Orthodox bands of modules

F. Pastijn

Abstract

In this paper we shall consider orthodox bands of commutative groups, together with a ring of endomorphisms. We shall generalize the concept of a left module by introducing orthodox bands of left modules; we shall also deal with linear mappings, the transpose of a linear mapping and with the dual of an orthodox band of left modules.

We shall use the notations and terminology of [1] and [3].

1.

DEFINITION. Let $R,+$, \circ be a ring with zero element 0 and identity 1 . Let S be a semigroup and $R \times S \rightarrow S,(\alpha, x) \mapsto \alpha x$ a mapping satisfying the following conditions:
(i) $\alpha(x y)=(\alpha x)(\alpha y)$ for every $\alpha \in R$ and every $x, y \in S$,
(ii) $(\alpha+\beta) x=(\alpha x)(\beta x)$ for every $\alpha, \beta \in R$ and every $x \in S$,
(iii) $(\alpha \circ \beta) x=\alpha(\beta x)$ for every $\alpha, \beta \in R$ and every $x \in S$,
(iv) $1 x=x$ for every $x \in S$.

The structure defined this way will be called an orthodox band of left R-modules. The next theorem justifies our terminology.
2.

THEOREM 1. Let R, S and the mapping $R \times S \rightarrow S$ be as in the definition of Section 1. Then S is an orthodox band of abelian groups and the maximal subgroups of S are left invariant by the elements of R.

Received 12 October 1976.

Proof. Let x be any element of S, and α any element of R; we then have

$$
\begin{aligned}
(0 x)(0 x) & =(0+0) x=0 x \\
(\alpha x)(0 x) & =(\alpha+0) x=\alpha x=(0+\alpha) x=(0 x)(\alpha x) \\
(\alpha x)((-\alpha) x) & =(\alpha-\alpha) x=0 x=(-\alpha+\alpha) x=((-\alpha) x)(\alpha x)
\end{aligned}
$$

This implies that for any $\alpha \in R$ and any $x \in S$, αx belongs to the maximal subgroup of S with identity $0 x$; the inverse of αx in this maximal subgroup must be $(-\alpha) x$. More specifically $1 x=x$ belongs to the maximal subgroup of S with identity $O x$, and its inverse in this maximal subgroup must be $(-1) x$. We conclude that S must be a completely regular semigroup and that all maximal subgroups of S are left invariant by the elements of R.

For every $x, y \in S$ we have

$$
(x y)(x y)=(1+1)(x y)=((1+1) x)((1+1) y)=x^{2} y^{2}
$$

Let e, f be any idempotents of S, then the foregoing implies that $(e f)^{2}=e^{2} f^{2}=e f ;$ hence $E_{S}=\left\{x \in S \mid x^{2}=x\right\}$ must be a subsemigroup of S. Let x and y belong to the same maximal subgroup of S; then the foregoing implies

$$
x y=((-1) x) x^{2} y^{2}((-1) y)=((-1) x) x y x y((-1) y)=y x ;
$$

hence S is a union of abelian groups. We have yet to prove that S is an orthodox union of abelian groups [2].

Let e and f be any idempotents of S, and $x \in H_{e}, y \in H_{f}$. We put $(-1) x=x^{\prime}$ and $(-1) y=y^{\prime}$. Then

$$
e f=(e f)^{2}=(1+1)(e f)=(1+1)\left(x\left(x^{\prime} f\right)\right)=x^{2}\left(x^{\prime} f\right)^{2}=x^{2} x^{\prime} f x^{\prime} f=(x f)\left(x^{\prime} f\right)
$$

and analogously

$$
e f=\left(x^{\prime} f\right)(x f)
$$

Since ef, $x^{\prime} f$, and $x f$ are elements of the rectangular group $D_{\text {ef }}$ [2], the foregoing implies that $x f$ and $x^{\prime} f$ are mutually inverse elements of the maximal subgroup $H_{e f}$. Dually, $e y$ and $e y$ ' are mutually inverse
elements of the maximal subgroup $H_{e f}$. Since $(x y) y^{\prime}=x f$ and $(x f) y=x y$ we have $x y R x f$; hence $x y R e f$. Analogously, since $x^{\prime}(x y)=e y$ and $x(e y)=x y$ we have $x y$ Ley; hence $x y$ Lef. We conclude that xyHef. Green's relation H must then be a congruence on S. Thus S is an orthodox band of commutative groups [2].

3.

REMARK. Let S be an orthodox band of abelian groups. Then, by Yamada's Theorem ([2] and [10]), there exists a band E and a semilattice of abelian groups Q, both having the same structure semilattice Y, such that S is the spined product of Q and E over $Y: S=Q \times{ }_{Y} E$. Let $Q=\bigcup_{K \in Y} G_{K}$ and $E=\bigcup_{K \in Y} E_{K} ;$ then S consists of ordered pairs $\left(x_{K}, e_{K}\right), K \in Y, x_{K} \in G_{K}, e_{K} \in E_{K}$. Multiplication is defined by

$$
\left(x_{\lambda}, e_{\lambda}\right)\left(y_{\mu}, f_{\mu}\right)=\left(x_{\lambda} y_{\mu}, e_{\lambda} f_{\mu}\right)
$$

for any $\lambda, \mu \in Y, x_{\lambda} \in G_{\lambda}, y_{\mu} \in G_{\mu}, e_{\lambda} \in E_{\lambda}, f_{\mu} \in E_{\mu}$. The identity element of $G_{k}, \kappa \in Y$, will be denoted by I_{K}.

The following result will generalize a theorem of [4] about semilattices of left modules. By combining the next theorem and Theorem 1 , we obtain a characterization of orthodox bands of abelian groups.

4.

THEOREM 2. Let S be any orthodox band of abelian groups, and let Z be the ring of integers. Let e be any idempotent of S, and x and x^{\prime} mutually inverse elements of the maximal subgroup H_{e}. Define the mapping $Z \times S \rightarrow S, \quad(k, x) \mapsto k x \quad$ by

$$
\begin{aligned}
k x & =x^{k} \\
& =e \\
& \\
& \text { if } k>0 \\
& =x^{-k} \quad \text { if } k<0
\end{aligned}
$$

Then S is an orthodox band of left Z-modules.

Proof. Conditions (i), (ii), (iii), and (iv) of the definition in Section 1 are checked by some easy calculations.

5.

DEFINITIONS and REMARKS. Let S be an orthodox band of left R-modules, and τ a congruence on the semigroup S. The natural homomorphism of S onto S / τ will be denoted by $\tau^{\#}$. τ will be called R-stable if and only if $x \tau y$ implies $(\alpha x) \tau(\alpha y)$ for every $x, y \in S$ and every $\alpha \in R$; we can then define a mapping $R \times(S / \tau) \rightarrow S / \tau$ by $(\alpha, \bar{x}) \mapsto \alpha \bar{x}=\overline{\alpha x} ; S / \tau$ will then be an orthodox band of left R-modules.

Let S and T be orthodox bands of left R-modules. The mapping $\Phi: S \rightarrow T$ will be called R-linear if and only if
(i) $\Phi(x y)=(\Phi x)(\Phi y)$ for every $x, y \in S$,
(ii) $\Phi(\alpha x)=\alpha \Phi(x)$ for every $x \in S$ and every $\alpha \in R$.
$\Phi(S)$ will then be an orthodox band of left R-modules.
The subset A of S will be called R-stable if and only if $\alpha x \in A$ for every $x \in A$ and every $\alpha \in R$. If Φ is an R-linear mapping of S into $T, \Phi(S)$ will be an R-stable subsemigroup of T, and the kernel of Φ will be an R-stable subsemigroup of S. Any R-stable subsemigroup of an orthodox band of left R-modules must of course be an orthodox band of left R-modules. If τ is an R-stable congruence on S, the union of all t-classes containing an idempotent will be an R-stable subsemigroup of S.

The mapping $\Phi: S \rightarrow T$ will be R-linear if and only if $\Phi^{-1} \Phi$ is an R-stable congruence on S. The equivalence relation τ on S is an R-stable congruence if and only if $\tau^{\#}$ is an R-linear mapping. The mapping $\Phi: S \rightarrow E_{S}, x \mapsto \mathcal{O}$ is an R-linear mapping of S onto the band consisting of all idempotents of $S ; \Phi^{-1} \Phi$ is then the R-stable congruence H.

Let S be the spined product of a semilattice of abelian groups Q and a band E; we shall use the same notation as in the remark of Section 3. Q is the greatest inverse semigroup homomorphic image of S, and the
mapping $\Delta: S \rightarrow Q,\left(x_{k}, e_{k}\right) \mapsto x_{k}$ is a homomorphism of S onto Q; we shall put $\Delta^{-1} \Delta=\sigma$; this congruence σ is the minimal inverse semigroup congruence on S, and we shall show that σ is R-stable. Let G be the greatest group homomorphic image of Q, and $\Gamma: Q \rightarrow G, x_{K} \mapsto \tilde{x}_{k}$ be a homomorphism of Q onto $G, \Gamma^{-1} \Gamma$ being the minimal group congruence on Q; if x_{λ} and y_{μ} are any elements of Q, then $x_{\lambda} \Gamma^{-1} \Gamma y_{\mu}$ if and only if there exists a $\kappa \in Y, \kappa \leq \lambda \wedge \mu$, such that $x_{\lambda} l_{K}=y_{\mu} l_{K}$; we shall put $(\Gamma \Delta)^{-1}(\Gamma \Delta)=\rho$; this congruence ρ is the minimal group congruence on S, and we shall show that ρ is R-stable.

6.

THEOREM 3. The minimal inverse semigroup congruence on an orthodox band of left R-modules is R-stable.

Proof. Let x_{k} be any element of Q, and let us take any two elements $\left(x_{K}, e_{K}\right)$ and $\left(x_{K}, f_{K}\right)$ in $\Delta^{-1} x_{K}$. Let α be any element of R. Since H is an R-stable congruence on $S, \alpha\left(x_{K}, e_{K}\right)$ belongs to the H-class $G_{K} \times e_{K}$ of S containing $\left(x_{K}, e_{K}\right)$; hence
$\alpha\left(x_{K}, e_{K}\right)=\left(y_{K}, e_{K}\right)$ for some $y_{K} \in G_{K}$. Analogously, $\alpha\left(x_{K}, f_{K}\right)=\left(z_{K}, f_{K}\right)$ for some $z_{K} \in G_{K}$. Let $\left(l_{K}, g_{K}\right)$ be L-related with $\left(I_{K}, e_{K}\right)$ and R-related with $\left(I_{K}, f_{K}\right)$, and let $\left(I_{K}, h_{K}\right)$ be R-related with $\left(I_{K}, e_{K}\right)$ and L-related with $\left(I_{K}, f_{K}\right)$. Since by the restriction of $R \times S \rightarrow S$ to $R \times\left(G_{K} \times g_{K}\right)$ and $R \times\left(G_{K} \times h_{K}\right)$, respectively, $G_{K} \times g_{K}$ and $G_{K} \times h_{K}$ become left R-modules, we must have $\alpha\left(l_{K}, g_{K}\right)=\left(I_{K}, g_{K}\right)$ and $\alpha\left(l_{K}, h_{K}\right)=\left(l_{K}, h_{K}\right)$. Furthermore, we have

$$
\begin{aligned}
\left(z_{K}, e_{K}\right) & =\left(1_{K}, h_{K}\right)\left(z_{K}, f_{K}\right)\left(l_{K}, g_{K}\right) \\
& =\left(\alpha\left(1_{K}, h_{K}\right)\right)\left(\alpha\left(x_{K}, f_{K}\right)\right)\left(\alpha\left(1_{K}, g_{K}\right)\right) \\
& =\alpha\left(\left(l_{K}, h_{K}\right)\left(x_{K}, f_{K}\right)\left(l_{K}, g_{K}\right)\right) \\
& =\alpha\left(x_{K}, e_{K}\right)=\left(y_{K}, e_{K}\right) ;
\end{aligned}
$$

hence $z_{K}=y_{K}$, and $\Delta\left(\alpha\left(x_{K}, e_{K}\right)\right)=\Delta\left(\alpha\left(x_{K}, f_{K}\right)\right)$.
7.

COROLLARY 1. By the mapping $R \times Q \rightarrow Q$,

$$
\left(\alpha, x_{K}\right) \mapsto \alpha x_{\kappa}=\Delta\left(\alpha \Delta^{-1} x_{\kappa}\right),
$$

Q becomes a semilattice of left R-modules, and Δ an R-linear mapping of S onto Q.
8.

COROLLARY 2. Let Q be any semilattice of left R-modules, and Y the structure semilattice of Q; let E be a band with the same structure semilattice $Y ; \operatorname{let} \underset{K \in Y}{ } G_{K}$ and $\underset{K \in Y}{ } G_{K}$ be the semilatitice decompositions of Q and E respectively; let S be the spined product $Q \times{ }_{Y} E$ of Q and E over Y. By the mapping $R \times S \rightarrow S$, $\left(\alpha,\left(x_{K}, e_{K}\right)\right) \mapsto\left(\alpha x_{K}, e_{K}\right)$ for every $\alpha \in R$, and every $K \in Y$, $x_{K} \in G_{K}, e_{K} \in E_{K}, S$ becomes an orthodox band of left R-modules. Conversely, any orthodox band of left R-modules can be so constructed.
9.

COROLLARY 3. Let S be an orthodox normal band of left R-modules, and let $S=\bigcup_{k \in Y} S_{K}$ be the semilattice decomposition of S. For any λ, $\mu \in Y, \lambda \geq \mu$, the structure homomorphism $\Psi_{\lambda, \mu}$ is an R-linear mapping of the orthodox rectangular band of left R-modules S_{λ} into the orthodox rectangular band of left R-modules S_{μ}.

Proof. In a semilattice of left R-modules the structure homomorphisms are R-linear [6]. The theorem now follows from Corollary 2 and from a result about normal bands [11].
10.

REMARK. Structure theorems for semilattices of left R-modules [6],
together with Corollary 2 yield structure theorems for bands of left R-modules.
11.

THEOREM 4. The minimal group congruence on an orthodox band of left R-modules is R-stable.

Proof. Let \tilde{x}_{λ} be any element of G, the greatest group homomorphic image of an orthodox band of left R-modules S. Let us take any two elements x_{λ} and y_{μ} in $\Gamma^{-1} \tilde{x}_{\lambda}$. There exists a $\kappa \in Y, \kappa \leq \lambda \wedge \mu$, such that $l_{K} x_{\lambda}=l_{K} y_{\mu}$. Let α be any element of R. From

$$
\left(\alpha x_{\lambda}\right) l_{K}=\left(\alpha x_{\lambda}\right)\left(\alpha 1_{K}\right)=\alpha\left(x_{\lambda_{K}}{ }_{K}\right)=\alpha\left(y_{\mu}^{1}{ }_{K}\right)=\left(\alpha y_{\mu}\right)\left(\alpha l_{K}\right)=\left(\alpha y_{\mu}\right) l_{K},
$$

and $\alpha x_{\lambda} \in G_{\lambda}, \alpha y_{\mu} \in G_{\mu}$, we conclude that $\alpha y_{\mu} \in \Gamma^{-1} \Gamma\left(\alpha x_{\lambda}\right)$, and thus $\tilde{\alpha}_{\lambda}=\tilde{\alpha y}_{\mu}$. This implies that the minimal group congruence $\Gamma^{-1} \Gamma$ on Q must be R-stable; consequently, the minimal group congruence $(\Gamma \Delta)^{-1} \Gamma \Delta=\rho$ on S must be R-stable.
12.

COROLLARY 4. By the mapping $R \times G \rightarrow G,\left(\alpha, \tilde{x}_{K}\right) \mapsto \alpha \tilde{x}_{K}=\tilde{\alpha x}_{K}$, G becomes a left R-module, and the mapping $\Gamma \Delta$ an R-linear mapping of S onto G.

13.

DEFINITIONS. An orthodox band of right R-modules S can be defined in a way analogous to the way an orthodox band of left R-modules is defined. Condition (iii) of the definition in Section 1 must then be replaced by (iii)'; ($\alpha \circ \beta$) $x=\beta(\alpha x)$ for every $\alpha, \beta \in R$ and every $x \in S$. It will be more convenient to denote the mapping $R \times S \rightarrow S$ by $(\alpha, x) \mapsto x \alpha$; (iii)' then becomes
(iii)' $x(\alpha \circ \beta)=(x \alpha) \beta$ for every $\alpha, \beta \in R$ and every $x \in S$.

If S is at the same time an orthodox band of left R-modules, and an
orthodox band of right R-modules, then we shall say that S is an orthodox band of R-bimodules.

Let $R^{\infty}=R \cup\{\infty\}$, and define addition in R^{∞} as follows: for any $\alpha, \beta \in R$ we put

$$
\alpha+\beta=\gamma \text { in } R^{\infty} \text { if and only if } \alpha+\beta=\gamma \text { in } R
$$

and we put

$$
\alpha+\infty=\infty+\alpha=\infty
$$

R^{∞} will be a group with "zero" ∞. We next define the mapping $R \times R^{\infty} \rightarrow R^{\infty}$ by agreeing that for α, β in R,

$$
(\alpha, \beta) \mapsto \alpha \beta=\gamma \text { if and only if } \alpha \circ \beta=\gamma \text { in } R,
$$

and that

$$
(\alpha, \infty) \mapsto \alpha^{\infty}=\infty
$$

We also define the mapping $R \times R^{\infty} \rightarrow R^{\infty}$ by setting, for α, β in R,

$$
(\alpha, \beta) \mapsto \beta \alpha=\gamma \text { if and only if } \beta \circ \alpha=\gamma \text { in } R,
$$

and

$$
(\alpha, \infty) \mapsto \infty \alpha=\infty
$$

By these two mappings R^{∞} becomes a semilattice of R-bimodules, the structure semilattice being the two element semilattice. We shall use R^{∞} later in this paper.

The next theorem generalizes a result of [9].
14.

THEOREM 5. Let S be an orthodox band of left R-modules, and T an orthodox band of right R-modules. Let $I_{S, T}$ be the set of all partial mappings of S into T. Define a multiplication in $I_{S, T}$ as follows: for every $\Phi, \Psi \in I_{S, T}$, dom $\Phi \Psi=\operatorname{dom} \Phi \cap \operatorname{dom} \Psi$, and for every $x \in \operatorname{dom} \Phi \Psi$ we put $\Phi \Psi(x)=(\Phi x)(\Psi x)$. Define the mapping $R \times I_{S, T} \rightarrow I_{S, T}, \quad(\alpha, \Phi) \longmapsto \Phi \alpha \quad b y \operatorname{dom}(\Phi \alpha)=\operatorname{dom} \Phi$ and $(\Phi \alpha) x=(\Phi x) \alpha$, for every $x \in \operatorname{dom} \Phi . I_{S, T}$ will then be an orthodox band of right R-moduzes. $I_{S, T}$ will be a semilattice of right R-modules if and only if
I is a semilattice of might R-modules.
Proof. For any $\Phi, \Psi \in I_{S, T}$ and any $\alpha \in R$ we have
$\operatorname{dom}((\Phi \Psi) \alpha)=\operatorname{dom} \Phi \Psi=\operatorname{dom} \Phi \cap \operatorname{dom} \Psi=\operatorname{dom}(\Phi \alpha) \cap \operatorname{dom}(\Psi \alpha)=\operatorname{dom}((\Phi \alpha)(\Psi \alpha))$,
and for any $x \in \operatorname{dom}(\Phi \Psi) \alpha$ we have

$$
\begin{aligned}
((\Phi \Psi) \alpha) x=((\Phi \Psi) x) \alpha=((\Phi x)(\Psi x)) \alpha=((\Phi x) \alpha) & ((\Phi x) \alpha)= \\
& =((\Phi \alpha) x)((\Phi \alpha) x)=((\Phi \alpha)(\Psi \alpha)) x ;
\end{aligned}
$$

hence $(\Phi \Psi) \alpha=(\Phi \alpha)(\Psi \alpha)$. For any $\Phi \in I_{S, T}$ and any $\alpha, \beta \in R$ we have

$$
\operatorname{dom}(\Phi(\alpha+\beta))=\operatorname{dom} \Phi=\operatorname{dom}(\Phi \alpha) \cap \operatorname{dom}(\Phi \beta)=\operatorname{dom}((\Phi \alpha)(\Phi \beta))
$$

and for any $x \in \operatorname{dom}(\Phi(\alpha+\beta))$ we have

$$
(\Phi(\alpha+\beta)) x=(\Phi x)(\alpha+\beta)=((\Phi x) \alpha)((\Phi x) \beta)=((\Phi \alpha) x)((\Phi \beta) x)=((\Phi \alpha)(\Phi \beta)) x
$$

hence $\Phi(\alpha+\beta)=(\Phi \alpha)(\Phi \beta)$. Furthermore,

$$
\operatorname{dom}(\Phi(\alpha \circ \beta))=\operatorname{dom} \Phi=\operatorname{dom}(\Phi \alpha)=\operatorname{dom}((\Phi \alpha) \beta)
$$

and for any $x \in \operatorname{dom}(\Phi(\alpha \circ \beta))$ we have

$$
(\Phi(\alpha \circ \beta)) x=(\Phi x)(\alpha \circ \beta)=((\Phi x) \alpha) \beta=((\Phi \alpha) x) \beta=((\Phi \alpha) \beta) x
$$

hence $\Phi(\alpha \circ \beta)=(\Phi \alpha) \beta$. Finally, $\operatorname{dom}(\Phi 1)=\operatorname{dom} \Phi$, and for any $x \in \operatorname{dom}(\Phi \mathcal{L})$ we have

$$
(\Phi 1) x=(\Phi x) 1=\Phi x ;
$$

hence $\Phi 1=\Phi$. We conclude that $I_{S, T}$ is an orthodox band of right R-modules.

From the definition of the multiplication in $I_{S, T}$ it follows that $I_{S, T}$ is commutative if and only if T is commutative. From this follows the last part of the theorem.
15.

THEOREM 6. Let S be an orthodox band of left R-modules, S^{\prime} the set of R-linear mappings of S into R, and S^{*} the set of R-linear mappings of S into R^{∞}. Then S^{\prime} is an R-stable subsemigroup of $I_{S, R}$ and S^{*} is an R-stable subsemigroup of $I_{S, R}$.

Proof. We show that S^{*} is an R-stable subsemigroup of $l_{S, R^{\infty}}$; the proof of the rest is similar. Let x^{*} and y^{*} be any elements of S^{*}; since R^{∞} is a semilattice of commutative groups, $x^{*} y^{*}$ must be a homomorphism of S into R^{∞}. For any $x \in S$ and any $x^{*} \in S^{*}$ we shall from now on put $x^{*}(x)=\left\langle x, x^{*}\right\rangle$. For any $x \in S$, any $\alpha \in R$, and any $x^{*}, y^{*} \in S^{*}$ we then have

$$
\begin{aligned}
\left\langle\alpha x, x^{*} y^{*}\right\rangle & =\left\langle\alpha x, x^{*}\right\rangle+\left\langle\alpha x, y^{*}\right\rangle \\
& \left.\left.=\alpha x, x^{*}\right\rangle+\alpha x, y^{*}\right\rangle \\
& \left.=\alpha\left(\left\langle x, x^{*}\right\rangle \nless x, y^{*}\right\rangle\right) \\
& \left.=\alpha x, x^{*} y^{*}\right\rangle .
\end{aligned}
$$

We conclude that for any $x^{*}, y^{*} \in S^{*}, x^{*} y^{*}$ must be an R-linear mapping of S into R^{∞}; hence $x^{*} y^{*} \in S^{*} . S^{*}$ is a subsemigroup of $I_{S, R^{\infty}}$.

$$
\text { For any } x, y \in S, \text { any } x^{*} \in S^{*}, \text { and any } \alpha \in R \text { we have } ~=\begin{aligned}
\left\langle x y, x^{*} \alpha\right) & =\left(x y, x^{*}\right\rangle \alpha \\
& \left.=\left(\left(x, x^{*}\right\rangle \star y, x^{*}\right\rangle\right) \alpha \\
& =\left(x, x^{*}\right\rangle \alpha+\left\langle y, x^{*}\right\rangle \alpha \\
& =\left\langle x, x^{*} \alpha\right\rangle+\left\langle y, x^{* \alpha}\right\rangle ;
\end{aligned}
$$

hence $x^{*} \alpha$ must be a homomorphism of S into R^{∞}. For any $x \in S$, any $x^{*} \in S^{*}$, and any $\alpha, \beta \in R$ we have

$$
\begin{aligned}
\left\langle\beta x, x^{*} \alpha\right\rangle & =\left\langle\beta x, x^{*}\right\rangle \alpha \\
& =\beta\left(x, x^{*}\right\rangle_{\alpha} \\
& =\beta\left\langle x, x^{*} \alpha\right\rangle .
\end{aligned}
$$

We conclude that for any $x^{*} \in S^{*}$ and any $\alpha \in R, x^{*} \alpha$ must be an R-linear mapping of S into R^{∞}. Consequently S^{*} must be an R-stable subsemigroup of I $I_{S, R^{\infty}}$.
16.

COROLLARY 5. S^{*} is a semilattice of right R-modules. The structure semilattice of S^{*} is isomorphic with the u-semilattice of prime ideals of S. The mapping $l^{*}: S \rightarrow R^{\infty}, x \mapsto 0$ is the identity of S^{*} and the mapping $0^{*}: S \rightarrow R^{\infty}, x \mapsto \infty$ is the zero of S^{*}.

Proof. R^{∞} is a semilattice of right R-modules; hence $I_{S, R^{\infty}}$ is a semilattice of right R-modules. Since S^{*} is R-stable in $I S_{S, R^{\infty}}$, S^{*} must also be a semilattice of right R-modules.

Let e^{*} be any idempotent of S^{*}; then $V_{e^{*}}=\left\{x \in S \|\left\langle x, e^{*}\right\rangle=\infty\right\}$ is a prime ideal of S. For any $x \in S \backslash V_{e^{*}},\left\langle x, e^{*}\right\rangle \in R$ and $\left\langle x, e^{*}\right\rangle=\left\langle x, e^{*^{2}}\right\rangle=\left\langle x, e^{*}\right\rangle+\left\langle x, e^{*}\right\rangle ;$ hence $\left\langle x, e^{*}\right\rangle=0$. Conversely, let P be any prime ideal of S; then we can define $e_{P}^{*} \in S^{*}$ by $\left\langle x, e_{P}^{*}\right\rangle=\infty$ for all $x \in P$, and $\left\langle x, e_{P}^{*}\right\rangle=0$ for all $x \in S \backslash P$. Furthermore, if e^{*} and f^{*} are any two idempotents of S^{*}, we must have $V_{e * f *}=V_{e *} u V_{f *}$. Consequently, the semilattice $E_{S^{*}}$ consisting of the idempotents of S^{*} is isomorphic with the u-semilattice of all prime ideals of S. Since $E_{S^{*}}$ is isomorphic with the structure semilattice of S^{*}, the result stated in the corollary follows.

17.

COROLLARY 6. S^{\prime} is a right R-module which is an R-stable subgroup of $S^{*} ; S^{\prime}$ is the maximal submodule of S^{*} containing the identity 1^{*} of S^{*}.

Proof. All elements of S^{\prime} are R-linear mappings of S into R; hence they can be considered as R-linear mappings of S into R^{∞}, and consequently $S^{\prime} \subseteq S^{*}$. Since S^{\prime} is R-stable in $I_{S, R}$, and since clearly $I_{S, R}$ is R-stable in $I_{S, R^{\infty}}, S^{\prime}$ must be R-stable in $I S_{S, R^{\infty}}$; from this we infer that S^{\prime} is R-stable in S^{*}.

It is evident that $l^{*}: S \rightarrow R, x \longmapsto 0$ is the identity of S^{\prime}. Let x^{*} be any element of S^{\prime}; then $x^{*}(-1) \in S^{\prime}$, and for any $x \in S$ we have

$$
\begin{aligned}
\left\langle x, x^{*}\left(x^{*}(-1)\right)\right\rangle & =\left\langle x, x^{*}\right\rangle+\left(x, x^{*}(-1)\right\rangle \\
& =\left\langle x, x^{*}\right\rangle+\left\langle x, x^{*}\right\rangle(-1)=0,
\end{aligned}
$$

and analogously

$$
\left\langle x,\left(x^{*}(-1)\right) x^{*}\right\rangle=0 ;
$$

hence $x^{*}\left(x^{*}(-1)\right)=\left(x^{*}(-1)\right) x^{*}=1^{*}$. This shows that x^{*} and $x^{*}(-1)$ are mutually inverse elements of the commutative group $H_{1 *}$, the maximal subgroup of S^{*} containing 1^{*}. For any element $y^{*} \in H_{1^{*}}$, we must have $V_{y^{*}}=\emptyset$; hence any element $y^{*} \in H_{1 *}$ belongs to S^{\prime}. We can conclude that $H_{1^{*}}=S^{\prime}$.
18.

THEOREM 7. Let S be an orthodox band of left R-modules and τ any R-stable congruence on S. The mapping $\Phi:(S / \tau)^{*} \rightarrow S^{*}, \bar{x}^{*} \mapsto \Phi \bar{x}^{*}$ defined by $\left\langle x, \Phi \bar{x}^{*}\right\rangle=\left\{\tau^{\#} x, \bar{x}^{*}\right\rangle$ for every $x \in S$ is an R-isomorphism of $(S / \tau) *$ into S^{*}. Whenever ${ }^{\iota} S \subseteq \tau \subseteq \sigma$, σ being the minimal inverse semigroup congruence on S, this mapping Φ is a surjective R-isomorphism of $(S / \tau)^{*}$ onto S^{*}.

Proof. Let us suppose that \bar{x}^{*}, \bar{y}^{*} are any elements of $(S / \tau)^{*}$, and x any element of S; we then have

$$
\begin{aligned}
\left\langle x, \Phi\left(\bar{x}^{*} \bar{y}^{*}\right)\right\rangle & =\left\langle\tau^{\#} x, \bar{x}^{*} \bar{y}^{*}\right\rangle \\
& =\left\langle\tau^{\#} x, \bar{x}^{*}\right\rangle+\left\langle\tau^{\#} x, \bar{y}^{*}\right\rangle \\
& =\left\langle x, \Phi \bar{x}^{*}\right\rangle+\left\langle x, \Phi \bar{y}^{*}\right\rangle \\
& =\left\langle x,\left(\Phi \bar{x}^{*}\right)\left(\Phi \bar{y}^{*}\right)\right\rangle ;
\end{aligned}
$$

hence $\Phi\left(\bar{x}^{*} \bar{y}^{*}\right)=\left(\Phi \bar{x}^{*}\right)\left(\Phi \bar{y}^{*}\right)$. Let us suppose that \bar{x}^{*} is any element of $(S / \tau) *, \alpha$ any element of R, and x any element of S; then

$$
\begin{aligned}
\left\langle x, \Phi\left(\bar{x}^{*} \alpha\right)\right\rangle & =\left\langle\tau^{\#} x, \bar{x}^{*} \alpha\right) \\
& =\left\langle\tau^{\#} x, \bar{x}^{*}\right\rangle \alpha \\
& =\left\langle x, \Phi \bar{x}^{*}\right\rangle \alpha \\
& =\left\langle x,\left(\Phi \bar{x}^{*}\right) \alpha\right\rangle ;
\end{aligned}
$$

hence $\Phi\left(\bar{x}^{*} \alpha\right)=\left(\Phi \bar{x}^{*}\right) \alpha$. Since $\tau^{\#}$ is an R-linear mapping of S onto $S / \tau, \Phi \bar{x}^{*} \in S^{*}$ for any $\bar{x}^{*} \in(S / \tau)^{*}$. We conclude that Φ is an R-linear mapping of $(S / \tau)^{*}$ into S^{*}. Let us now suppose that $\bar{x}^{*}, \bar{y}^{*} \in(S / \tau)^{*}$, and $\Phi \bar{x}^{*}=\Phi \bar{y}^{*}$; if for some $\bar{x} \in S / \tau$, $\left\langle\bar{x}, \bar{x}^{*}\right\rangle \neq\left(\bar{x}, \bar{y}^{*}\right)$, then for any $x \in\left(\tau^{\#}\right)^{-1} \bar{x}$ we should have

$$
\begin{aligned}
\left\langle x, \Phi \bar{x}^{*}\right\rangle & =\left\langle\tau^{\#} x, \bar{x}^{*}\right\rangle \\
& =\left\langle\bar{x}, \bar{x}^{*}\right\rangle \\
& \neq\left\langle\bar{x}, \bar{y}^{*}\right\rangle=\left\langle\tau^{\#} x, \bar{y}^{*}\right\rangle=\left\langle x, \Phi \bar{y}^{*}\right\rangle,
\end{aligned}
$$

and this is impossible. We conclude that $\Phi \bar{x}^{*}=\Phi \bar{y}^{*}$ implies $\bar{x}^{*}=\bar{y}^{*}$; hence Φ is an isomorphism of $(S / \tau)^{*}$ into S^{*}.

It will be sufficient to show that the mapping $\Phi:(S / \sigma)^{*} \rightarrow S^{*}$, $\bar{x}^{*} \mapsto \Phi \bar{x}^{*}$ defined by $\left\langle x, \Phi x^{*}\right\rangle=\left\langle\sigma^{\#} x, \bar{x}^{*}\right\rangle$ for every $x \in S$, will be an R-isomorphism of $(S / \sigma)^{*}$ onto S^{*}. Let x^{*} be any element of S^{*}, and $\left(x_{K}, e_{K}\right)$ and $\left(x_{K}, f_{K}\right)$ any two σ-related elements of S. Since $\left(x_{K}, e_{K}\right)$ and $\left(x_{K}, f_{K}\right)$ are D-related in S, they generate the same principal ideal of S, and thus $\left\langle\left(x_{K}, e_{K}\right), x^{*}\right\rangle=\infty$ if and only if $\left(\left(x_{K}, f_{K}\right), x^{*}\right)=\infty$. Let us now suppose that $\left(x_{K}, e_{K}\right)$ and $\left(x_{K}, f_{K}\right)$ both belong to $S \backslash V_{x^{*}}$; let $\left(1_{K}, g_{K}\right)$ be L-related with $\left(x_{K}, e_{K}\right)$ and R-related with $\left(I_{K}, f_{K}\right)$, and $\left(I_{K}, h_{K}\right)$ R-related with $\left(x_{K}, e_{K}\right)$ and L-related with $\left(I_{K}, f_{K}\right) ;\left(l_{K}, g_{K}\right)$ and $\left(I_{K}, h_{K}\right)$ are both D-related with $\left(x_{K}, e_{K}\right)$ and $\left(x_{K}, f_{K}\right)$; hence $\left(I_{K}, g_{K}\right),\left(I_{K}, h_{K}\right) \in S \backslash V_{x^{*}}$. Since these two elements are idempotents of S, and since x^{*} is an homomorphism of $S \backslash V_{x^{*}}$ into R, we have

$$
\left\langle\left(1_{K}, g_{K}\right), x^{*}\right\rangle=\left\langle\left(1_{K}, h_{K}\right), x^{*}\right\rangle=0 .
$$

From this it follows that

$$
\begin{aligned}
\left\langle\left(x_{K}, e_{K}\right), x^{*}\right\rangle & =\left\langle\left(1_{K}, h_{K}\right)\left(x_{K}, f_{K}\right)\left(1_{K}, g_{K}\right), x^{*}\right\rangle \\
& =\left\langle\left(I_{K}, h_{K}\right), x^{*}\right\rangle+\left\langle\left(x_{K}, f_{K}\right), x^{*}\right\rangle+\left\langle\left(1_{K}, g_{K}\right), x^{*}\right\rangle \\
& =\left\langle\left(x_{K}, f_{K}\right), x^{*}\right\rangle .
\end{aligned}
$$

In any case $\left(x^{*}\right)^{-1} x^{*} \supseteq \sigma$. Hence the mapping $\bar{x}^{*} \epsilon(S / \sigma)^{*}$ defined by $\left\langle\sigma^{\#} x, \bar{x}^{*}\right\rangle=\left\langle x, x^{*}\right\rangle$ for all $x \in S$ is well-defined, and we shall have $\Phi \bar{x}^{*}=x^{*}$. Thus, in this case, Φ must be surjective.
19.

COROLLARY 7. If S is an orthodox band of left R-modules, and Q the greatest inverse homomorphic image of S, then S^{*} and Q^{*} are R-isomorphic.
20.

THEOREM 8. Let S be an orthodox band of left R-modules and τ any R-stable congruence on s. The mapping $\Psi:(S / \tau)^{\prime} \rightarrow S^{\prime}$, $\bar{x}^{*} \mapsto \Psi\left(\bar{x}^{*}\right)$ defined by $\left\langle x, \Psi \bar{x}^{*}\right\rangle=\left\langle\tau^{\#} x, \bar{x}^{*}\right\rangle$ for any $x \in S$ is an R-isomorphism of (S / τ) ' into $S '$. Whenever ${ }^{\prime}{ }_{S} \subseteq \tau \subseteq \rho, \rho$ being the minimal group congruence on S, this mapping Ψ is a surjective R-isomorphism of $(S / \tau)^{\prime}$ onto S^{\prime}.

Proof. It is clear that the mapping Ψ must be the restriction of mapping Φ (of Theorem 7) to the maximal submodule $(S / \tau)^{\prime}$ of $(S / \tau)^{*}$; hence Ψ is an R-isomorphism of $(S / \tau)^{\prime}$ into S^{*}. Since for every $x \in S$, and every $\bar{x}^{\star} \in(S / \tau)^{\prime}$, we must have $\left\langle\tau^{\#} x, \bar{x}^{*}\right\rangle \in R$, we conclude that $\Psi^{\prime} \bar{x}^{*} \in S^{\prime}$ for every $\bar{x}^{*} \in(S / \tau)^{\prime}$; thus ψ is an R-isomorphism of $(S / \tau)^{\prime}$ into S^{\prime}.

It will be sufficient to show that the mapping $\psi:(S / \rho)^{\prime} \rightarrow S^{\prime}$, $\bar{x}^{*} \mapsto \Psi \bar{x}^{*}$ defined by $\left\langle x, \Psi \bar{x}^{*}\right\rangle=\left\langle\rho^{\#} x, \bar{x}^{*}\right\rangle$ for every $x \in S$ will be an R-isomorphism of ($S / \rho)^{\prime}$ onto S^{\prime}. Let x^{*} be any element of S^{\prime}. Since x^{*} must be a homomorphism of S into the additive group R, we have $\left(x^{*}\right)^{-1} x^{*} \supseteq \rho$. Hence the mapping $\bar{x}^{*} \in(S / \rho)$ defined by $\left\langle\rho^{\#} x, \bar{x}^{*}\right\rangle=\left\langle x, x^{*}\right\rangle$ for every $x \in S$ is well-defined, and we shall have $\Psi \overline{x^{*}}=x^{*}$. Thus, in this case Ψ must be surjective.
21.

COROLLARY 8. If S is an orthodox band of left R-modules, Q the greatest inverse homomorphic image of S, and G the greatest group homomorphic image of S, then S^{\prime} and Q^{\prime} are both R-isomorphic with right R-module G^{\prime} which is the dual of left R-module G.
22.

THEOREM 9. Let S be an orthodox band of left R-modules, and $S=\bigcup_{K \in Y} S_{K}=\bigcup_{K \in Y} G_{K} \times E_{K}$ its semilattice decomposition. For any $\lambda \in Y$, the mapping $1_{\lambda}^{*}: S \rightarrow R^{\infty}$ defined by $\left\langle x, 1_{\lambda}^{*}\right\rangle=0$ if and only if $x \in \underset{K \geq \lambda}{U} S_{K}$, and $\left\langle x, 1_{\lambda}^{*}\right\rangle=\infty$ otherwise, is an idempotent of S^{*}. The maximal submodule $H_{1_{\lambda}^{*}}$ of S^{*} containing 1_{λ}^{*} is R-isomorphic with $\left(\mathrm{U}_{K \geq \lambda} S_{K}\right)^{\prime}$ and with the right R-module G_{λ}^{\prime}, which is the dual of the left R-module G_{λ}.

Proof. For any $\lambda \in Y, \underset{K \geq \lambda}{U} S_{K}$ is an R-stable subsemigroup of S, and G_{λ} will be the greatest group homomorphic image of $\underset{K \geq \lambda}{\bigcup} S_{K}$. From Corollary 8 it follows that $\left(\underset{K \geq \lambda}{U} S_{K}\right)^{\prime}$ and G_{λ}^{\prime} are R-isomorphic right R-modules. It is easy to show that $S \backslash\left(\bigcup_{K \geq \lambda} S_{K}\right)$ is a prime ideal of S. From results in the proof of Corollary 5, it then follows that I_{λ}^{*} must be an idempotent of S^{*}. We remark that for any $x^{*} \in S^{*}, x^{*} \in H_{1_{\lambda}^{*}}$ if and only if $V_{x^{*}}=\left\{x \in S \|\left\langle x, x^{*}\right\rangle=\infty\right\}=S \backslash\left(\bigcup_{K \geq \lambda} S_{K}\right)$. Hence the mapping $H_{1_{\lambda}^{*}} \rightarrow\left(\underset{K \geq \lambda}{U} S_{K}\right)^{\prime}, x^{*} \mapsto x^{*} \mid \underset{K \geq \lambda}{\bigcup} S_{K}$ is an R-isomorphism of H_{λ}^{*} onto $\left(\bigcup_{K \geq \lambda} S_{K}\right)^{\prime}$.

$$
23 .
$$

COROLLARY 9. We use the same notations as in Theorem 9. Let Q be the greatest inverse semigroup homomorphic image of. S and $Q=\underset{K \in Y}{ } G_{K}$ its semilattice decomposition. For any $\lambda, \mu \in Y, \lambda \geq \mu$, let $\Phi_{\lambda, \mu}$ be the structure homomorphism of Q, and $t_{\Phi_{\lambda, \mu}}$ its transpose; then $I_{\mu}^{*} \geq I_{\lambda}^{*}$ in S^{*}; Let $\Phi_{\mu, \lambda}^{*}: H_{I_{\mu}^{*}} \rightarrow H_{I_{\lambda}^{*}}$ be the structure homomorphism of
S^{*}. For any $\lambda \in Y$ the mapping $\Psi_{\lambda}: H_{l_{\lambda}^{*}} \rightarrow G_{\lambda}^{\prime}, x^{*} \mapsto \Psi_{\lambda} x^{*}$ defined by $\left(\left(x_{K}, e_{K}\right), x^{*}\right\rangle=\left\langle\Phi_{K}, \lambda_{K}, \Psi \lambda^{x^{*}}\right.$ for al Z $\left(x_{K}, e_{K}\right) \in \bigcup_{K \geq \lambda} S_{K}$ is an R-isomorphism of $H_{1_{\lambda}^{*}}$ onto G_{λ}^{\prime}, and the following diagram is commutative:

Proof. The mapping $\underset{K \geq \lambda}{U} S_{K} \rightarrow G_{\lambda}, \quad\left(x_{K}, e_{K}\right) \mapsto \Phi_{K}, \lambda^{x} x_{K}$ is a homomorphism of $\bigcup_{K \geq \lambda} S_{K}$ onto its greatest group homomorphic image G_{λ}; Ψ_{λ} must then be an R-isomorphism of $H_{l_{\lambda}^{*}}$ onto G_{λ}^{\prime} by Theorem 8.

Let x^{*} be any element of $H_{1_{\mu}^{*}}$, and x_{λ} any element of G_{λ}. We proceed to show that $\left\langle x_{\lambda},{ }^{t_{\Phi}}{ }_{\lambda, \mu} \Psi_{\mu} x^{*}\right\rangle=\left\langle x_{\lambda}, \Psi_{\lambda} \Phi_{\mu}^{*}, \lambda^{x^{*}}\right\rangle$. Indeed,

$$
\begin{aligned}
\left\langle x_{\lambda}, t_{\left.\Phi_{\lambda, \mu} \Psi_{\mu} x^{*}\right\rangle}\right. & =\left\langle\Phi_{\lambda, \mu_{\lambda}}, \Psi_{\mu} x^{*}\right\rangle \\
& =\left\langle x_{\lambda} 1_{\mu}, \Psi_{\mu} x^{*}\right\rangle \\
& =\left(\left(_{K}, e_{K}\right), x^{*}\right\rangle
\end{aligned}
$$

$$
\text { for all } \kappa \geq \mu, \quad \Phi_{K}, \mu^{\prime} x_{\kappa}=x_{\lambda} \lambda_{\mu}, \quad e_{\kappa} \in E_{\kappa} \text {, }
$$

$$
=\left\langle\left(x_{\lambda}, e_{\lambda}\right), x^{*}\right\rangle \text { for all } e_{\lambda} \in E_{\lambda}
$$

$$
=\left\langle\left(x_{\lambda}, e_{\lambda}\right), x^{*} l_{\lambda}^{*}\right\rangle \text { for all } e_{\lambda} \in E_{\lambda}
$$

$$
=\left\langle\left(x_{\lambda}, e_{\lambda}\right), \Phi_{\mu, \lambda}^{*}\right\rangle \text { for all } e_{\lambda} \in E_{\lambda}
$$

$$
=\left\langle x_{\lambda}, \Psi_{\lambda} \Phi_{\mu, \lambda^{*}}^{\left.x^{*}\right\rangle}\right.
$$

We conclude that $t_{\Phi_{\lambda, \mu}} \psi_{\mu}=\Psi_{\lambda} \Phi_{\mu, \lambda}^{*}$.

24.

COROLLARY 10. We use the same notations as in Theorem 9 and Corollary 9. Let the structure semilattice of S be a lattice. Consider $V=\bigcup_{K \in Y} G_{K}^{\prime}$, and define multiplication in V by the following: for any $x^{\prime}, y^{\prime} \in V, x^{\prime} \in G_{\lambda}^{\prime}, y^{\prime} \in G_{\mu}^{\prime}$, put $x^{\prime} y^{\prime}=\left(t_{\Phi_{\lambda \vee \mu}, \lambda^{x^{\prime}}}\right)\left(t_{\Phi_{\lambda \vee \mu}, \mu^{y^{\prime}}}\right)$. Define the mapping $R \times V \rightarrow V,\left(\alpha, x^{\prime}\right) \mapsto x^{\prime} \alpha$ in the usual way. Then V is a semilattice of might R-modules, and there exists an R-isomorphism of V into S^{*}. If Y satisfies the minimal condition, V must be R-isomorphic with S^{*}.
25.

REMARKS. Corollaries 9 and 10 show that S^{*} could well be named the dual of S. If Y is a lattice, the structure semilattice of V is the V-semilattice Y. The results of [6] make the connections between the structure theorems for S and the structure theorems for V more explicit.

Theorem 7 is quite analogous with a result in [5], §5, about the character semigroup of a commutative semigroup, and Theorem 9, Corollary 9, and Corollary 10 are in a certain way analogous with results of [7] and [8] (see also [3], Chapter 5).

The next theorem generalizes the concept of the transpose of an R-linear mapping.
26.

THEOREM 10. Let S and T be orthodox bands of. left R-modules, and $\theta: S \rightarrow T$ an R-linear mapping. The mapping $T_{\theta}: T^{*} \rightarrow S^{*}$, $t^{*} \mapsto T_{\Theta t *}$ defined by $\left\langle x,{ }^{T} \Theta t^{*}\right\rangle=\left\langle\Theta_{x}, t^{*}\right\rangle$ for $a l \tau x \in S$, must be an R-linear mapping of T^{*} into S^{*}, and $T_{\Theta\left(T^{*}\right)}$ is embeddable in $\left(S / \theta^{-1} \theta\right)^{*} \cong(\theta S)^{*}$.

Proof. It must be clear that for any $t^{*} \in T^{*}$, we must have $T_{\Theta t^{*} \in S^{*}}$, since Θ is R-linear; it is not difficult to show that
T_{Θ} is R-linear.
Let t^{*} and v^{*} be any elements of T^{*}; then $t^{*} \mid \theta S$ and $v^{*} \mid O S$ are both elements of $(\Theta S)^{*}$ since ΘS is an R-stable subsemigroup of T. From the definition of ${ }^{T} \Theta$ we have that $T_{\theta t^{*}}=T_{\theta v^{*}}$ if and only if $v^{*}\left|\Theta S=t^{*}\right| \Theta S$. This implies that the mapping $T_{\Theta\left(T^{*}\right)} \rightarrow(\Theta S)^{*}$, $T_{\Theta t * \mapsto} t^{*} \mid \Theta S$ is an $R-i$ isomorphism of $T_{\Theta\left(T^{*}\right)}$ into $(\Theta S)^{*}$.
27.

COROLLARY 11. Let S, T, and Θ be as in Theorem 10. The mapping $t_{\Theta}: T^{\prime} \rightarrow S^{\prime}, \quad t^{*} \mapsto t_{\Theta t^{*}}$ defined by $\left\langle x, t_{\Theta t^{*}}\right\rangle=\left\langle\Theta x, t^{*}\right\rangle$ for $a l 乙$ $x \in S$, must be an R-linear mapping of T^{\prime} into S^{\prime}, and ${ }^{t_{\Theta}\left(T^{\prime}\right)}$ is embeddable in $\left(S / \Theta^{-1} \Theta\right)^{\prime} \cong(\Theta S)^{\prime}$.
28.

COROLLARY 12. We use the same notations as in Theorem 10 and Corollary 1l. Let ρ_{S} and ρ_{T} be the minimal group congruences on S and T respectively. Let $\Psi_{S}:\left(S / \rho_{S}\right)^{\prime} \rightarrow S^{\prime}, \bar{x}^{*} \mapsto \Psi_{S} \bar{x}^{*}$, be the R-isomorphism defined by $\left\langle x, \Psi \Psi_{S} \bar{x}^{*}\right\rangle=\left\langle\rho_{S}^{\#} x, \bar{x}^{*}\right\rangle$ for all $x \in S$, and let $\Psi_{T}:\left(T / \rho_{T}\right)^{\prime} \rightarrow T^{\prime}, \bar{t}^{*} \mapsto \Psi_{T^{*}} \bar{t}^{*}$ be defined by $\left(t, \Psi_{T^{\prime}} \bar{t}^{*}\right\rangle=\left\langle\rho_{T^{\#}}^{\#}, \bar{t}^{*}\right\rangle$ for all $t \in S$. Then there exists an R-linear mapping $\Lambda: S / \rho_{S} \rightarrow T / \rho_{T}$ such that the following diagrams are commutative:

Proof. Since $\rho_{T}^{\#} \Theta$ is an R-linear mapping of S into the left
R-module $T / \rho_{T}, \quad\left(\rho_{T}^{\#} \theta\right)^{-1}\left(\rho_{T}^{\#} \theta\right)$ must be an R-stable group congruence on S, and, since ρ_{S} is the minimal group congruence on S, we must have $\rho_{S} \subseteq\left(\rho_{T}^{\#} \theta\right)^{-1}\left(\rho_{T}^{\#} \theta\right) ;$ this implies that Λ is a well-defined R-linear mapping of S / ρ_{S} into $T / \rho_{T} .{ }^{t} \Lambda$ is then an R-linear mapping of $\left(T / \rho_{T}\right)^{\prime}$ into $\left(S / \rho_{S}\right)^{\prime}$ which is defined by $\left\langle\rho_{S}^{\#} x,{ }^{t} \Lambda \bar{t}^{*}\right\rangle=\left\langle\Lambda \rho_{S}^{\#} x, \bar{t}^{*}\right\rangle$ for all $x \in S$ and all $\bar{t}^{*} \in\left(T / \rho_{T}\right)^{\prime} ;$ but since $\Lambda \rho_{S}^{\#}=\rho_{T}^{\#} \theta$, we then have

$$
\begin{aligned}
\left\langle\rho_{S}^{\#} x,{ }^{t} \Lambda \bar{t}^{*}\right\rangle & =\left\langle\rho_{T}^{\#} \Theta x, \bar{t}^{*}\right\rangle \\
& =\left\langle\Theta x, \Psi_{T} \bar{t}^{*}\right\rangle \\
& =\left\langle x,\left(t_{\Theta \Psi}\right) \bar{t}^{*}\right\rangle \\
& =\left\langle\rho_{S}^{\#} x,\left(\Psi_{S}^{-1} \quad t_{\Theta \Psi} T\right) \bar{t}^{*}\right\rangle
\end{aligned}
$$

for all $x \in S$ and all $\bar{t}^{*} \in\left(T / \rho_{T}\right)^{\prime}$; hence $t_{\Lambda}=\Psi_{S}^{-1} t_{\Theta \Psi}$.

References

[1] N. Bourbaki, ÉZéments de mathématique, Fascicule VI. Première partie, Livre II, Algèbre; Chapitre 2, Algèbre Zinéaire, 3e édition (Hermann, Paris, 1967).
[2] A.H. Clifford, "The structure of orthodox unions of groups", Semigroup Forum 3 (1971/1972), 283-337.
[3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Volume I (Mathematical Surveys, 7. Amer. Math. Soc., Providence, Rhode Island, 1961).
[4] *J.M. Firsov, "Everywhere defined semimodules" (Russian), Summaries of talks of the all-union algebraic symposium, 360-361 (Gomel, 1975).
[5] E. Hewitt and H.S. Zuckerman, "Finite dimensional convolution algebras", Acta Math. 93 (1955), 67-119.
[6] F. Pastijn and H. Reynaerts, "Semilattices of modules", submitted.
[7] *Stefan Schwarz, "The theory of characters of finite commutative semigroups" (Russian), Czechoslovak Math. J. 4 (79) (1954), 219-247.
[8] R.J. Warne and L.K. Williams, "Characters on inverse semigroups", Czechoslovak Math. J. 11 (86) (1961), 150-155.
[9] F. Wuytack and J. Depunt, "Operators over I-collections of modules", Bull. Soc. Math. Belg. 17 (1965), 37-54.
[10] Miyuki Yamada, "Strictly inversive semigroups", BuZZ. Shimane Univ. Natur. Sci. 13 (1963), 128-138.
[11] Miyuki Yamada and Naoki Kimura, "Note on idempotent semigroups II", Proc. Japan Acad. 34 (1958), 110-112.

* The author has not had access to [4] and [7], which are quoted at second hand. Editor.

Dienst Hogere Meetkunde,
Rijksuniversitei† Gent,
Krijgslaan,
Gent,
Belgium.

