}
$$

Thus, if b_{n} is such that $M\left(b_{n}\right)>0$ and

$$
\begin{equation*}
\sum_{k=0}^{n} Q_{k}\left(b_{n}\right) \geq M\left(b_{n}\right) \tag{2.3}
\end{equation*}
$$

then

$$
b_{n}>b ;
$$

and if equality occurs in (2.3) for $n \geq N$, then

$$
b_{n} \downarrow b, \quad \text { as } n \uparrow \infty .
$$

Theorem 2. Assume $q \geq 0$ and $a<b \leq \infty$. Equation (1.2) is disconjugate on $[a, b)$, if and only if $\sum_{k=0}^{\infty} P_{k}(t)$ converges for $a \leq t<b$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty} P_{k}(t)<M(t) \text { or } M(t)=0, \quad a<t<b . \tag{2.4}
\end{equation*}
$$

Corollary 2. Assume $q \geq 0$ and $a<b<\infty$. Equation (1.2) has a positive solution y on (a, b) such that

$$
y(a)=0=y(b)
$$

if and only if

$$
\begin{equation*}
\sum_{k=0}^{\infty} P_{k}(b)=M(b) . \tag{2.5}
\end{equation*}
$$

Thus, if $c_{n}, n=0,1, \ldots$, is such that

$$
\begin{equation*}
\sum_{k=0}^{n} P_{k}\left(c_{n}\right) \leq M\left(c_{n}\right) \tag{2.6}
\end{equation*}
$$

then

$$
c_{n}<b
$$

and (1.2) is disconjugate on $\left[a, c_{n}\right]$. Furthermore, if equality occurs in (2.6) for $n \geq N$, then

$$
c_{n} \uparrow b, \quad \text { as } n \uparrow \infty
$$

Corollary 3. Assume $a<b \leq \infty$ and $f \in C[a, b)$. Let $q=f_{+}=f \vee 0$ and assume M, P, and P_{n} are defined as above. If (2.6) holds, then the equation

$$
\begin{equation*}
\left(r y^{\prime}\right)^{\prime}+f y=0 \tag{2.7}
\end{equation*}
$$

is disconjugate on $\left[a, c_{n}\right]$.

Proof of Theorem 1. Assume that (1.2) is disconjugate on $[a, b)$. Thus, any solution of (1.2) satisfying initial conditions $y(a)=0, y^{\prime}(a)>0$ is positive on (a, b). For one such solution, let

$$
\begin{equation*}
z=\left[1-r(t) R(t) y^{\prime}(t) y^{-1}(t)\right] R(t), \quad a<t<b \tag{2.8}
\end{equation*}
$$

L'Hôpital's Rule implies

$$
\lim _{t \rightarrow a+} \frac{R(t)}{y(t)}=\frac{1}{r(a) y^{\prime}(a)}
$$

hence,

$$
\begin{equation*}
\lim _{t \rightarrow a+} \frac{z(t)}{R(t)}=0 \tag{2.9}
\end{equation*}
$$

Furthermore, (1.2) and (2.8) imply that z is a $C^{1}(a, b)$-solution of the Riccati equation

$$
\begin{equation*}
z^{\prime}=q(t) R^{2}(t)+r^{-1}(t) R^{-2}(t) z^{2}, \quad a<t<b . \tag{2.10}
\end{equation*}
$$

At this point, we assume without loss of generality that $q(t)$ is not identically zero in any right neighborhood of a, for if $q(t)=0$ for $a \leq t \leq \bar{a}$ with \bar{a} maximal, then $z(t)=0$ for $a \leq t \leq \bar{a}$ and we replace a by \bar{a} in the following analysis. However, we do not replace a by \bar{a} in the definition of R. Thus, (2.10) and $z(a)=0$ imply

$$
\begin{equation*}
z(t)>0 \text { for } a<t<b \tag{2.11}
\end{equation*}
$$

Next, let

$$
\begin{equation*}
w=\left[1-M(t) z^{-1}(t)\right] M(t), \quad a<t<b . \tag{2.12}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
0<w(t)<M(t), \quad a<t<b \tag{2.13}
\end{equation*}
$$

and so $w(a+)=0$. Furthermore, (2.10) implies

$$
\begin{equation*}
w^{\prime}=\frac{M^{2}(t)}{r(t) R^{2}(t)}+\frac{R^{2}(t)}{M^{2}(t)} q(t) w^{2}, \quad a<t<b \tag{2.14}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
w(t)=Q_{0}(t)+\int_{a}^{t} R^{2}(s) M^{-2}(s) q(s) w^{2}(s) d s, \quad a<t<b \tag{2.15}
\end{equation*}
$$

A procedure for solving integral equations of the type (2.15) is presented in Willett [14]. It goes as follows. Let

$$
\left\{\begin{array}{l}
w_{0}(t)=Q_{0}(t) \tag{2.16}\\
w_{n}(t)=Q_{0}(t)+\int_{a}^{t} R^{2}(s) M^{-2}(s) q(s) w_{n-1}^{2}(s) d s, n=1, \ldots
\end{array}\right.
$$

By induction, it is not difficult to show that

$$
w_{n}-w_{n-1}=Q_{n} ;
$$

hence, we have

$$
\begin{equation*}
w_{n}(t)=\sum_{k=0}^{n} Q_{k}(t) \leq w(t)<M(t), \quad a<t<b . \tag{2.17}
\end{equation*}
$$

Since (2.16) implies $w_{n} \geq w_{n-1}$, it follows that $\sum_{k=0}^{\infty} Q_{k}(t)$ converges for $a<t<b$. Finally, (2.17) implies (2.1).

Now, suppose that (2.1) holds, and let

$$
\begin{equation*}
w(t)=\sum_{k=0}^{\infty} Q_{k}(t), \quad a \leq t<b \tag{2.18}
\end{equation*}
$$

We are still assuming without loss of generality that q is not identical to zero in any neighborhood of a, that is $M(t)>0$ for $t>a$. Let

$$
w_{n}=\sum_{k=0}^{n} Q_{k}
$$

so that (2.16) holds. Since $w_{n}(t)<M(t)$ for $a<t<b$ and all n, the Lebesgue dominated convergence theorem implies that $w(t)$ is a solution of (2.15). Since $w(t)=\sum_{n=0}^{\infty} Q_{n}(t)<M(t)$ for $a<t<b$ by assumption, the function

$$
\begin{equation*}
f(t)=M^{2}(t) /[M(t)-w(t)] R^{2}(t) r(t) \tag{2.19}
\end{equation*}
$$

is positive on (a, b). Fix $\tau, a<\tau<b$, and define

$$
\begin{equation*}
y(t)=R(t) \exp \left(-\int_{\tau}^{t} f(s) d s\right), \quad a<t<b \tag{2.20}
\end{equation*}
$$

(Although it is not needed, one can actually show that $f(t) \rightarrow 0$, as $t \rightarrow a+$; hence, $\tau=a$ is also correct.) The fact that w is a solution of (2.14) implies that y is a solution of (1.2). Since y is positive on (a, b), Sturm theory implies that (1.2) is disconjugate on $[a, b)$. We note that in case $q(t)=0$ for $a \leq t \leq \bar{a}$ and \bar{a} is maximal, then (2.20) still gives a positive solution of (1.2) provided one defines $f(t)=0$ for $a \leq t \leq \bar{a}$.

Proof of Theorem 2. The main difference in the proofs of Theorems 1 and 2 is in the choice of initial function $w_{0}(t)$. Consider the general situation. Let

$$
\left\{\begin{array}{l}
w_{0}(t)=M(t) \int_{a}^{t} \frac{M(s)}{r(s) R^{2}(s)} d s=P_{0}(t), \tag{2.21}\\
w_{n}(t)=Q_{0}(t)+\int_{a}^{t} R^{2}(s) M^{-2}(s) q(s) w_{n-1}^{2}(s) d s, \quad n=1, \ldots
\end{array}\right.
$$

Here, we again assume without loss of generality that $M(t)>0$ for $t>a$. Then,

$$
w_{0}^{\prime}(t)=\frac{M^{2}(t)}{r(t) R^{2}(t)}+\frac{R^{2}(t)}{M(t)} q(t) w_{0}(t), \quad a<t<b,
$$

and \exists a maximum $b_{0}, a<b_{0} \leq b$, such that

$$
w_{0}(t)<M(t), \quad a<t<b_{0} .
$$

Since

$$
w_{1}^{\prime}(t)=\frac{M^{2}(t)}{r(t) R^{2}(t)}+\frac{R^{2}(t)}{M^{2}(t)} q(t) w_{0}^{2}(t), \quad a<t<b,
$$

and $w_{0}(a)=0=w_{1}(a)$, it is clear that

$$
w_{1}(t) \leq w_{0}(t), \quad a \leq t \leq b_{0} .
$$

Thus, \exists maximum $b_{1}, b_{0} \leq b_{1} \leq b$, such that

$$
w_{1}(t)<M(t), \quad a<t<b_{1} .
$$

In general, \exists a sequence $\left(w_{n}, b_{n}\right)$ such that

$$
\begin{gathered}
0 \leq w_{n}(t) \leq w_{n-1}(t), \quad a \leq t<b_{n-1}, \\
w_{n}(t)<M(t), \quad a<t<b_{n}, \\
b_{n-1} \leq b_{n} \leq b .
\end{gathered}
$$

Hence, $\exists w_{*}(t) \geq 0$ and $b_{*} \leq b$ such that

$$
w_{n} \downarrow w_{*} \quad \text { and } \quad b_{n} \uparrow b_{*}, \quad \text { as } n \uparrow \infty
$$

Suppose now that (2.4) holds. If $b_{n}<b$ for all $n=0,1, \ldots$, then $w_{*}(t)<M(t)$ for $a<t<b_{*}$ and

$$
\begin{equation*}
\lim _{t \rightarrow b_{*}}\left[M(t)-w_{*}(t)\right]=0 \tag{2.22}
\end{equation*}
$$

But (2.21) implies

$$
w_{*}(t)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} P_{k}(t),
$$

so that (2.4) implies $M\left(b_{*}\right)-w_{*}\left(b_{*}\right)>0$ if $b_{*}<b$. Thus, $b_{*}=b$.
Letting $n \rightarrow \infty$ in (2.21), we conclude by the Monotone convergence theorem that w_{*} is a solution of (2.15). Since

$$
w_{*}(t) \leq w_{0}(t)=M(t) \int_{a}^{t} r^{-1}(s) R^{-2}(s) M(s) d s, \quad a<t<b_{0},
$$

it is also true that

$$
\lim _{t \rightarrow a+} w_{*}(t) / M(t)=0 .
$$

As in the proof of Theorem 1, it now follows that

$$
y_{*}(t)=R(t) \exp \left[-\int_{a}^{t} \frac{M^{2}(s) d s}{\left(M(s)-w_{*}(s)\right) R^{2}(s) r(s)}\right]
$$

is a positive solution of (1.2) on (a, b). Hence, (1.2) is disconjugate on $[a, b)$.
Now, suppose that (1.2) is disconjugate on $[a, b)$. Then, as in the first part of the proof of Theorem $1, \exists$ a solution $w \in C^{1}(a, b)$ of (2.14) satisfying (2.13). On the other hand, the sequence w_{n} defined in (2.21) converges from above to the solution $w_{*} \in C^{1}\left(a, b^{*}\right)$. Hence, w and w_{*} are solutions of the same differential equation on (a, b^{*}) and satisfy the same initial condition, and

$$
\begin{equation*}
0<w(t) \leq w_{*}(t)<M(t), \quad a<t<b^{*} \tag{2.23}
\end{equation*}
$$

We will prove that

$$
w(t)=w_{*}(t), \quad a<t<b^{*},
$$

and hence,

$$
0=\lim _{t \rightarrow b^{*}-}\left[M(t)-w_{*}(t)\right]=\lim _{t \rightarrow b^{*}-}[M(t)-w(t)],
$$

which implies $b^{*}=b$ by (2.13). Thus, the conclusion of the theorem would follow from (2.23).

Let

$$
\Delta(t)=w_{*}(t)-w(t), \quad a \leq t<b^{*}
$$

Since w and w_{*} are both solutions of (2.15) on $\left[a, b^{*}\right)$,

$$
\begin{aligned}
0 \leq \Delta(t) & \leq \int_{a}^{t} M^{\prime}(s) M^{-2}(s)\left[w_{*}(s)+w(s)\right] \Delta(s) d s \\
& \leq 2 \int_{a}^{t} M^{\prime}(s) M^{-2}(s) w_{*}(s) \Delta(s) d s, \quad a<t<b^{*}
\end{aligned}
$$

This is a form of the well-known Gronwall inequality. It implies $\Delta(t) \leq 0, a<t<b^{*}$, provided $M^{\prime} M^{-2} w_{*}$ is integrable on [a, t] for all t such that $a<t<b^{*}$. But in the neighborhood of a, which is the only place there is a problem, $w_{*} \leq w_{0}$. Hence,

$$
\frac{M^{\prime}(s)}{M^{2}(s)} w_{*}(s) \leq \frac{M^{\prime}(s)}{M(s)} \int_{a}^{s} \frac{M(\tau) d \tau}{r(\tau) R^{2}(\tau)} \leq \frac{M^{\prime}(s)}{M^{2 / 3}(s)} \int_{a}^{s}\left[\frac{M(\tau)}{R^{3}(\tau)}\right]^{2 / 3} \frac{d \tau}{r(\tau)}
$$

which is integrable by (2.0).
Corollaries 1 and 2 are direct consequences of Theorems 1 and 2 , respectively. Corollary 3 follows from Sturm theory, since (2.7) is disconjugate on $[a, b]$ if

$$
\left(r(t) y^{\prime}\right)^{\prime}+f_{+} y=0
$$

is disconjugate on $[a, b)$.

Theorem 2 and its corollaries depend essentially upon the sequence w_{n} defined in (2.21). We note here that there is a feasible alternate way of choosing the sequence w_{n}. Let

$$
\left\{\begin{array}{l}
v_{0}(t)=w_{0}(t) \tag{2.24}\\
v_{n}(t)=Q_{0}(t)+\int_{a}^{t} R^{2}(s) M^{-2}(s) q(s) v_{n-1}(s) v_{n}(s) d s, \quad n=1, \ldots,
\end{array}\right.
$$

Since the integral equation involving v_{n} is linear in v_{n}, it can be solved explicitly. So (2.24) determines a unique function v_{n} for each value of n. It can be shown that the sequence v_{n} converges monotonically to a solution v_{*} of (2.15), and (1.2) is disconjugate on $[a, b)$, if and only if

$$
v_{*}(t)<M(t), \quad a<t<b .
$$

Thus, $v_{n}\left(c_{n}\right) \leq M\left(c_{n}\right)$ implies $c_{n}<b$ with $c_{n} \uparrow b$, as $n \uparrow \infty$, in the case $v_{n}\left(c_{n}\right)=M\left(c_{n}\right)$ for all $n \geq N$.

The advantage of using w_{n} instead of v_{n} is computational. Solution of (2.24) for v_{n} will show that the formula defining v_{n} contains exponential functions. (2.21) shows that this is not the case for w_{n}. On the other hand, the sequence v_{n} will in general converge faster than the sequence w_{n}.
3. Application. As a special case of the results obtained in the previous section, consider

$$
\begin{equation*}
y^{\prime \prime}+p(t) y=0, \quad a \leq t \leq b, \quad p(t) \geq 0 \tag{3.1}
\end{equation*}
$$

and let

$$
\begin{aligned}
& H_{0}(t)=\int_{a}^{t}(s-a)(t-s) p(s) d s /(b-a) \\
& H_{1}(t)=\int_{a}^{t}(s-a) p(s) H_{0}(s) d s / \int_{a}^{t}(s-a)^{2} p(s) d s \\
& H_{2}(t)=\int_{a}^{t} p(s) H_{0}^{2}(s) d s / \int_{a}^{t}(s-a)^{2} p(s) d s
\end{aligned}
$$

Corollary 4. Equation (3.1) is disconjugate on $[a, b]$ if either of the following conditions hold:
(i) $H_{0}(b) \leq 1$
(ii) $H_{0}(b)-(b-a) H_{1}(b)+(b-a)^{2} H_{2}(b) \leq 1$;
and is conjugate on $[a, b]$ if either of the following conditions hold:
(iii) $H_{0}(b)-(b-a) H_{1}(b) \geq 1$
(iv) $H_{0}(b)-(b-a) H_{1}(b)+(b-a)^{2} H_{2}(b)-(b-a)^{2} H_{1}^{2}(b) \geq 1$.

The conditions (i)-(iv) correspond respectively to (2.6) with $n=0,1$ and (2.3) with $n=0,1$. For the trivial equation $y^{\prime \prime}+y=0$, conditions (ii) and (iv) imply

$$
2.604<\pi<3.366
$$

A nontrivial equation to which Corollary 4 can be applied is

$$
\begin{equation*}
y^{\prime \prime}+\lambda(\sin t) y=0, \quad 0 \leq t \leq \pi \tag{3.2}
\end{equation*}
$$

Equation (3.2) is disconjugate on $[0, \pi]$ if

$$
\lambda \leq 1.056
$$

and is conjugate on $[0, \pi]$ if

$$
\lambda \geq 1.242
$$

For the equation

$$
\begin{equation*}
y^{\prime \prime}+g(t) y^{\prime}+f(t) y=0, \tag{3.3}
\end{equation*}
$$

which is equivalent to (1.1) with

$$
r(t)=\exp \left(\int_{a}^{t} g(s) d s\right), \quad q(t)=f(t) \exp \left(\int_{a}^{t} g(s)\right) d s
$$

the condition (2.6) with $n=0$ and $f_{+}(t)=\max (0, f(t))$ is

$$
\begin{equation*}
\int_{a}^{b}\left(\int_{a}^{s} r^{-1}(\tau) d \tau\right)\left(\int_{s}^{b} r^{-1}(\tau) d \tau\right) r(s) f_{+}(s) d s \leq \int_{a}^{b} r(\tau) d \tau \tag{3.4}
\end{equation*}
$$

This result includes the result of Hartman and Wintner [7], which states that (3.3) is disconjugate on $[a, b]$ if

$$
\int_{a}^{b}(s-a)(b-s) f_{+}(s) d s+\max \left\{\int_{a}^{b} s|g(s)| d s, \int_{a}^{b}(b-s)|g(s)| d s\right\} \leq b-a .
$$

4. Disconjugacy and the distance between zeros and focal points. The basis for the development in $\S 2$ involved the relationship between equation (2.14) and equation (1.2). Information about (1.2) was obtained by analyzing (2.14). A similar development with respect to the problem of locating the first zero of $y^{\prime}(t)$ is possible using equation (2.10) in place of (2.14). We list the pertinent results in this section and outline the proofs.
Let

$$
\begin{aligned}
& M_{0}(t)=M(t)=\int_{a}^{t} R^{2}(s) q(s) d s, \\
& M_{1}(t)=\int_{a}^{t} r^{-1}(s) R^{-2}(s) M^{2}(s) d s \\
& M_{n}(t)=\int_{a}^{t} r^{-1}(s) R^{-2}(s) M_{n-1}(s)\left[M_{n-1}(s)+2 \sum_{k=0}^{n-2} M_{k}(s)\right] d s, \quad n=2, \ldots, \\
& N_{0}(t)=R(t) \int_{a}^{t} R(s) q(s) d s \\
& N_{1}(t)=\int_{a}^{t} r^{-1}(s) R^{-2}(s) N_{0}(s)\left[N_{0}(s)-R(s)\right] d s, \\
& N_{n}(t)=\int_{a}^{t} r^{-1}(s) R^{-2}(s) N_{n-1}(s)\left[N_{n-1}(s)+2 \sum_{k=0}^{n-2} N_{k}(s)\right] d s, \quad n=2, \ldots
\end{aligned}
$$

Theorem 3. Assume $a<b \leq \infty$ and $M \geq 0$. Equation (1.2) is disconjugate on $[a, b)$, if and only if $\sum_{k=0}^{\infty} M_{k}(t)$ converges for $a \leq t<b$.

Theorem 4. Assume $a<b \leq \infty, M \geq 0$, and (1.2) is disconjugate on $[a, b)$. Let y be any nontrivial solution of (1.2) such that $y(a)=0$. Then, $\exists c \in(a, b)$ such that $y^{\prime}(c)=0$, if and only if

$$
\begin{equation*}
\sum_{k=0}^{\infty} M_{k}(c)=R(c) \tag{4.1}
\end{equation*}
$$

Corollary 4. Assume that y is a solution of (1.2) such that $y(a)=0, y^{\prime}(c)=0$, and $y^{\prime}(t)>0$ for $a<t<c$. If

$$
\begin{equation*}
\sum_{k=0}^{n} M_{k}\left(b_{n}\right) \geq R\left(b_{n}\right) \tag{4.2}
\end{equation*}
$$

then

$$
b_{n}>c .
$$

Furthermore, if equality occurs in (4.2) for $n \geq N$, then

$$
b_{n} \downarrow c, \quad \text { as } n \uparrow \infty .
$$

Theorem 5. Assume $a<b \leq \infty, M \geq 0$, and (1.2) is disconjugate on $[a, b)$. Let y be any nontrivial solution of (1.2) such that $y(a)=0$. Then, $\exists c \in(a, b)$ such that $y^{\prime}(c)=0$ and $y^{\prime}(t) \neq 0$ for $a<t<c$, if and only if $\sum_{k=0}^{\infty} N_{k}(t)$ converges for $a<t<c$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty} N_{k}(c)=R(c) . \tag{4.3}
\end{equation*}
$$

Corollary 5. Assume that y is a solution of (1.2) such that $y(a)=0, y^{\prime}(c)=0$, and $y^{\prime}(t)>0$ for $a<t<c$. If

$$
\begin{equation*}
\sum_{k=0}^{n} N_{k}\left(c_{n}\right) \leq R\left(c_{n}\right), \tag{4.4}
\end{equation*}
$$

then,

$$
c>c_{n}
$$

Furthermore, if equality occurs in (4.4) for $n \geq N$, then

$$
c_{n} \uparrow c, \quad \text { as } n \uparrow \infty .
$$

When $n=0$ in Corollaries 4 and 5 , the bounds

$$
c_{0}<c<b_{0}
$$

where

$$
\int_{a}^{b_{0}} R^{2}(s) q(s) d s \geq R\left(b_{0}\right) \quad \text { and } \quad \int_{a}^{c_{0}} R(s) q(s) d s \leq 1
$$

are obtained. These estimates have previously been obtained by Ronveaux [11].

Proof of Theorem 3 (outline). The proof of Theorem 3 is similar to the proof of Theorem 1. The proof depends primarily upon the fact that the equation

$$
\begin{equation*}
z^{\prime}=q R^{2}+z^{2} / r R^{2} \tag{4.5}
\end{equation*}
$$

has a unique solution in $C(a, b)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow a^{+}} \frac{z(t)}{R(t)}=0 \tag{4.6}
\end{equation*}
$$

if and only if, equation (1.2) is disconjugate on $[a, b)$. The unique solution of (4.5)-(4.6) can be obtained by iterating in either the manner described in the proof of Theorem 1 or in the proof of Theorem 2. In the former case,

$$
\begin{equation*}
z(t)=\sum_{k=0}^{\infty} M_{k}(t) \tag{4.7}
\end{equation*}
$$

which holds for $a<t<b$. In the latter case,

$$
\begin{equation*}
z(t)=\sum_{k=0}^{\infty} N_{k}(t) \tag{4.8}
\end{equation*}
$$

which holds for all t such that $z(t)<R(t)$.
We will now prove that (4.5)-(4.6) has at most one solution. Suppose it has two solutions z_{1} and z_{2} on an interval $[a, b)$. Then

$$
\Delta(t)=\left|z_{1}(t)-z_{2}(t)\right| \leq \int_{a}^{t} \frac{\left|z_{1}(s)+z_{2}(s)\right|}{r(s) R^{2}(s)} \Delta(s) d s
$$

Once again, the Gronwall inequality implies $\Delta(t)=0$ if

$$
f(s)=r^{-1}(s) R^{-2}(s)\left|z_{1}(s)+z_{2}(s)\right|
$$

is integrable on [a, t] for all $a<t<b$. Clearly, we need to show only that f is integrable in some right neighborhood of a. For any solution z of (4.5), we obtain

$$
\left(\frac{z}{R}\right)^{\prime}=q R+\frac{z}{r R^{2}}\left(\frac{z}{R}-1\right)
$$

Hence, if z also satisfies (4.6), then $\exists \delta=\delta_{z}>0$ such that

$$
\left[z(t) R^{-1}(t)\right]^{\prime} \leq q(t) R(t), \quad a<t<a+\delta .
$$

So

$$
z(t) \leq R(t) \int_{a}^{t} R(s) q(s) d s, \quad a<t<a+\delta .
$$

Hence, for the solutions z_{1} and z_{2} and for

$$
\delta=\min \left(\delta_{z_{1}}, \delta_{z_{2}}\right)
$$

we obtain

$$
\begin{aligned}
f(t) & \leq 2 r^{-1}(t) R^{-1}(t) \int_{a}^{t} R(s) q(s) d s \\
& \leq 2 r^{-1}(t) \int_{a}^{t} q(s) d s, \quad a \leq t<a+\delta
\end{aligned}
$$

and so $f(t)$ is integrable on $[a, a+\delta]$.
Proof of Theorem 4. Since (1.2) is disconjugate, the solution y does not vanish on (a, b). Hence, the function z defined by (2.8) is $C^{1}(a, b)$ and satisfies (4.5)-(4.6). (2.8) also implies that $y^{\prime}(c)=0$, if and only if $z(c)=R(c)$. The conclusion of the theorem follows from the fact that (4.5)-(4.6) has the unique solution (4.7) on (a, b).

Proof of Theorem 5. The proof is the same as the proof of Theorem 4 with the substitution of (4.8) for (4.7).

References

1. D. Banks, Bounds for eigenvalues and generalized convexity, Pacific J. Math. 13 (1963), 1031-1052.
2. A. Elbert, On the solutions of the differential equation $y^{\prime \prime}+q(x) y=0$, where $[q(x)]^{\gamma}$ is concave, II, Studia Sci. Math. Hung. 4 (1969), 257-266.
3. A. M. Fink, On the zeros of $y^{\prime \prime}+p y=0$ with linear, convex, and concave p, J. Math. Pures Appl. 46 (1967), 1-10.
4. A. M. Fink and D. F. St. Mary, On an inequality of Nehari, Proc. Amer. Math. Soc. 21 (1969), 640-642.
5. A. Galbraith, On the zeros of solutions of ordinary differential equations of the second order, Proc. Amer. Math. Soc. 17 (1966), 333-337.
6. P. Hartman and A. Wintner, On an oscillation criterion of Lyapunov, Amer. J. Math. 73 (1951), 885-890.
7. -_ and -_ On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330-332.
8. A. Lyapunov, Sur une série relative à la théorie des équations différentielles linéaires à coefficient périodiques, C.R. Acad. Sci. Paris, 123 (1896), 1248-1252.
9. Z. Opial, Sur les intégrales oscillantes de l'équation différentielle $u^{\prime \prime}+f(t) u=0$, Ann. Polon. Math. 4 (1958), 308-313.
10. -_, Sur une inégalité de C. de la Vallée Poussin dans la théorie de l'équation différentielle linéaire du second ordre, Ann. Polon. Math. 6 (1959-60), 87-91.
11. A. Ronveaux, Equations différentielles du second ordre: distances entre zéro et extremum des solutions, Ann. Soc. Sci. Bruxelles Sér. I, 84 (1970), 5-20.
12. C. de la Vallée Poussin, Sur l'équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.
13. D. Willett, Classification of second order linear differential equations with respect to oscillation, Advances in Math. 3 (1969), 594-623.
14. ——, A necessary and sufficient condition for the oscillation of some linear second order differential equations, Rocky Mt. Math. J. 1 (1970), 357-365.

University of Alberta, Edmonton, Alberta
University of Utah, Salt Lake City, Utah

[^0]: Received by the editors September 16, 1970 and, in revised form, November 24, 1970.
 ${ }^{(1)}$ Research supported, in part, by National Research Council of Canada Grant A3053 to the Univ. of Alberta.

