Orthodox bands of modules

F. Pastijn

In this paper we shall consider orthodox bands of commutative groups, together with a ring of endomorphisms. We shall generalize the concept of a left module by introducing orthodox bands of left modules; we shall also deal with linear mappings, the transpose of a linear mapping and with the dual of an orthodox band of left modules.

We shall use the notations and terminology of [1] and [3].

1.

DEFINITION. Let R, +, \circ be a ring with zero element 0 and identity 1. Let S be a semigroup and $R \times S \rightarrow S$, $(\alpha, x) \mapsto \alpha x$ a mapping satisfying the following conditions:

- (i) $\alpha(xy) = (\alpha x)(\alpha y)$ for every $\alpha \in R$ and every $x, y \in S$,
- (ii) $(\alpha+\beta)x = (\alpha x)(\beta x)$ for every $\alpha, \beta \in R$ and every $x \in S$,
- (iii) $(\alpha \circ \beta)x = \alpha(\beta x)$ for every $\alpha, \beta \in R$ and every $x \in S$,
- (iv) lx = x for every $x \in S$.

The structure defined this way will be called an orthodox band of left R-modules. The next theorem justifies our terminology.

2.

THEOREM 1. Let R, S and the mapping $R \times S \rightarrow S$ be as in the definition of Section 1. Then S is an orthodox band of abelian groups and the maximal subgroups of S are left invariant by the elements of R.

Received 12 October 1976.

Proof. Let x be any element of S, and α any element of R; we then have

$$(0x)(0x) = (0+0)x = 0x ,$$

$$(\alpha x)(0x) = (\alpha+0)x = \alpha x = (0+\alpha)x = (0x)(\alpha x) ,$$

$$(\alpha x)((-\alpha)x) = (\alpha-\alpha)x = 0x = (-\alpha+\alpha)x = ((-\alpha)x)(\alpha x) .$$

This implies that for any $\alpha \in R$ and any $x \in S$, αx belongs to the maximal subgroup of S with identity Ωx ; the inverse of αx in this maximal subgroup must be $(-\alpha)x$. More specifically |x = x| belongs to the maximal subgroup of S with identity Ωx , and its inverse in this maximal subgroup must be (-1)x. We conclude that S must be a completely regular semigroup and that all maximal subgroups of S are left invariant by the elements of R.

For every $x, y \in S$ we have

$$(xy)(xy) = (1+1)(xy) = ((1+1)x)((1+1)y) = x^2y^2$$
.

Let e, f be any idempotents of S, then the foregoing implies that $(ef)^2 = e^2 f^2 = ef$; hence $E_S = \{x \in S \mid x^2 = x\}$ must be a subsemigroup of S. Let x and y belong to the same maximal subgroup of S; then the foregoing implies

$$xy = ((-1)x)x^2y^2((-1)y) = ((-1)x)xyxy((-1)y) = yx ;$$

hence S is a union of abelian groups. We have yet to prove that S is an orthodox union of abelian groups [2].

Let e and f be any idempotents of S, and $x \in H_e$, $y \in H_f$. We put (-1)x = x' and (-1)y = y'. Then

$$ef = (ef)^2 = (1+1)(ef) = (1+1)(x(x'f)) = x^2(x'f)^2 = x^2x'fx'f = (xf)(x'f)$$

and analogously

$$ef = (x'f)(xf)$$
.

Since ef, x'f, and xf are elements of the rectangular group D_{ef} [2], the foregoing implies that xf and x'f are mutually inverse elements of the maximal subgroup H_{ef} . Dually, ey and ey' are mutually inverse

elements of the maximal subgroup H_{ef} . Since (xy)y' = xf and (xf)y = xy we have xyRxf; hence xyRef. Analogously, since x'(xy) = ey and x(ey) = xy we have xyLey; hence xyLef. We conclude that xyHef. Green's relation H must then be a congruence on S. Thus S is an orthodox band of commutative groups [2].

3.

REMARK. Let S be an orthodox band of abelian groups. Then, by Yamada's Theorem ([2] and [10]), there exists a band E and a semilattice of abelian groups Q, both having the same structure semilattice Y, such that S is the spined product of Q and E over $Y: S = Q \times_Y E$. Let $Q = \bigcup_{K} G_K$ and $E = \bigcup_{K} E_K$; then S consists of $\kappa \in Y$ ordered pairs (x_K, e_K) , $\kappa \in Y$, $x_K \in G_K$, $e_K \in E_K$. Multiplication is defined by

$$(x_{\lambda}, e_{\lambda})(y_{\mu}, f_{\mu}) = (x_{\lambda}y_{\mu}, e_{\lambda}f_{\mu})$$

for any $\lambda, \mu \in Y$, $x_{\lambda} \in G_{\lambda}$, $y_{\mu} \in G_{\mu}$, $e_{\lambda} \in E_{\lambda}$, $f_{\mu} \in E_{\mu}$. The identity element of G_{κ} , $\kappa \in Y$, will be denoted by $\mathbf{1}_{\kappa}$.

The following result will generalize a theorem of [4] about semilattices of left modules. By combining the next theorem and Theorem 1, we obtain a characterization of orthodox bands of abelian groups.

4.

THEOREM 2. Let S be any orthodox band of abelian groups, and let Z be the ring of integers. Let e be any idempotent of S, and x and x' mutually inverse elements of the maximal subgroup H_e . Define the mapping $Z \times S \rightarrow S$, $(k, x) \mapsto kx$ by

 $kx = x^{k} \quad if \quad k > 0$ $= e \quad if \quad k = 0$ $= x'^{-k} \quad if \quad k < 0 \; .$

Then S is an orthodox band of left Z-modules.

Proof. Conditions (i), (ii), (iii), and (iv) of the definition in Section 1 are checked by some easy calculations.

5.

DEFINITIONS and REMARKS. Let S be an orthodox band of left R-modules, and τ a congruence on the semigroup S. The natural homomorphism of S onto S/τ will be denoted by $\tau^{\#}$. τ will be called R-stable if and only if $x\tau y$ implies $(\alpha x)\tau(\alpha y)$ for every $x, y \in S$ and every $\alpha \in R$; we can then define a mapping $R \times (S/\tau) \rightarrow S/\tau$ by $(\alpha, \overline{x}) \mapsto \alpha \overline{x} = \overline{\alpha x}$; S/τ will then be an orthodox band of left R-modules.

Let S and T be orthodox bands of left R-modules. The mapping $\Phi : S \to T$ will be called R-linear if and only if

(i) $\Phi(xy) = (\Phi x)(\Phi y)$ for every $x, y \in S$,

(ii) $\Phi(\alpha x) = \alpha \Phi(x)$ for every $x \in S$ and every $\alpha \in R$.

 $\Phi(S)$ will then be an orthodox band of left *R*-modules.

The subset A of S will be called R-stable if and only if $\alpha x \in A$ for every $x \in A$ and every $\alpha \in R$. If Φ is an R-linear mapping of S into T, $\Phi(S)$ will be an R-stable subsemigroup of T, and the kernel of Φ will be an R-stable subsemigroup of S. Any R-stable subsemigroup of an orthodox band of left R-modules must of course be an orthodox band of left R-modules. If T is an R-stable congruence on S, the union of all T-classes containing an idempotent will be an R-stable subsemigroup of S.

The mapping $\Phi: S \to T$ will be *R*-linear if and only if $\Phi^{-1}\Phi$ is an *R*-stable congruence on *S*. The equivalence relation τ on *S* is an *R*-stable congruence if and only if $\tau^{\#}$ is an *R*-linear mapping. The mapping $\Phi: S \to E_S$, $x \mapsto 0x$ is an *R*-linear mapping of *S* onto the band consisting of all idempotents of *S*; $\Phi^{-1}\Phi$ is then the *R*-stable congruence #.

Let S be the spined product of a semilattice of abelian groups Qand a band E; we shall use the same notation as in the remark of Section 3. Q is the greatest inverse semigroup homomorphic image of S, and the

mapping $\Delta : S \neq Q$, $(x_k, e_k) \mapsto x_k$ is a homomorphism of S onto Q; we shall put $\Delta^{-1}\Delta = \sigma$; this congruence σ is the minimal inverse semigroup congruence on S, and we shall show that σ is R-stable. Let G be the greatest group homomorphic image of Q, and $\Gamma : Q \neq G$, $x_{\kappa} \mapsto \tilde{x}_{\kappa}$ be a homomorphism of Q onto G, $\Gamma^{-1}\Gamma$ being the minimal group congruence on Q; if x_{λ} and y_{μ} are any elements of Q, then $x_{\lambda}\Gamma^{-1}\Gamma y_{\mu}$ if and only if there exists a $\kappa \in Y$, $\kappa \leq \lambda \wedge \mu$, such that $x_{\lambda} \mathbb{1}_{\kappa} = y_{\mu} \mathbb{1}_{\kappa}$; we shall put $(\Gamma \Delta)^{-1}(\Gamma \Delta) = \rho$; this congruence ρ is the minimal group congruence on S, and we shall show that ρ is R-stable.

6.

THEOREM 3. The minimal inverse semigroup congruence on an orthodox band of left R-modules is R-stable.

Proof. Let x_{κ} be any element of Q, and let us take any two elements (x_{κ}, e_{κ}) and (x_{κ}, f_{κ}) in $\Delta^{-1}x_{\kappa}$. Let α be any element of R. Since H is an R-stable congruence on S, $\alpha(x_{\kappa}, e_{\kappa})$ belongs to the H-class $G_{\kappa} \times e_{\kappa}$ of S containing (x_{κ}, e_{κ}) ; hence $\alpha(x_{\kappa}, e_{\kappa}) = (y_{\kappa}, e_{\kappa})$ for some $y_{\kappa} \in G_{\kappa}$. Analogously, $\alpha(x_{\kappa}, f_{\kappa}) = (z_{\kappa}, f_{\kappa})$ for some $z_{\kappa} \in G_{\kappa}$. Let $(1_{\kappa}, g_{\kappa})$ be L-related with $(1_{\kappa}, e_{\kappa})$ and R-related with $(1_{\kappa}, f_{\kappa})$, and let $(1_{\kappa}, h_{\kappa})$ be R-related with $(1_{\kappa}, e_{\kappa})$ and L-related with $(1_{\kappa}, f_{\kappa})$. Since by the restriction of $R \times S \Rightarrow S$ to $R \times (G_{\kappa} \times g_{\kappa})$ and $R \times (G_{\kappa} \times h_{\kappa})$, respectively, $G_{\kappa} \times g_{\kappa}$ and $\alpha(1_{\kappa}, h_{\kappa}) = (1_{\kappa}, h_{\kappa})$. Furthermore, we have

$$\begin{aligned} (z_{\kappa}, e_{\kappa}) &= (1_{\kappa}, h_{\kappa}) (z_{\kappa}, f_{\kappa}) (1_{\kappa}, g_{\kappa}) \\ &= (\alpha(1_{\kappa}, h_{\kappa})) (\alpha(x_{\kappa}, f_{\kappa})) (\alpha(1_{\kappa}, g_{\kappa})) \\ &= \alpha((1_{\kappa}, h_{\kappa}) (x_{\kappa}, f_{\kappa}) (1_{\kappa}, g_{\kappa})) \\ &= \alpha(x_{\kappa}, e_{\kappa}) = (y_{\kappa}, e_{\kappa}) ; \end{aligned}$$

F. Pastijn

hence $z_{\kappa} = y_{\kappa}$, and $\Delta(\alpha(x_{\kappa}, e_{\kappa})) = \Delta(\alpha(x_{\kappa}, f_{\kappa}))$.

7.

COROLLARY 1. By the mapping $R \times Q \rightarrow Q$,

$$(\alpha, x_{\kappa}) \mapsto \alpha x_{\kappa} = \Delta \left(\alpha \Delta^{-1} x_{\kappa} \right)$$
,

Q becomes a semilattice of left R-modules, and Δ an R-linear mapping of S onto Q .

8.

COROLLARY 2. Let Q be any semilattice of left R-modules, and Y the structure semilattice of Q; let E be a band with the same structure semilattice Y; let U G_{κ} and U E_{κ} be the semilattice $\kappa \in Y$ $\kappa \in Y$ decompositions of Q and E respectively; let S be the spined product $Q \times_{Y} E$ of Q and E over Y. By the mapping $R \times S + S$, $(\alpha, (x_{\kappa}, e_{\kappa})) \mapsto (\alpha x_{\kappa}, e_{\kappa})$ for every $\alpha \in R$, and every $\kappa \in Y$, $x_{\kappa} \in G_{\kappa}$, $e_{\kappa} \in E_{\kappa}$, S becomes an orthodox band of left R-modules. Conversely, any orthodox band of left R-modules can be so constructed.

9.

COROLLARY 3. Let S be an orthodox normal band of left R-modules, and let $S = \bigcup_{K \in Y} S_{K}$ be the semilattice decomposition of S. For any λ , $\mu \in Y$, $\lambda \ge \mu$, the structure homomorphism $\Psi_{\lambda,\mu}$ is an R-linear mapping of the orthodox rectangular band of left R-modules S_{λ} into the orthodox rectangular band of left R-modules S_{μ} .

Proof. In a semilattice of left R-modules the structure homomorphisms are R-linear [6]. The theorem now follows from Corollary 2 and from a result about normal bands [11].

10.

REMARK. Structure theorems for semilattices of left R-modules [6],

together with Corollary 2 yield structure theorems for bands of left *R*-modules.

11.

THEOREM 4. The minimal group congruence on an orthodox band of left R-modules is R-stable.

Proof. Let \tilde{x}_{λ} be any element of G, the greatest group homomorphic image of an orthodox band of left *R*-modules *S*. Let us take any two elements x_{λ} and y_{μ} in $\Gamma^{-1}\tilde{x}_{\lambda}$. There exists a $\kappa \in Y$, $\kappa \leq \lambda \wedge \mu$, such that $1_{\kappa}x_{\lambda} \equiv 1_{\kappa}y_{\mu}$. Let α be any element of *R*. From

$$(\alpha x_{\lambda}) \mathbf{1}_{\kappa} = (\alpha x_{\lambda}) (\alpha \mathbf{1}_{\kappa}) = \alpha (x_{\lambda} \mathbf{1}_{\kappa}) = \alpha (y_{\mu} \mathbf{1}_{\kappa}) = (\alpha y_{\mu}) (\alpha \mathbf{1}_{\kappa}) = (\alpha y_{\mu}) \mathbf{1}_{\kappa} ,$$

and $\alpha x_{\lambda} \in G_{\lambda}$, $\alpha y_{\mu} \in G_{\mu}$, we conclude that $\alpha y_{\mu} \in \Gamma^{-1}\Gamma(\alpha x_{\lambda})$, and thus $\widetilde{\alpha x}_{\lambda} = \widetilde{\alpha y}_{\mu}$. This implies that the minimal group congruence $\Gamma^{-1}\Gamma$ on Qmust be *R*-stable; consequently, the minimal group congruence $(\Gamma \Delta)^{-1}\Gamma \Delta = \rho$ on *S* must be *R*-stable.

12.

COROLLARY 4. By the mapping $R \times G \rightarrow G$, $(\alpha, \tilde{x}_{\kappa}) \mapsto \alpha \tilde{x}_{\kappa} = \alpha \tilde{x}_{\kappa}$, G becomes a left R-module, and the mapping $\Gamma \Delta$ an R-linear mapping of S onto G.

13.

DEFINITIONS. An orthodox band of right *R*-modules *S* can be defined in a way analogous to the way an orthodox band of left *R*-modules is defined. Condition (iii) of the definition in Section 1 must then be replaced by (iii)'; $(\alpha \circ \beta)x = \beta(\alpha x)$ for every $\alpha, \beta \in R$ and every $x \in S$. It will be more convenient to denote the mapping $R \times S \rightarrow S$ by $(\alpha, x) \mapsto x\alpha$; (iii)' then becomes

(iii)' $x(\alpha \circ \beta) = (x\alpha)\beta$ for every $\alpha, \beta \in R$ and every $x \in S$. If S is at the same time an orthodox band of left R-modules, and an orthodox band of right R-modules, then we shall say that S is an orthodox band of R-bimodules.

Let $R^{\infty} = R \cup \{\infty\}$, and define addition in R^{∞} as follows: for any $\alpha, \beta \in R$ we put

$$\alpha + \beta = \gamma$$
 in R if and only if $\alpha + \beta = \gamma$ in R

,

and we put

 $\alpha + \infty = \infty + \alpha = \infty$.

 $\stackrel{\infty}{R}$ will be a group with "zero" ∞ . We next define the mapping $R \times R^{\widetilde{\alpha}} \to R^{\widetilde{\alpha}}$ by agreeing that for α, β in R,

 $(\alpha, \beta) \mapsto \alpha\beta = \gamma$ if and only if $\alpha \circ \beta = \gamma$ in R,

and that

 $(\alpha, \infty) \mapsto \alpha \infty = \infty$.

We also define the mapping $R \times R^{\infty} \to R^{\infty}$ by setting, for α, β in R,

 $(\alpha, \beta) \mapsto \beta \alpha = \gamma$ if and only if $\beta \circ \alpha = \gamma$ in R,

and

 $(\alpha, \infty) \mapsto \infty \alpha = \infty$.

By these two mappings R^{∞} becomes a semilattice of *R*-bimodules, the structure semilattice being the two element semilattice. We shall use R^{∞} later in this paper.

The next theorem generalizes a result of [9].

14.

THEOREM 5. Let S be an orthodox band of left R-modules, and T an orthodox band of right R-modules. Let $I_{S,T}$ be the set of all partial mappings of S into T. Define a multiplication in $I_{S,T}$ as follows: for every Φ , $\Psi \in I_{S,T}$, dom $\Phi \Psi = \text{dom } \Phi \cap \text{dom } \Psi$, and for every $x \in \text{dom } \Phi \Psi$ we put $\Phi \Psi(x) = (\Phi x)(\Psi x)$. Define the mapping $R \times I_{S,T} + I_{S,T}$, $(\alpha, \Phi) \mapsto \Phi \alpha$ by $\text{dom}(\Phi \alpha) = \text{dom } \Phi$ and $(\Phi \alpha) x = (\Phi x) \alpha$, for every $x \in \text{dom } \Phi$. $I_{S,T}$ will then be an orthodox band of right *R*-modules. $I_{S,T}$ will be a semilattice of right *R*-modules if and only if

T is a semilattice of right R-modules.

Proof. For any Φ , $\Psi \in I_{S,T}$ and any $\alpha \in R$ we have $\operatorname{dom}((\Phi\Psi)\alpha) = \operatorname{dom} \Phi\Psi = \operatorname{dom} \Phi \cap \operatorname{dom} \Psi = \operatorname{dom}(\Phi\alpha) \cap \operatorname{dom}(\Psi\alpha) = \operatorname{dom}((\Phi\alpha)(\Psi\alpha))$, and for any $x \in \operatorname{dom}(\Phi\Psi)\alpha$ we have

$$((\Phi\Psi)\alpha)x = ((\Phi\Psi)x)\alpha = ((\Phi\alpha)(\Psi x))\alpha = ((\Phi\alpha)\alpha)((\Phi\alpha)\alpha) = = ((\Phi\alpha)x)((\Phi\alpha)x) = ((\Phi\alpha)(\Psi\alpha))x ;$$

hence $(\Phi\Psi)\alpha = (\Phi\alpha)(\Psi\alpha)$. For any $\Phi \in I_{S,T}$ and any $\alpha, \beta \in R$ we have

$$\operatorname{dom}(\Phi(\alpha+\beta)) = \operatorname{dom} \Phi = \operatorname{dom}(\Phi\alpha) \cap \operatorname{dom}(\Phi\beta) = \operatorname{dom}((\Phi\alpha)(\Phi\beta))$$

and for any $x \in dom(\Phi(\alpha+\beta))$ we have

$$(\Phi(\alpha+\beta))x = (\Phi\alpha)(\alpha+\beta) = ((\Phi\alpha)\alpha)((\Phi\alpha)\beta) = ((\Phi\alpha)x)((\Phi\beta)x) = ((\Phi\alpha)(\Phi\beta))x ;$$

hence $\Phi(\alpha+\beta) = (\Phi\alpha)(\Phi\beta)$. Furthermore,

 $dom(\Phi(\alpha \circ \beta)) = dom \Phi = dom(\Phi\alpha) = dom((\Phi\alpha)\beta)$,

and for any $x \in dom(\phi(\alpha \circ \beta))$ we have

$$(\Phi(\alpha \circ \beta))x = (\Phi x)(\alpha \circ \beta) = ((\Phi x)\alpha)\beta = ((\Phi \alpha)x)\beta = ((\Phi \alpha)\beta)x$$
;
hence $\Phi(\alpha \circ \beta) = (\Phi \alpha)\beta$. Finally, $\operatorname{dom}(\Phi 1) = \operatorname{dom} \Phi$, and for any $x \in \operatorname{dom}(\Phi 1)$ we have

$$(\Phi 1)x = (\Phi x)1 = \Phi x;$$

hence $\Phi = \Phi$. We conclude that $I_{S,T}$ is an orthodox band of right *R*-modules.

From the definition of the multiplication in $I_{S,T}$ it follows that $I_{S,T}$ is commutative if and only if T is commutative. From this follows the last part of the theorem.

15.

THEOREM 6. Let S be an orthodox band of left R-modules, S' the set of R-linear mappings of S into R, and S* the set of R-linear mappings of S into \mathbb{R}^{∞} . Then S' is an R-stable subsemigroup of $\mathbb{I}_{S,R}$ and S* is an R-stable subsemigroup of $\mathbb{I}_{S,R}$.

Proof. We show that S^* is an *R*-stable subsemigroup of $1_{S,R^{\infty}}$; the proof of the rest is similar. Let x^* and y^* be any elements of S^* ; since R^{∞} is a semilattice of commutative groups, x^*y^* must be a homomorphism of S into R^{∞} . For any $x \in S$ and any $x^* \in S^*$ we shall from now on put $x^*(x) = \langle x, x^* \rangle$. For any $x \in S$, any $\alpha \in R$, and any $x^*, y^* \in S^*$ we then have

$$\langle \alpha x, x^* y^* \rangle = \langle \alpha x, x^* \rangle + \langle \alpha x, y^* \rangle = \alpha \langle x, x^* \rangle + \alpha \langle x, y^* \rangle = \alpha (\langle x, x^* \rangle + \langle x, y^* \rangle) = \alpha \langle x, x^* y^* \rangle .$$

We conclude that for any x^* , $y^* \in S^*$, x^*y^* must be an *R*-linear mapping of *S* into R^{∞} ; hence $x^*y^* \in S^*$. S^* is a subsemigroup of *I*. S, R^{∞} .

For any $x, y \in S$, any $x^* \in S^*$, and any $\alpha \in R$ we have

(

$$xy, x^*\alpha\rangle = \langle xy, x^*\rangle\alpha$$
$$= (\langle x, x^*\rangle + \langle y, x^*\rangle)\alpha$$
$$= \langle x, x^*\rangle\alpha + \langle y, x^*\rangle\alpha$$
$$= \langle x, x^*\alpha + \langle y, x^*\alpha \rangle$$

hence $x^*\alpha$ must be a homomorphism of S into R^{∞} . For any $x \in S$, any $x^* \in S^*$, and any $\alpha, \beta \in R$ we have

$$\langle \beta x, x^* \alpha \rangle = \langle \beta x, x^* \rangle \alpha = \beta \langle x, x^* \rangle \alpha = \beta \langle x, x^* \alpha \rangle$$

We conclude that for any $x^* \in S^*$ and any $\alpha \in R$, $x^*\alpha$ must be an *R*-linear mapping of *S* into R^{∞} . Consequently *S*^{*} must be an *R*-stable subsemigroup of *I* S, R^{∞} .

16.

COROLLARY 5. S^* is a semilattice of right *R*-modules. The structure semilattice of S^* is isomorphic with the \cup -semilattice of prime ideals of *S*. The mapping $1^*: S \to R^{\infty}$, $x \mapsto 0$ is the identity of S^* and the mapping $0^*: S \to R^{\infty}$, $x \mapsto \infty$ is the zero of S^* .

Proof. R^{∞} is a semilattice of right *R*-modules; hence I is a S, R^{∞} semilattice of right *R*-modules. Since S^* is *R*-stable in I, S^* must also be a semilattice of right *R*-modules.

Let e^* be any idempotent of S^* ; then $V_{e^*} = \{x \in S \mid \langle x, e^* \rangle = \infty\}$ is a prime ideal of S. For any $x \in S \setminus V_{e^*}$, $\langle x, e^* \rangle \in R$ and $\langle x, e^* \rangle = \langle x, e^{*2} \rangle = \langle x, e^* \rangle + \langle x, e^* \rangle$; hence $\langle x, e^* \rangle = 0$. Conversely, let P be any prime ideal of S; then we can define $e_P^* \in S^*$ by $\langle x, e_P^* \rangle = \infty$ for all $x \in P$, and $\langle x, e_P^* \rangle = 0$ for all $x \in S \setminus P$. Furthermore, if e^* and f^* are any two idempotents of S^* , we must have $V_{e^*f^*} = V_{e^*} \cup V_{f^*}$. Consequently, the semilattice E_{S^*} consisting of the idempotents of S^* is isomorphic with the U-semilattice of all prime ideals of S. Since E_{S^*} is isomorphic with the structure semilattice of S^* , the result stated in the corollary follows.

17.

COROLLARY 6. S' is a right R-module which is an R-stable subgroup of S^* ; S' is the maximal submodule of S^* containing the identity 1^* of S^* .

Proof. All elements of S' are R-linear mappings of S into R; hence they can be considered as R-linear mappings of S into R^{∞} , and consequently $S' \subseteq S^*$. Since S' is R-stable in $I_{S,R}$, and since clearly $I_{S,R}$ is R-stable in $I_{S,R}^{\infty}$, S' must be R-stable in $I_{S,R}^{\circ}$; from this we infer that S' is R-stable in S^* .

It is evident that $1^*: S \to R$, $x \mapsto 0$ is the identity of S'. Let x^* be any element of S'; then $x^*(-1) \in S'$, and for any $x \in S$ we have

$$\langle x, x^*(x^{*}(-1)) \rangle = \langle x, x^* \rangle + \langle x, x^*(-1) \rangle$$
$$= \langle x, x^* \rangle + \langle x, x^* \rangle (-1) = 0$$

and analogously

$$\langle x, (x^{*}(-1))x^{*} \rangle = 0;$$

hence $x^*(x^*(-1)) = (x^*(-1))x^* = 1^*$. This shows that x^* and $x^*(-1)$ are mutually inverse elements of the commutative group H_{1^*} , the maximal subgroup of S^* containing 1^* . For any element $y^* \in H_{1^*}$, we must have $V_{y^*} = \emptyset$; hence any element $y^* \in H_{1^*}$ belongs to S'. We can conclude that $H_{1^*} = S'$.

18.

THEOREM 7. Let S be an orthodox band of left R-modules and τ any R-stable congruence on S. The mapping $\Phi : (S/\tau)^* \to S^*$, $\overline{x}^* \mapsto \Phi \overline{x}^*$ defined by $\langle x, \Phi \overline{x}^* \rangle = \langle \tau^\# x, \overline{x}^* \rangle$ for every $x \in S$ is an R-isomorphism of $(S/\tau)^*$ into S^* . Whenever $\iota_S \subseteq \tau \subseteq \sigma$, σ being the minimal inverse semigroup congruence on S, this mapping Φ is a surjective R-isomorphism of $(S/\tau)^*$ onto S^* .

Proof. Let us suppose that \bar{x}^* , \bar{y}^* are any elements of $(S/\tau)^*$, and x any element of S; we then have

$$\begin{array}{l} \langle x, \ \Phi(\overline{x}^* \overline{y}^*) \rangle = \langle \tau^{\#} x, \ \overline{x}^* \overline{y}^* \rangle \\ = \langle \tau^{\#} x, \ \overline{x}^* \rangle + \langle \tau^{\#} x, \ \overline{y}^* \rangle \\ = \langle x, \ \Phi \overline{x}^* \rangle + \langle x, \ \Phi \overline{y}^* \rangle \\ = \langle x, \ (\Phi \overline{x}^*) (\Phi \overline{y}^*) \rangle ; \end{array}$$

hence $\Phi(\bar{x}^*\bar{y}^*) = (\Phi\bar{x}^*)(\Phi\bar{y}^*)$. Let us suppose that \bar{x}^* is any element of $(S/\tau)^*$, α any element of R, and x any element of S; then

$$\langle x, \Phi(\bar{x}^{*}\alpha) \rangle = \langle \tau^{\#}x, \bar{x}^{*}\alpha \rangle$$

$$= \langle \tau^{\#}x, \bar{x}^{*}\rangle \alpha$$

$$= \langle x, \Phi \bar{x}^{*}\rangle \alpha$$

$$= \langle x, (\Phi \bar{x}^{*})\alpha \rangle ;$$

hence $\Phi(\bar{x}^*\alpha) = (\Phi\bar{x}^*)\alpha$. Since $\tau^{\#}$ is an *R*-linear mapping of *S* onto S/τ , $\Phi\bar{x}^* \in S^*$ for any $\bar{x}^* \in (S/\tau)^*$. We conclude that Φ is an *R*-linear mapping of $(S/\tau)^*$ into S^* . Let us now suppose that \bar{x}^* , $\bar{y}^* \in (S/\tau)^*$, and $\Phi\bar{x}^* = \Phi\bar{y}^*$; if for some $\bar{x} \in S/\tau$, $(\bar{x}, \bar{x}^*) \neq (\bar{x}, \bar{y}^*)$, then for any $x \in (\tau^{\#})^{-1}\bar{x}$ we should have

$$\langle x, \Phi \overline{x}^* \rangle = \langle \tau^{\#} x, \overline{x}^* \rangle$$

$$= \langle \overline{x}, \overline{x}^* \rangle$$

$$\neq \langle \overline{x}, \overline{y}^* \rangle = \langle \tau^{\#} x, \overline{y}^* \rangle = \langle x, \Phi \overline{y}^* \rangle$$

and this is impossible. We conclude that $\Phi \overline{x}^* = \Phi \overline{y}^*$ implies $\overline{x}^* = \overline{y}^*$; hence Φ is an isomorphism of $(S/\tau)^*$ into S^* .

It will be sufficient to show that the mapping $\Phi : (S/\sigma)^* \to S^*$, $\bar{x}^* \mapsto \Phi \bar{x}^*$ defined by $\langle x, \Phi x^* \rangle = \langle \sigma^\# x, \bar{x}^* \rangle$ for every $x \in S$, will be an *R*-isomorphism of $(S/\sigma)^*$ onto S^* . Let x^* be any element of S^* , and (x_{κ}, e_{κ}) and (x_{κ}, f_{κ}) any two σ -related elements of S. Since (x_{κ}, e_{κ}) and (x_{κ}, f_{κ}) are *D*-related in S, they generate the same principal ideal of S, and thus $\langle (x_{\kappa}, e_{\kappa}), x^* \rangle = \infty$ if and only if $\langle (x_{\kappa}, f_{\kappa}), x^* \rangle = \infty$. Let us now suppose that (x_{κ}, e_{κ}) and (x_{κ}, f_{κ}) both belong to $S \setminus V_{x^*}$; let $(1_{\kappa}, g_{\kappa})$ be *L*-related with (x_{κ}, e_{κ}) and *R*-related with $(1_{\kappa}, f_{\kappa})$, and $(1_{\kappa}, h_{\kappa})$ *R*-related with (x_{κ}, e_{κ}) and *L*-related with $(1_{\kappa}, f_{\kappa})$; $(1_{\kappa}, g_{\kappa})$ and $(1_{\kappa}, h_{\kappa})$ is both *D*-related with (x_{κ}, e_{κ}) and (x_{κ}, f_{κ}) ; hence $(1_{\kappa}, g_{\kappa})$, $(1_{\kappa}, h_{\kappa}) \in S \setminus V_{x^*}$. Since these two elements are idempotents of S, and since x^* is an homomorphism of $S \setminus V_{r^*}$ into R, we have

$$\langle (1_{\kappa}, g_{\kappa}), x^* \rangle = \langle (1_{\kappa}, h_{\kappa}), x^* \rangle = 0$$
.

From this it follows that

$$\begin{split} \langle \left(x_{\kappa}^{}, e_{\kappa}^{} \right), x^{\star} \rangle &= \langle \left(1_{\kappa}^{}, h_{\kappa}^{} \right) \left(x_{\kappa}^{}, f_{\kappa}^{} \right) \left(1_{\kappa}^{}, g_{\kappa}^{} \right), x^{\star} \rangle \\ &= \langle \left(1_{\kappa}^{}, h_{\kappa}^{} \right), x^{\star} \rangle + \langle \left(x_{\kappa}^{}, f_{\kappa}^{} \right), x^{\star} \rangle + \langle \left(1_{\kappa}^{}, g_{\kappa}^{} \right), x^{\star} \rangle \\ &= \langle \left(x_{\kappa}^{}, f_{\kappa}^{} \right), x^{\star} \rangle . \end{split}$$

In any case $(x^*)^{-1}x^* \supseteq \sigma$. Hence the mapping $\bar{x}^* \in (S/\sigma)^*$ defined by $\langle \sigma^{\#}x, \bar{x}^* \rangle = \langle x, x^* \rangle$ for all $x \in S$ is well-defined, and we shall have $\Phi \bar{x}^* = x^*$. Thus, in this case, Φ must be surjective.

19.

COROLLARY 7. If S is an orthodox band of left R-modules, and Q the greatest inverse homomorphic image of S, then S* and Q* are R-isomorphic.

20.

THEOREM 8. Let S be an orthodox band of left R-modules and τ any R-stable congruence on S. The mapping $\Psi : (S/\tau)' \rightarrow S'$, $\overline{x}^* \mapsto \Psi(\overline{x}^*)$ defined by $\langle x, \overline{\Psi x}^* \rangle = \langle \tau^{\#} x, \overline{x}^* \rangle$ for any $x \in S$ is an R-isomorphism of $(S/\tau)'$ into S'. Whenever $\iota_S \subseteq \tau \subseteq \rho$, ρ being the minimal group congruence on S, this mapping Ψ is a surjective R-isomorphism of $(S/\tau)'$ onto S'.

Proof. It is clear that the mapping Ψ must be the restriction of mapping Φ (of Theorem 7) to the maximal submodule $(S/\tau)'$ of $(S/\tau)^*$; hence Ψ is an *R*-isomorphism of $(S/\tau)'$ into S^* . Since for every $x \in S$, and every $\overline{x}^* \in (S/\tau)'$, we must have $\langle \tau^{\#}x, \overline{x}^* \rangle \in R$, we conclude that $\Psi \overline{x}^* \in S'$ for every $\overline{x}^* \in (S/\tau)'$; thus Ψ is an *R*-isomorphism of $(S/\tau)'$ into S'.

It will be sufficient to show that the mapping $\Psi : (S/\rho)' \neq S'$, $\overline{x}^* \mapsto \overline{\Psix}^*$ defined by $\langle x, \overline{\Psix}^* \rangle = \langle \rho^{\#}x, \overline{x}^* \rangle$ for every $x \in S$ will be an *R*-isomorphism of $(S/\rho)'$ onto S'. Let x^* be any element of S'. Since x^* must be a homomorphism of S into the additive group R, we have $(x^*)^{-1}x^* \supseteq \rho$. Hence the mapping $\overline{x}^* \in (S/\rho)'$ defined by $\langle \rho^{\#}x, \overline{x}^* \rangle = \langle x, x^* \rangle$ for every $x \in S$ is well-defined, and we shall have $\overline{\Psix}^* = x^*$. Thus, in this case Ψ must be surjective.

21.

COROLLARY 8. If S is an orthodox band of left R-modules, Q the greatest inverse homomorphic image of S, and G the greatest group homomorphic image of S, then S' and Q' are both R-isomorphic with right R-module G' which is the dual of left R-module G.

THEOREM 9. Let S be an orthodox band of left R-modules, and $S = \bigcup_{K \in Y} S = \bigcup_{K \in Y} G_K \times E_K \text{ its semilattice decomposition. For any } \lambda \in Y,$ the mapping $1^*_{\lambda} : S \neq R^{\infty}$ defined by $\langle x, 1^*_{\lambda} \rangle = 0$ if and only if $x \in \bigcup_{K \geq \lambda} S_K, \text{ and } \langle x, 1^*_{\lambda} \rangle = \infty$ otherwise, is an idempotent of S^* . The maximal submodule $H_{1^*_{\lambda}}$ of S^* containing 1^*_{λ} is R-isomorphic with $\left(\bigcup_{K \geq \lambda} S_K\right)'$ and with the right R-module G'_{λ} , which is the dual of the left R-module G_{λ} .

Proof. For any $\lambda \in Y$, $\bigcup S_{\kappa}$ is an *R*-stable subsemigroup of *S*, and G_{λ} will be the greatest group homomorphic image of $\bigcup S_{\kappa}$. From $\kappa \geq \lambda$ κ . From Corollary 8 it follows that $(\bigcup S_{\kappa})'$ and G'_{λ} are *R*-isomorphic right *R*-modules. It is easy to show that $S \setminus \{\bigcup S_{\kappa}\}$ is a prime ideal of *S*. From results in the proof of Corollary 5, it then follows that 1^{*}_{λ} must be an idempotent of S^{*} . We remark that for any $x^{*} \in S^{*}$, $x^{*} \in H_{1^{*}_{\lambda}}$ if and only if $V_{x^{*}} = \{x \in S \parallel \langle x, x^{*} \rangle = \infty\} = S \setminus \{\bigcup S_{\kappa}\}$. Hence the mapping $H_{1^{*}_{\lambda}} \leftarrow \{\bigcup S_{\kappa}\}'$, $x^{*} \mapsto x^{*} \mid \bigcup S_{\kappa}$ is an *R*-isomorphism of $H_{1^{*}_{\lambda}}$ onto $\kappa \geq \lambda$ $(\bigcup S_{\kappa})'$.

23.

COROLLARY 9. We use the same notations as in Theorem 9. Let Q be the greatest inverse semigroup homomorphic image of S and $Q = \bigcup_{\kappa \in Y} G_{\kappa}$ its semilattice decomposition. For any $\lambda, \mu \in Y$, $\lambda \geq \mu$, let $\Phi_{\lambda,\mu}$ be the structure homomorphism of Q, and ${}^{t}\Phi_{\lambda,\mu}$ its transpose; then $l_{\mu}^{*} \geq l_{\lambda}^{*}$ in S*; let $\Phi_{\mu,\lambda}^{*} : H_{l_{\mu}^{*}} \to H_{l_{\lambda}^{*}}$ be the structure homomorphism of S*. For any $\lambda \in Y$ the mapping $\Psi_{\lambda} : H_{l_{\lambda}^{\star}} \to G'_{\lambda}$, $x^{\star} \mapsto \Psi_{\lambda} x^{\star}$ defined by $\langle (x_{\kappa}, e_{\kappa}), x^{\star} \rangle = \langle \Phi_{\kappa,\lambda} x_{\kappa}, \Psi_{\lambda} x^{\star} \rangle$ for all $(x_{\kappa}, e_{\kappa}) \in \bigcup_{\kappa \geq \lambda} S_{\kappa}$ is an *R-isomorphism of* $H_{l_{\lambda}^{\star}}$ onto G'_{λ} , and the following diagram is commutative:

Proof. The mapping $\bigcup_{\kappa \geq \lambda} S_{\kappa} \neq G_{\lambda}$, $(x_{\kappa}, e_{\kappa}) \mapsto \Phi_{\kappa, \lambda} x_{\kappa}$ is a homomorphism of $\bigcup_{\kappa \geq \lambda} S_{\kappa}$ onto its greatest group homomorphic image G_{λ} ; Ψ_{λ} must then be an *R*-isomorphism of $H_{l_{\lambda}}$ onto G'_{λ} by Theorem 8.

Let x^* be any element of $\mathcal{H}_{l_{\mu}^*}$, and x_{λ} any element of \mathcal{G}_{λ} . We proceed to show that $\langle x_{\lambda}, {}^t \Phi_{\lambda,\mu} {}^{\psi} x^* \rangle = \langle x_{\lambda}, {}^{\psi} {}^{\lambda} {}^{\phi}_{\mu,\lambda} x^* \rangle$. Indeed,

We conclude that $\begin{array}{c} t \\ \phi \\ \lambda, \mu \\ \mu \end{array} = \begin{array}{c} \psi \\ \lambda \\ \mu, \lambda \end{array}$.

24.

COROLLARY 10. We use the same notations as in Theorem 9 and Corollary 9. Let the structure semilattice of S be a lattice. Consider $V = \bigcup_{K \in Y} G'_K$, and define multiplication in V by the following: for any $\kappa \in Y$

 $x', y' \in V$, $x' \in G'_{\lambda}$, $y' \in G'_{\mu}$, put $x'y' = \begin{pmatrix} t_{\Phi_{\lambda \lor \mu, \lambda}} x' \end{pmatrix} \begin{pmatrix} t_{\Phi_{\lambda \lor \mu, \mu}} y' \end{pmatrix}$. Define the mapping $R \times V \neq V$, $(\alpha, x') \mapsto x'\alpha$ in the usual way. Then V is a semilattice of right R-modules, and there exists an R-isomorphism of V into S^* . If Y satisfies the minimal condition, V must be R-isomorphic with S^* .

25.

REMARKS. Corollaries 9 and 10 show that S^* could well be named the dual of S. If Y is a lattice, the structure semilattice of V is the V-semilattice Y. The results of [6] make the connections between the structure theorems for S and the structure theorems for V more explicit.

Theorem 7 is quite analogous with a result in [5], §5, about the character semigroup of a commutative semigroup, and Theorem 9, Corollary 9, and Corollary 10 are in a certain way analogous with results of [7] and [8] (see also [3], Chapter 5).

The next theorem generalizes the concept of the transpose of an R-linear mapping.

26.

THEOREM 10. Let S and T be orthodox bands of left R-modules, and $\Theta : S \neq T$ an R-linear mapping. The mapping ${}^{T}\Theta : T^{*} \neq S^{*}$, $t^{*} \mapsto {}^{T}\Theta t^{*}$ defined by $\langle x, {}^{T}\Theta t^{*} \rangle = \langle \Theta x, t^{*} \rangle$ for all $x \in S$, must be an R-linear mapping of T^{*} into S^{*} , and ${}^{T}\Theta(T^{*})$ is embeddable in $(S/\Theta^{-1}\Theta)^{*} \cong (\Theta S)^{*}$.

Proof. It must be clear that for any $t^* \in T^*$, we must have $^T\Theta t^* \in S^*$, since Θ is *R*-linear; it is not difficult to show that $^{T}\Theta$ is *R*-linear.

Let t^* and v^* be any elements of T^* ; then $t^*|\Theta S$ and $v^*|\Theta S$ are both elements of $(\Theta S)^*$ since ΘS is an *R*-stable subsemigroup of *T*. From the definition of $T \Theta$ we have that $T \Theta t^* = T \Theta v^*$ if and only if $v^*|\Theta S = t^*|\Theta S$. This implies that the mapping $T \Theta(T^*) \to (\Theta S)^*$, $T \Theta t^* \mapsto t^*|\Theta S$ is an *R*-isomorphism of $T \Theta(T^*)$ into $(\Theta S)^*$.

27.

COROLLARY 11. Let S, T, and Θ be as in Theorem 10. The mapping ${}^t\Theta : T' \rightarrow S'$, $t^{*} \mapsto {}^t\Theta t^*$ defined by $\langle x, {}^t\Theta t^* \rangle = \langle \Theta x, t^* \rangle$ for all $x \in S$, must be an R-linear mapping of T' into S', and ${}^t\Theta(T')$ is embeddable in $(S/\Theta^{-1}\Theta)' \cong (\Theta S)'$.

28.

COROLLARY 12. We use the same notations as in Theorem 10 and Corollary 11. Let ρ_S and ρ_T be the minimal group congruences on S and T respectively. Let $\Psi_S : (S/\rho_S)' \rightarrow S'$, $\bar{x}^* \mapsto \Psi_S \bar{x}^*$, be the R-isomorphism defined by $\langle x, \Psi_S \bar{x}^* \rangle = \langle \rho_S^{\#} x, \bar{x}^* \rangle$ for all $x \in S$, and let $\Psi_T : (T/\rho_T)' \rightarrow T'$, $\bar{t}^* \mapsto \Psi_T \bar{t}^*$ be defined by $\langle t, \Psi_T \bar{t}^* \rangle = \langle \rho_T^{\#} t, \bar{t}^* \rangle$ for all $t \in S$. Then there exists an R-linear mapping $\Lambda : S/\rho_S + T/\rho_T$ such that the following diagrams are commutative:

$$\begin{array}{c} S \xrightarrow{\Theta} T & S' \xrightarrow{t_{\Theta}} T' \\ \rho_{S}^{\#} & \downarrow \rho_{T}^{\#} & \Psi_{S} \\ S/\rho_{S} \xrightarrow{\Lambda} T/\rho_{T} & (S/\rho_{S})' \xrightarrow{t_{\Lambda}} (T/\rho_{T})' \end{array}$$

Proof. Since $\rho_T^{\#}\Theta$ is an *R*-linear mapping of *S* into the left

$$\begin{split} \left\langle \rho_{S}^{\#} x, \ {}^{t} \Lambda \overline{t}^{*} \right\rangle &= \left\langle \rho_{T}^{\#} \Theta x, \ \overline{t}^{*} \right\rangle \\ &= \left\langle \Theta x, \ \Psi_{T} \overline{t}^{*} \right\rangle \\ &= \left\langle x, \ \left({}^{t} \Theta \Psi_{T} \right) \overline{t}^{*} \right\rangle \\ &= \left\langle \rho_{S}^{\#} x, \ \left(\Psi_{S}^{-1} \quad {}^{t} \Theta \Psi_{T} \right) \overline{t}^{*} \right\rangle \end{split}$$

for all $x \in S$ and all $\overline{t}^* \in (T/\rho_T)$ '; hence $t = \Psi_S^{-1t} \Theta \Psi_T$.

References

- [1] N. Bourbaki, Éléments de mathématique, Fascicule VI. Première partie, Livre II, Algèbre; Chapitre 2, Algèbre linéaire, 3e édition (Hermann, Paris, 1967).
- [2] A.H. Clifford, "The structure of orthodox unions of groups", Semigroup Forum 3 (1971/1972), 283-337.
- [3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Volume I (Mathematical Surveys, 7. Amer. Math. Soc., Providence, Rhode Island, 1961).
- [4] *J.M. Firsov, "Everywhere defined semimodules" (Russian), Summaries of talks of the all-union algebraic symposium, 360-361 (Gomel, 1975).
- [5] E. Hewitt and H.S. Zuckerman, "Finite dimensional convolution algebras", Acta Math. 93 (1955), 67-119.

[6] F. Pastijn and H. Reynaerts, "Semilattices of modules", submitted.

- [7] *Štefan Schwarz, "The theory of characters of finite commutative semigroups" (Russian), Czechoslovak Math. J. 4 (79) (1954), 219-247.
- [8] R.J. Warne and L.K. Williams, "Characters on inverse semigroups", *Czechoslovak Math. J.* 11 (86) (1961), 150-155.
- [9] F. Wuytack and J. Depunt, "Operators over I-collections of modules", Bull. Soc. Math. Belg. 17 (1965), 37-54.
- [10] Miyuki Yamada, "Strictly inversive semigroups", Bull. Shimane Univ. Natur. Sci. 13 (1963), 128-138.
- [11] Miyuki Yamada and Naoki Kimura, "Note on idempotent semigroups II", Proc. Japan Acad. 34 (1958), 110-112.

* The author has not had access to [4] and [7], which are quoted at second hand. Editor.

Dienst Hogere Meetkunde, Rijksuniversiteit Gent, Krijgslaan, Gent, Belgium.