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Obstacle problems are of great theoretical and practical interest across a range of
fields. Indeed, they are a classical motivating example in the study of variational
inequalities and free-boundary problems which find applications in, for instance, fluid
filtration in porous media, elastoplasticity, optimal control, financial mathematics and
image processing. Intuitively, the classical obstacle problem seeks to describe the
equilibrium state of an elastic membrane stretched over a solid obstacle and fixed
at the boundary of the problem domain. In this sense, it can be thought of as an
energy minimisation problem and, indeed, in its original study it was formulated as a
constrained minimisation problem. Further formulations include the use of variational
inequalities and linear complementarity conditions (see, for instance, [4, 8]).

In spite of these problems being well studied, they are rarely amenable to analytical
solution and so numerical approaches are often necessary. Many numerical methods
for approximating solutions to obstacle problems have been proposed over the years
and they often assume one of the aforementioned formulations in order to develop their
numerical scheme. In this thesis, we assume a different formulation of the problem and
take a different and, in some sense, complementary approach to numerical solution of
the obstacle problem. It is well known that the obstacle problem is a type of free-
boundary problem and it has been shown that these problems can be formulated as an
optimal stopping problem (see, for instance, [1]), the optimal stopping time being the
first hitting time of a diffusion with a free boundary. Using this type of characterisation
of the solution to an obstacle problem, we extend an optimisation approach for finding
and tightening polynomial bounds for solutions to Dirichlet boundary value problems
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(see, for instance, [6, 7]) to the general framework of elliptic and parabolic obstacle
problems and further to bound solutions to systems of boundary value problems and
obstacle problems. The focus of this thesis is to derive the key results that justify the
use of this approach, explore the properties of the bounds obtained and demonstrate
the scope of the applications, particularly in the context of financial derivative pricing.

Chapter 1 presents the context of the study and Chapter 2 formulates elliptic
and parabolic boundary value problems, presenting existing results for obtaining
polynomial bounds for the solutions to these problems and discussing the scope of
their applications, with reference to problems in financial derivative pricing.

Chapter 3 contains the main theoretical contributions of the thesis, extending the
results presented in Chapter 2 to the more general framework of elliptic and parabolic
obstacle problems. Here, the relevant underlying theory is developed, including
desirable convergence results associated with the resulting bounds, and properties
of these bounds are discussed. In particular, instead of obtaining approximations to
the solution in the usual sense, we search for minimal supersolutions to act as tight
upper bounds for the solution to the obstacle problem. That is, we identify a class
of supersolutions to the obstacle problem and proceed to formulate and numerically
solve an appropriate optimisation problem. The approach is then not only unique
to existing methods from the point of view of the form of the bounds produced,
but also at the level of implementation in terms of the type of numerical scheme
utilised. The optimisation problem is a semidefinite programming problem, which is
made numerically tractable using sum-of-squares relaxations and solved numerically
using the semidefinite program solving software SDPT3 [11] and modelling language
YALMIP [9]. The effectiveness of this method is demonstrated extensively through
numerical examples.

It is well known that the problem of pricing American-style options can be
formulated as an obstacle problem and, in general, has no explicit solution. Chapter 4
then demonstrates the applicability of the current approach to obtaining upper bounds
on American option price functions. Interesting relationships are also derived between
the proposed approach and existing methods for approximating American option
prices (see, for instance, [5, 10]). Throughout this chapter, the effectiveness of the
proposed method in obtaining tight upper bounds for American-style option prices
is demonstrated in a variety of market models and with various payoff structures,
such as the multivariate Black–Scholes and Heston stochastic volatility models and the
American put and butterfly payoff structures. Extensions of the proposed methodology
to perpetual American-style options and frameworks in which the underlying asset
contains jumps are also discussed. The numerical examples of this chapter also
highlight the features of the proposed approach that make it a practical alternative
to existing methods. In particular, in a single implementation this approach obtains
explicit bounds in the form of piecewise polynomial functions, which bound the price
function from above over the whole problem domain in both time and state. As a
consequence, these global bounds store a continuum of information in the form of
a finite number of polynomial coefficients. The proposed approach achieves these
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bounds, free from statistical error, without recourse to sample path simulation, without
truncating the naturally unbounded domain that arises in this problem and without
discretising the time and state variables. This can be seen as a practical alternative to
existing Monte Carlo approaches, which in one implementation may obtain a single
statistical estimate to an upper or lower bound for the price at a single point in the
problem domain. The results of Chapter 4 form the manuscript [2].

Finally, Chapter 5 extends this methodology for obtaining and tightening bounds for
the solutions to boundary value and obstacle problems to bound solutions to systems
of boundary value and obstacle problems. This is done by considering how one
can extend the proposed approach to address problems in financial derivative pricing
in regime-switching market models wherein the market dynamics change according
to a continuous-time Markov process on a finite state space. These problems can
be formulated as systems of coupled boundary value and obstacle problems and
the theoretical and practical concerns that must be considered when extending the
techniques of Chapters 2 and 3 to such problem settings are discussed. The results of
Chapter 5 can be found in [3].
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