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Orthodox bands of modules

F. Pastijn

In this paper we shall consider orthodox bands of commutative

groups, together with a ring of endomorphisms. We shall

generalize the concept of a left module by introducing orthodox

bands of left modules; we shall also deal with linear mappings,

the transpose of a linear mapping and with the dual of an

orthodox band of left modules.

We shall use the notations and terminology of [/] and [3].

1 .

DEFINITION. Let R, +, ° be a ring with zero element 0 and

identity 1 . Let S be a semigroup and R x S -*• S , (a, x) >—>• ax a

mapping satisfying the following conditions:

(i) a(xy) = (ax)(ay) for every a O and every x, y i S ,

(ii) (a+(3)x = (ax)(3x) for every a, 3 € R and every x € 5 ,

(iii) (a o Q)x = a($x) for every a, B € R and every x € S ,

(iv) lx = x for every x € S .

The structure defined this way will be called an orthodox band of left

i?-modules. The next theorem justifies our terminology.

2.

THEOREM 1 . Let R, S and the mapping R x 5 -»• S be as in the

definition of Section 1. Then S is an orthodox band of abelian groups

and the maximal subgroups of S are left invariant by the elements of R .
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Proof. Let x be any element of S , and a any element of R ; we

then have

(Ox)(Ox) = (0+0)x = Ox ,

(ax)(Ox) = (a+0)x = ax = (O+a)x = (Ox)(ax) ,

(ax)((-a)x) = (a-a)x = Ox = (-a+a)x = ((-a)x)(ax) .

This implies that for any a € R and any x € 5 , ax belongs to the

maximal subgroup of S with identity Ox ; the inverse of ax in this

maximal subgroup must be (-a)x . More specifically lx = x belongs to

the maximal subgroup of 5 with identity Ox , and its inverse in this

maximal subgroup must be (-l)x . We conclude that S must be a

completely regular semigroup and that all maximal subgroups of S are left

invariant by the elements of i? .

For every x, y € 5 we have

(xy)(xy) = (1+1)(xy) = ((l+l)x) ((l+l)y) = x2y2 .

Let e, f be any idempotents of S , then the foregoing implies that

(ef) = e j = ef ; hence £„ = {x € S | x = x} must be a subsemigroup

of S . Let x and y belong to the same maximal subgroup of S ; then

the foregoing implies

xy = ((-l)xjx y [(-l)y) = [(-l)x)xyxy[(-l)y) = yx ;

hence S is a union of abelian groups. We have yet to prove that 5 is

an orthodox union of abelian groups [2].

Let e and / be any idempotents of S , and x 6 H , y € #„ . We

put (-l)x = x' and (-l)y = y' . Then

ef = (eff = (l+l)(e/) = (l+l) [x(x'f)) = x2{x'f)2 = x2x'fx'f = Uf)(x'f)

and analogously

ef = (x'/Mxf) .

Since ef, x'f , and xf are elements of the rectangular group D „ [2],

the foregoing implies that xf and x'f are mutually inverse elements of

the maximal subgroup H „ . Dually, ey and ey' are mutually inverse
ej
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elements of the maximal subgroup H . . Since (xy)y' = xf and
eJ

(xf)y = xy we have xy^xf ; hence xyHef . Analogously, since

x'(xy) = ey and x(ey) = xy we have xyLey ; hence xyLef . We conclude

that xyHef . Green's relation H must then be a congruence on 5 . Thus

S is an orthodox band of commutative groups [2].

3.

REMARK. Let 5 be an orthodox band of abelian groups. Then, by

Yamada's Theorem ([2] and [70]), there exists a band E and a

semilattice of abelian groups Q , both having the same structure semi-

lattice Y , such that S is the spined product of Q and E over

y : S = Q x E . Let Q = U G and E = U E ; then S consists of

ordered pairs fx,,, ej\ , K € y , a:• € G'• , e, € E1 . Multiplication is

defined by

(*x. ex)(l/y. /y) = (*xJ/y. «x/u)

for any X, y € y , xx € G^ , yy € G^ , e^ d E^ , f^ (. 2 y . The

identity element of G , K € Y , will be denoted by 1

The following result will generalize a theorem of [4] about semi-

lattices of left modules. By combining the next theorem and Theorem 1, we

obtain a characterization of orthodox bands of abelian groups.

4.

THEOREM 2. Let S be any orthodox band of abelian groups, and let

Z be the ring of integers. Let e be any idempotent of S , and x and

x' mutually inverse elements of the maximal subgroup H . Define the

mapping 1 x S -*• S , (k, x) *-* kx by

kx = xk if k > 0

= e if k = 0

= x'~k if k < 0 .

Then S is an orthodox band of left Z-modules.
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Proof. Conditions (i), (ii), (iii), and (iv) of the definition in

Section 1 are checked by some easy calculations.

5.

DEFINITIONS and REMARKS. Let S be an orthodox band of l e f t

i?-modules, and T a congruence on the semigroup S . The natural
it

homomorphism of S onto S/T will be denoted by T . T wil l be called

i?-stable i f and only i f any implies (ax)T(az/) for every x , y £ S and

every a € R ; we can then define a mapping R x (S/T ) •+ S/T by

(a, x) i—*• ax = ax ; S/T wi l l then be an orthodox band of l e f t i?-modules.

Let S and T be orthodox bands of l e f t R-modules. The mapping

$ : S -*- T wi l l be called i?-linear i f and only i f

( i ) <J>(xy) = (<l>x)(<J>!/) for every x , y € S ,

( i i ) $(ax) = a$(x) for every x € S and every a £ R .

$(S) wil l then be an orthodox band of l e f t i?-modules.

The subset A of S wil l be called if-stable i f and only i f ox £ A

for every x € A and every a. £ R . If $ i s an i?-linear mapping of S

into T , 0(S) wi l l be an i?-stable subsemigroup of T , and the kernel

of $ wil l be an i?-stable subsemigroup of S . Any i?-stable subsemi-

group of an orthodox band of left i?-modules must of course be an orthodox

band of lef t i?-modules. If T is an i?-stable congruence on S , the

union of a l l T-classes containing an idempotent wi l l be an i?-stable

subsemigroup of S .

The mapping $ : S -*• T wi l l be i?-linear i f and only i f $ $ i s an

i?-stable congruence on S . The equivalence relat ion T on S i s an
u

i?-stable congruence i f and only if T i s an i?-linear mapping. The

mapping $ : S •+ E^ , xi—>• Ox is an i?-linear mapping of S onto the band

consist ing of a l l idempotents of S ; $~ $ i s then the i?-stable

congruence H .

Let S be the spined product of a semilatt ice of abelian groups Q

and a band E ; we shal l use the same notation as in the remark of Section

3 . Q i s the greatest inverse semigroup homomorphic image of S , and the
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mapping A : S -*• Q , (x, , e,) •—*• x, i s a homomorphism of 5 onto Q ; we

shall put A~ A = a ; th i s congruence O is the minimal inverse semigroup

congruence on 5 , and we shall show that a i s i?-stable. Let G be the

greatest group homomorphic image of Q , and T : Q ->• G , x *—*x be a

homomorphism of Q onto G , V T being the minimal group congruence on

Q ; i f x, and y are any elements of Q , then x,F~ Ty i f and only
A y A u

if there exists a K € Y , K 5 A A u , such that x , l = y 1 : we shall
X K a\\ K '

put (FA) (FA) = p ; this congruence p is the minimal group congruence

on S , and we shall show that p is i?-stable.

6.

THEOREM 3. The minimal inverse semigroup congruence on an orthodox

band of left R-modules is H-stable.

Proof. Let x be any element of Q , and let us take any two

elements [x , e ) and [x , f ) in A~ x . Let a be any element of

R . Since H is an i?-stable congruence on S , a[x , e ) belongs to

the H-class G x e of S containing fx , e 1 ; hence
K K K K ' KJ

a(x , e ) = [y , e ) for some y £ G . Analogously,

<* fa: , f 1 = [z , f 1 for some z £ G . Let (l , g ) be L-related

with (l , e ) and R-related with (l , / ) , and let (l , h ) be

R-related with [l , e ) and (.-related with (l , / ) . Since by the

restriction of if x S •*• S to R * [G X g ) and if x [G X h ) ,

respectively, G x g and G * h become left i?-modules, we must have

a ^ K ' ffJ = ^ K ' ̂ J and a ^ K 5 HK) = ^ K ' ̂  ' F u r t h e r m o r e> we have

(a{xK, f K )) (a( l K ,

eK) = G/K, eK) ;
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hence Z< = y< , and A(a(xK, ej) = &{a{xK, fj)

7.

COROLLARY 1 . By the mapping R x Q ->• Q ,

(a, xj H->- axK =

Q becomes a semilattiee of left R-modules, and A an R-linear mapping
of S onto Q .

8.

COROLLARY 2. Let Q be any semilattiee of left R-modules3 and Y
the structure semilattiee of Q ; let E be a band with the same
structure semilattiee Y ; let U G and U E be the semilattiee

KZY
deeormpositions of Q and E respectively; let S be the spined product

Q x E of Q and E over Y . By the mapping R * 5 -*• S ,

(a , [x , e )) t—»• [ax , e ) for every a € R > and every K € Y ,

x d G , e £ E , S becomes an orthodox band of left R-modules.
IC tC (C K

Conversely, any orthodox band of left R-modules can be so constructed.

9.

COROLLARY 3. Let S be an orthodox normal band of left R-modules,

and let S = U S be the semilattiee decomposition of S . For any X ,

y € Y t \ 2 y , the structure homomorphism ¥. is an R-linear mapping

of the orthodox rectangular band of left R-modules S-. into the orthodox

rectangular band of left R-modules S .

Proof. In a semilattiee of left fl-modules the structure
homomorphisms are i?-linear [6]. The theorem now follows from Corollary 2
and from a result about normal bands 1111.

10.

REMARK. Structure theorems for semilattices of left if-modules [6],
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together with Corollary 2 yield structure theorems for bands of left

if-modules.

11 .

THEOREM 4. The minimal group congruence on an orthodox band of left

R-modules is R-stable.

Proof. Let x, be any element of G , the greatest group homomorphic

image of an orthodox band of left i?-modules S . Let us take any two

elements x, and y in V x, . There exists a K (. Y , K 5 X A u ,
A \1 A

such that 1 x, = 1 v . Let a be any element of R . From
K A KT y

fax,]l = (ax,) fal 1 = a(x,l ) = afy 1 ) = (aw ) (al ) = (ay )l ,

and ax, € G-. , ay € G , we conclude that ay € T rfax.) , and thus

A A JJ |J \X A
-N- ~ -1
ax. = ay . This implies that the minimal group congruence T T on Q

A \i

must be i?-stable; consequently, the minimal group congruence
( F A ) " 1 ^ = p on S must be i?-stable.

12.

COROLLARY 4. By the mapping R * G ->• G , [a, x ) H->- O X = a x ,

G becomes a left R-module, and the mapping FA an R-linear mapping of

S onto G .

13.

DEFINITIONS. An orthodox band of right i?-modules S can be defined

in a way analogous to the way an orthodox band of left i?-modules is

defined. Condition (iii) of the definition in Section 1 must then be

replaced by (iii)1; (a o g)x = 6(ax) for every a, M S and every

x Z S . It will be more convenient to denote the mapping R x S + S by

(a, x) t—*• xa ; (iii)' then becomes

(iii)' x(a o 6) = (xa)6 for every a, 8 £ R and every x ? S .

If 5 is at the same time an orthodox band of left f?-modules, and an
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orthodox band of right i?-modules, then we shall say that 5 is an
orthodox band of i?-bimodules.

Let R° = R u {<*>} , and define addition in R" as follows: for any
a, 3 € R we put

a + 3 = y in R if and only if a + 3 = y in R ,

and we put

R will be a group with "zero" » . We next define the mapping
R x R° •+ R° by agreeing that for a, 3 in R ,

(a, 3) •—• a3 = Y if and only if a ° 3 = y in R ,

and that

(a, °°) i—• a00 = °° .

We also define the mapping R x R ->• R by setting, for a, 3 in R ,

(a, 3) •—•• 6a = y if and only if 3 ° a = y in R ,

and

( a , CO) I—»• 0O(]( = 00 .

GO

By these two mappings R becomes a semilattice of #-bimodules, the

structure semilattice being the two element semilattice. We shall use R

later in this paper.

The next theorem generalizes a result of [9].

14.

THEOREM 5. Let S be an orthodox band of left R-modulea, and T
an orthodox band of right R-modules. Let I be the set of all partial

mappings of S into T . Define a multiplication in 1 ~ _ as follows:

for every $, ¥ € I , dom $4" = dom $ n dom V t and for every

x € dom <J>¥ we put Wt(x) = ($x)(Vx) . Define the mapping

R * T-c m •*• lc m > (a> •) l~~>' * a by dom($a) = dom $ and ($ct)x = (<bx)a ,

for every x € dom $ . I_ _ will then be an orthodox band of right

R-modules- Jc m will be a semilattice of right R-modules if and only if
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T is a semtlattice of right R-modules.

Proof. For any $, V € I c „ and any a € H we have

s ,1

dom(($4')a) = dom <W = dom $ n dom V = dom($a) n domCftx) = dom(($a)(4'a)) ,

and for any x € dom($1')a we have

= ((4>a)x)(($a)x) =

hence (*V)a = (SoO^a) . For any H L . and any a, 6 t R we have

dom($(a+3)) = dom $ = dom($a) n dom($B) = dom(($a)($3)) ,

and for any a; $ dom($(a+$)) we have

hence $(a+3) = ($a)($6) • Furthermore,

dom($(a o g)) = dom $ = dom($a) = dom(($a)B) ,

and for any x € dom($(a o g)) we have

[Ha o &))x = ($x)(a o g) = ((*x)a)6 = (($a)x)g = ((*a)6)a: ;

hence $(a o 6) = ($a)6 . Finally, dom($l) = dom $ , and for any

x € dom($l) we have

($l)x = (te)l = te ;

hence $1 = $ . We conclude that !„ _ is an orthodox band of right

if-modules.

From the definition of the multiplication in Ic _ it follows that

lc _ is commutative if and only if T is commutative. From this follows

the last part of the theorem.

15.

THEOREM 6. Let S be an orthodox band of left R-modules, S' the

set of R-lineav mappings of S into R , and S* the set of R-linear

mappings of S into R° . Then S' is an R-stable subsemtgroup of I c

and S* is an R-stable subsemigroup of I
S,R
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Proof. We show that S* is an if-stable subsemigroup of I ;

the proof of the rest is similar. Let x* and y* be any elements of
OO

S* ; since R is a semilattice of commutative groups, x*y* must be a
OO

homomorphism of S into R . For any x € S and any x* € S* we shall

from now on put x*(x) = <x, x*> . For any x € S , any a € i? , and any

x*, y* € 5* we then have

<ax, x*y*) = < ax, x*> + < ouc, j/*>

= o< x, x*> + o£ x, y*>

= a « x , x*)-Kx, y*>)

= af. x, x*y*) .

We conclude tha t for any x*, y* £ S* , x*y* must be an .ff-linear mapping
OO

of S into R ; hence x*y* € S* . S* is a subsemigroup of I

5,i?°°

For any x, y f S , any x* f 5* , and any a € R we have

< xy, x*a.) = ( xy, x*)a
, x*))a

= < x, x*>a + < y, x*>a

= < x, x*ct> + < y, x*a) ;

hence x*a must be a homomorphism of S into R . For any x £ 5 , any

x* € S* , and any a, 6 € i? we have

< Bx, z*a> = < Bx, x*>a

= 3<x, x*>a

= B<;r, x*a> .

We conclude that for any x* € S* and any a € i? , x*a must be an

i?-linear mapping of S into R . Consequently 5* must be an i?-stable

subsemigroup of I .
S,R

1 6 .

COROLLARY 5. S* is a semilattice of right R-modules. The

structure semilattice of S* is isomorphic with the u-semilattice of

prime ideals of S . The mapping \* : S •*• R° , x i—»• 0 is the identity

of S* and the mapping 0* : S •*• R , x *-* m is the zero of S* .
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Proof. R is a semilattice of right i?-modules; hence I m is a
S,R°

semila t t ice of r igh t f?-modules. Since S* i s i?-stable in I , S*
S,R°

must also be a semi la t t i ce of r igh t f?-modules.

Let e* be any idempotent of S* ; then V * = {x Z S \\ (x, e*> = °°}

is a prime ideal of S . For any x £ S W * , < a:, e*> € /? and

2
<a;, e*> = <x, g* > = <x, e*) + <x, e*> ; hence <x, e*> = 0 . Conversely,

let P be any prime ideal of S ; then we can define e* € S* by

<£, e|> = <» for all x € P , and (x, e*> = 0 for all x € S\P .

Furthermore, if e* and /* are any two idempotents of S* , we must have

V t-.^ = 7 , u V-t . Consequently, the semilattice E^^ consisting of the

idempotents of 5* is isomorphic with the u-semilattice of all prime

ideals of 5 . Since E 1^ is isomorphic with the structure semilattice of

S* , the result stated in the corollary follows.

17.

COROLLARY 6. 5' is a right R-module which is an R-stable subgroup

of S* ; S' is the maximal submodule of S* containing the identity

1* of S* .

Proof. All elements of S' are i?-linear mappings of S into R ;

hence they can be considered as i?-linear mappings of 5 into R , and

consequently S' c S* . Since 5' is i?-stable in I „ D , and since
— b ,n

clearly I_ i s i?-stable in I , S' must be i?-stable in I ;
S'R S,R" S,R

from this we infer that S' i s i?-stable in 5* .

I t .is evident that 1* : S •*• R , XH->• 0 is the identity of S' . Let

x* be any element of 5' ; then x*(-l) € 5' , and for any x € 5 we

have

<x, x*(x*(-l))> = <x, x*> +<x, x*(-l)>

= <x, x*> + <x, x*>(-l) = 0 ,

and analogously

<x, (x*(-l))x*> = 0 ;
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hence x*(x*(-l)) = (x*(-l))x* = 1* . This shows that x* and x*(-l)

are mutually inverse elements of the commutative group H ^ , the maximal

subgroup of 5* containing 1* . For any element y* € H ^, we must have

V t = 0 ; hence any element y* € H ^ belongs to S' . We can conclude

that Hllk = S' .

18.

THEOREM 7. Let S be an orthodox band of left R-modules and x

any R-stable congruence on S . The mapping $ : (S/T)* •+ S* , x* •—>• 4>x*

- If —
defined by (x, $x*> = < x x, x*> for every x (. S is an R-isomorphism of

into S* . Whenever L<, C T C a 3 a being the minimal inverse

semigroup congruence on S , this mapping $ is a surjective

R-isomorphism of (S/T)* onto S* .

Proof. Let us suppose that 5*, y* are any elements of (S/T)* , and

x any element of S ; we then have

<x, Hx*y*)) = <T#X, x*y*>

= <T#X, x*> + <T*x, y*>

<x, <ty*>

hence 9(x*y*) = ($x*)($y*) . Let us suppose that x* is any element of

(S/T)* , a any element of R , and x any element of 5 ; then

)> = <Tffx, x*a>

= <x#x, x*>a

hence $(x*a) = (^x^Ja . Since T is an i?-linear mapping of 5 onto

S/T , $x* 6 S* for any x* € (S/T)* . We conclude that $ is an

i?-linear mapping of (S/T)* into S* . Let us now suppose that

x*, y* e (S/x)* , and $x* = $y* ; if for some x € 5/x ,

<x, x*>^<x,j/*> , then for any x € (x ) ~ x we should have
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+ (x, y*> = <Tffx, y*) = <x, <%*> ,

and this is impossible. We conclude that $x* = $y* implies x* = y* ;

hence $ is an isomorphism of ( S / T ) * into 5* .

It will be sufficient to show that the mapping $ : (S/a)* -*• 5* ,

- - § —

x*i—»• $x* defined by (x, $x* > = (a x, x* > for every x € S , will be an

fl-isomorphism of {S/a)* onto 5* . Let x* be any element of S* , and

[x , e ) and (x , / ) any two a-related elements of 5 . Since

[x , e ) and (x , / ) are P-related in 5 , they generate the same

principal ideal of 5 , and thus < (x , e ) , x* > = °° if and only if

< ( x , / ) , x * > = ° ° . Let us now suppose that (x , e ) and (x , / )

both belong to S\V * ; let [l , g ) be L-related with (x , e } and

*C K K K IC

R-related with fl , f } , and fl , h ) R-related with (x , e ) and

L-related with (l , / ) ; [l , g ) and (l , h ) are both P-related
IC is IC iC IC IC

with (x<5 eK) and (*K> /K) ; hence [\, 9K) , [\, \ ) € S\Vx, . Since

these two elements are idempotents of 5 , and since x* is an

homomorphism of S\V ̂  into R , we have

, gK), x*) = < ( 1 K , ? g , x*> = 0 .

From this i t follows that

In any case (x*)~ x* r> a . Hence the mapping x* € (S/a)* defined by

a _
<0 x, x*) = <x, x*> for all x € 3 is well-defined, and we shall have

$x* = x* . Thus, in this case, $ must be surjective.
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1 9 .

COROLLARY 7. If S is an orthodox band of left R-modules, and Q

the greatest inverse homomorphic image of S , then S* and Q* are

R-isomorphic.

20.

THEOREM 8. Let S be an orthodox band of left R-modules and x

any R-stable congruence on d . The mapping ¥ : (S/T)' •* S' 3

x* I—• m{x*) defined by <x, Vx*) = <x#x, x*> for any x € S is an

R-isomorphism of (S/T) ' into S' . Whenever t,a c x c p 3 p being the

minimal group congruence on S , this mapping m is a surjective

R-isomorphism of (S/T)' onto S' .

Proof. It is clear that the mapping Y must be the restriction of

mapping $ (of Theorem 7) to the maximal submodule (S/T)' of (S/T)* ;

hence ¥ is an f?-isomorphism of (S/T)' into 5* . Since for every

x € 5 , and every x* € (S/T)' , we must have < x x , x * > £ i ? , w e conclude

that Yx* € S' for every x* € (S/T)' ; thus Y is an ^-isomorphism of

(5/x)1 into 5' .

It will be sufficient to show that the mapping ¥ : (S/p) ' -»• S' ,

— - — § -

x* i—>- Yx* defined by <x, Vx* > = < p x, x*> for every x € 5 will be an

i?-isomorphism of (S/p) ' onto S' . Let x* be any element of S' .

Since x* must be a homomorphism of S into the additive group R , we

have (x*) x* 3 p . Hence the mapping x* € (S/p) ' defined by

< p x, x* > = (x, x*) for every x € S is well-defined, and we shall have

Vx* = x* . Thus, in this case ¥ must be surjective.

21 .

COROLLARY 8. If S is an orthodox band of left R-modules, Q the

greatest inverse homomorphic image of S 3 and G the greatest group

homomorphic image of S , then S' and Q' are both R-isomorphic with

right R-module G' which is the dual of left R-module G .
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22.

THEOREM 9. Let S be an orthodox band of left R-modules, and

S=US = UG*E its semilattiae decomposition. For any H I ,
ICOT K

the mapping 1? : S •* E defined by (x, 1?> = 0 if and only if

x € U S j and <#, 1?) = °° otherwise, is an idempotent of S* . The
K2X K X

maximal submodule H ^ of S* containing 1? is R-isomorphic with
A

( U 5 ) ' and with the right R-module G' , which is the dual of the left
K>A

 K K

R-module G, .

Proof. For any A € Y , US i s an i?-stable subsemigroup of S ,
K>A

 K

and G, will be the greatest group homomorphic image of U S . From
A K>A K

Corollary 8 it follows that ( U S )' and G' are i?-isomorphic right
K 2 A K

if-modules. It is easy to show that S\( U S ) is a prime ideal of S •
K2A K

From results in the proof of Corollary 5, it then follows that 1* must be

an idempotent of S* . We remark that for any x* £ S* , x* € #, ,. if and

only if V „ = {x € S || (x, x*> = °°} = S\[ U S ) . Hence the mapping
K>A

H . •*• [ U S )' , x* »-* x* I U 5 is an ^-isomorphism of ff onto
A K>A K 2 A A

( U 5K) ' -

23.

COROLLARY 9. We use the same notations as in Theorem 9. Let Q be

the greatest inverse semigroup homomorphic image of • S and Q = U G
K

its semilattice decomposition. For any A, u € Y , A > u , let $. be

the structure homomorphism of Q , and $ . its transpose; then
A,y

1* 2: 1? in S* ; let $* , : H A -*• H t be the structure homomorphism of
V * U»A 1 1,
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S* . For any A € Y the mapping ^ : H ^ •* G^ , x* •-*• V.a:* defined by
A

* • ) , * * > = < • « for all (* . ) € U
K>A

R-isomorphism of H , onto Gl , and the following diagram is commutative:

#,

X,\i

Proof. The mapping U S -*• G, , [x , e ) i—> $ x is a

homomorphism of U S onto its greatest group homomorphic image <?, ;

V. must then be an i?-isomorphism of H , onto Gl by Theorem 8.
A -L-% A

Let x* be any element of ff.,, , and x, any element of (7. . We

proceed to show that (x-, , $, f x* ) = < x, , ¥,$* ,x*> . Indeed,
\ A A , y y / A Ay,A

\XA' A,y \ix I A.y^A' p x

for a l l K 5 y , $ x
K,p K

= x,l , eA y ' K

= < ( x x , e^) , x*) f o r a l l e x i. Ex

= < ( x ^ , e . ) , x*l£> fo r a l l e^ €

f o r

A' A y,A

E ,
K

We conc lude t h a t $ . >f = ¥ . * * , .
X,p y X y,A
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24.

COROLLARY 10. We use the same notations as in Theorem 9 and

Corollary 9- Let the structure semilattice of S be a lattice. Consider

V = U G' , and define multiplication in V by the following: for any
K

x", y <v, «• € c- , y' < c; , put x'y' - (Sv u > x*')(*»X v U f l J» ') •

Define the mapping R x v -*• V , (a , x') y-* x'a in the usual way. Then V

is a semilattice of right R-modules, and there exists an R-isomorphism of

V into S* . If Y satisfies the minimal condition, V must be

R-isomorphic with S* .

25.

REMARKS. Corollaries 9 and 10 show that S* could well be named the

dual of S . If y is a lattice, the structure semilattice of V is the

V-semilattice Y . The results of [6] make the connections between the

structure theorems for 5 and the structure theorems for V more

explicit.

Theorem 7 is quite analogous with a result in [5], §5, about the

character semigroup of a commutative semigroup, and Theorem 9, Corollary 9,

and Corollary 10 are in a certain way analogous with results of [7] and [8]

(see also [3], Chapter 5).

The next theorem generalizes the concept of the transpose of an

.ff-linear mapping.

26.

THEOREM 10. Let S and T be orthodox bands of. left R-modules,

T
and 9 : S ->• T an R-linear mapping. The mapping 0 : T* -*• S* ,

t* i-> TQt* defined by <x, T0t*> = <Qx, £*> for all x £ S , must be an

T
R-linear mapping of T* into S* , and Q{T*) is embeddable in

[S/Q~LQ]* ^ (05)* .

Proof. I t must be clear that for any t* € T* , we must have

T
Qt* i. S* , since 0 is i?-linear; i t is not difficult to show that
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0 is if-linear.

Let t* and v* be any elements of T* ; then t*\OS and V*\QS

are both elements of (05)* since 05 is an i?-stable subsemigroup of

T . From the definition of 0 we have that Qt* = Qv* if and only if

U*|0S = t*\QS . This implies that the mapping TQ{T*) •* (05)* ,

T0t*"-^- t*\QS is an i?-isomorphism of TQ(T*) into (05)* .

27.

COROLLARY 11. Let S, T , and 0 be as in Theorem 10. The mapping

*0 : 2" -*- 5 ' , t*>-+ %t* defined by <x, tQt*) = < 0x, **> for all

x € 5 j must be an R-linear mapping of T' into S' 3 and Q(T') is

embeddable in [S/Q~XQ) ' ^ (05) ' .

28.

COROLLARY 12. We use the same notations as in Theorem 10 and

Corollary 11. Let p_ and p be the minimal group congruences on S

and T respectively. Let Vq : [s/pq) ' •+ S' 3 x* ̂-+• VJc* , be the

R-isomorphism defined by <x, ^J:*) = ( p j ; , x*j for all x € 5 , and let

' -> T< , t* i-* VTt* be defined by i t , y * ) = (pjt , i*) /or

t £ S . Then there exists an R-linear mapping A : 5/p^ -»• T/pT such

that the following diagrams are commutative:

tr
0 s'

0 T'

T/Prp , (5/p ) ' - — (T/pJ '

Proof. Since p_,0 is an i?-linear mapping of 5 into the left
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Y1
f § Y1[ § ]i?-module T/p- , PyO M3?1® must be an f?-stable group congruence on

S , and, since p_ is the minimal group congruence on 5 , we must have

pa c \pmQ\ pi© ; this implies that A is a well-defined tf-linearb ~ \ l ) I T )

mapping of S/p_ into T/pm . A is then an i?-linear mapping of
o 1

[T/pT] ' into [S/Ps] ' which is defined by ^p|x, *{&*} = (AP|K, **) for

all x d S and all t* € (̂ /Pm) '; tut since Apg = p_9 , we then have

(p*s, tAt*) = (pjGx,

•< • •

for a l l a; € S and a l l 1* t (r/p ) ' ; hence *A = f"1^* .
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