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I ntroduction

Let F' be a p-adic field, and G be either a split SO(2n + 2), or a split adjoint
group of typeof E,,, (n = 6,7, 8) over F'. In this article we study correspondences
arising by restricting the minimal representation (I1, V') of G (introduced in [KS])
to various dual pairsin G.

Recall, from [S1], how one can measure the size of a smooth, admissible
representation £ of G:FixK,, (n = 1,2...), achain of principal congruence
subgroups of G. Let EX» be the subspace of K,,-fixed vectorsin E. Obviously,

E =UX Efr EEn Cc EEvtt and dim Efr < oco.

Moreover, if the representation £ has finite length, it follows from the character
expansion of E that

dimEL" = P(¢") if n>>0,

where ¢ is the order of the residual field of F, and P is a polynomial with the
degree equal % the dimension of a nilpotent orbit which appears as aleading term
inthe character expansion of E. Theleadingtermfor V' isthe unique minimal, non-
trivial nilpotent orbit of G, so dim V%~ growsat the slowest possiblerate (amongst
non-trivial representations). It isprecisely inthis sensethat V' isan analogue of the
Weil representation of Sp,,,. So Rallis has asked if one can use V' to obtain new
dual pair correspondences.
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Recall that if A x B isadual pairin Sp(2r) and 7 an irreducible representation
of A, we say that an irreducible representation o of B isaO-liftof 7 if r ® o isa
quotient of the Weil representation (see [H1]). Let ©(x) bethe set of all sucho.

In this paper we study the restricition of V' to the following dual pairs

SO(2n — 1) x SO(3) C SO(2n + 2)
and

Gy x H D
with H adjoint,

PGL; if G = Fs,
H = PGaJe if G= E7
F, if G=Es.
Although these exceptional dual pairs have been known, at least at the level of Lie

algebras, since thework of Dynkin [D], the reader might not be very familiar with
them. So, as anillustration, we describe the dual pair

Gz X PGL3.

First of all, let O be an 8-dimensional algebra of Octonions over F' (see Section 3).
Then G is the automorphism group of O [J3]

G2 = Aut(0).

Next, let J be the exceptional Jordan algebra, consisting of 3 x 3 Hermitian
symmetric matrices with coefficientsin the algebra Octonions O over F

S

A=

8 oW
a8

NSEER N

where a,b,c arein F, and z,y, z are in O (the reader can find more details in
Section 3). The algebra J plays an important role in this paper. Let

det:J — F
det(A) = abc + Tr(xzyz) — aN(z) — bN(y) — eN(z),

be a cubic F-valued form on J. Now, the group of isogenies of the form det is a
reductive group of type Eg (See[A1]). Obviously, thisgroup contains G'2; the group
G, actson theentriesof A in J. Also, GL3 actsfaithfully on J by the formula

A~ det(g) 'gAd',
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where det(g) and g¢ are the determinant and the transpose of the 3 x 3 matrix g,
respectively. Clearly, these two actions commute, and the center of GL 3 coincides
with the center of the reductive group. The dual pair G2 x PGL3 is obtained by
passing to the adjoint quotients.

In this paper we first compute ©-lifts of tempered spherical representations
of SO(3) = PGL; to SO(2n — 1), by restricting the minimal representation of
SO(2n + 2). This is the simplest case and as such it is a good introduction to
exceptional dual pairs which form amore interesting part of this work.

We then compute ©-lifts of tempered spherical representations of PGL 3 to G.
In particular, for such representations, this lift is functorial for the homomorphism

SL3(C) — G2(C)

of the dual Langlands groups ([B]). Recall that spherical representations are para-
metrized by the Satake parameters, i.e. by semi-simple conjugacy classes in the
dual group [Ca]. The main tool is the computation of the Jacquet functor of the
minimal representation V' with respect to amaximal parabolic subgroup of PGL 3.
More precisely, let P be the maximal parabolic subgroup of G, whose preimagein
the reductive cover is the group stabilizing the 10-dimensional subspace Jyg of J,
consisiting of elements

a z 0
z b 0
00O

([A1], 3.14). Then Theorem 1.1 gives a nice model, not for the minimal repre-
sentation itself, but its restriction to P. Since the stabilizer of Jig in GL3 is the
maximal parabolic subgroup consisitng of lower-triangular block matrices, and the
Levi factor GL, x GL1, it follows that

(GzXPGL3)ﬂP:G2XQ,

where (Q isamaximal parabolic subgroup of PGL 3, hence this model can be used,
in amanner analogousto what is donein the classical case (Kudla[Ku] and Rallis
[Ral), to compute the Jacquet functor of V for Q.

Next, we compute ©-lifts of tempered spherical representations of PGSpg.
Again, the main tool is acomputation of the Jacquet functor, this time with respect
to the Siegel maximal parabolic subgroup of PGSpg. We finish the paper by com-
puting ©-lifts of tempered spherical representations of G, to H, in all three cases
(assuming that p # 2). In particular, for such representations, the lift from G, to
PGSps obtained by restricting the minimal representation of E7 is functorial for
the homomorphism

G2(C) — Spiny(C)
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of their dual groups.

Local computations are, in a way, a preparation for global correspondences
(i.e. correspondences of automorphic forms). So it is worth mentioning that in a
forthcoming work, D. Ginzburg, S. Rallis and D. Soudry are studying a global
variant of exceptional correspondences. Another possible global application has
recently been initiated by B. Gross in connection to a realization of a G'o-motive
[G1]. Also, in [G2], B. Gross has given a conjectural answer for the exceptional
correspondences. The evidence presented in this paper supports his conjectures.

1. Minimal representation

Let G be asimple, split, group of type A,_1, Dy, of E,. Let G(C) be the dual
Langlands group of G (see [B]). By a well known result of Kostant, the conju-
gacy classes of unipotent elements in G(C) correspond to conjugacy classes of
homomorphisms

©:SL2(C) — G(C).

Assume now that ¢ corresponds to the subregular unipotent orbit. Let

B q1/2 0
s=¢ 0 q—l/z .

Then V' is the spherical representation of G with the Satake parameter s.

We now describe the character expansion of V. Let g be the Lie agebraof G.
Let (,) bethe Killing form on g. Throughout this paper we also fix a non-trivial
unitary character

P F — C*.

Let C2°(g) denote the space of locally constant, compactly supported functions
on g. Define the Fourier transform on C2°(g) by

fly) = / F @) (e, ) de,

where dz is a self-dual measure on the vector space g. Let Onin be the unique
minimal nilpotent G-orbitin g and 10,,;,, 2aG-invariant measure on O, Normalized
asin[MW]. Itisshownin [S1], that there exists alattice L in g, containing O, such
that

) =T [ f@)epa)dr = [ Fuon, +cf(0)

forany f € C°(L).
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Let A bethe Dynkin diagram of G. Mark the diagram A asfollows. Attach O to
the unique branch vertex (or to the middle vertex of A isthetypeof G is A2,_1)
and 2 to al other vertices. This marking corresponds to the subregular nilpotent
orbit [D]. Let P = M N be amaximal parabolic subgroup of G. Let Ay, be the
Dynkin diagram of M. Assume that we are in the following favorable situation:

(1) N isacommutative group.
(2) Themarking of A corresponding to the subregular nilpotent orbit of G restricts
to the marking of A, corresponding to the subregular nilpotent orbit of M.

The possible cases are given by the following table;

G | M N
Dni1 | D, F2n
Es Ds F16
E Fg F%

Here F?" isthe standard representation of D,,, F''® is a spin-representation of Ds
and F%’ isisomorphic to the exceptional Jordan algebra. We say that apoint in N
issingular if it isahighest weight vector for aBorel subgroup of M. Let w and be
the set of singular vectorsin V. Note that w is the smallest non-trivial M-orbit in
N.If G = D, ;1 thenw isthe null-conein F?" of the invariant quadratic form for
D,,, with 0 excluded.

THEOREM 1.1. Let P = M N be the maximal parabolic subgroup, opposite to
P. Theminimal representation (II, V') of G hasa P-invariant filtration
0—-C(w) =V =Vy—0.
Here C2°(w) denotes the space of locally constant, compactly supported functions
onw and Vy isthe space of N-coinvariants of V' (Jacquet functor).
(1) Let f € C°(w). Theaction of P is given by
I(n)f(z) = y((z, 7)) f(x), AEN
and
[(m) f (z) = | det(m)|*/*f (m~Yem), m € M.

) Vi = V(M) ® |det|/?+|det|*/?,
where V (M) isthe minimal representation of M (center acting trivially).
Here(, ) isan F-valued pairing between N and N induced by the Killing form

on g, and det is determinant of the representation of A/ on N. The values of s and
t are given in the following table

G | S t
-D’n+1 n—1 1
FEg 4 2
E; 6 3
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and d isthe dimension of .

Proof. Thisisjust Theorem 6.5in[S1] if G is E7. Note however that the other
two cases a'so satisfy the conditions of Proposition 4.1 in [S1]. Hence the proof
carriesover with no changes. The proof given there, however, isvaidonly if p # 2,
and this restricition enters through the work of Moeglin and Waldspurger [MW].

Let z be an element in N, and define acharacter +,, of N by

Let Vi, bethe quotient of V' by the space spanned by the elements {I1(7)v —

Y.(n)v | n € N,v € V}. Thekey point in the proof of Theorem 6.5in [S1] isto
show that

Viy, =0,

for z # 0and not in w, i.e. the N-spectrum of V' is supported on the closure of w.
Thisfollows from the character expansion of V' and and [MW], if p # 2.

To extend the theorem to p = 2, we use a global argument. Let k& be a number
field and A itsring of adeles. Ginzburg, Rallis and Soudry [GRS] have construced
a square integrable automorphic form on G,, whose local components are the
minimal representations. Arguing as Howe (Lemma 2.4 in [H2]), one shows that
if the V-spectrum is supported on w at one place, then it is supported on w at all
places. This completes the proof of the theorem.

2. Dual pair SO(2n — 1) x SO(3)
Let G = SO(2n + 2). We have an embedding
SO(2n — 1) x SO(3) C SO(2n + 2)

given by decomposing the standard representation F2**+2 of G as a direct sum of
a2n — 1-dimensional and a 3-dimensional orthogonal subspaces. We will assume
that all three orthogonal groups are split.

Weidentify SO(3) with PGL,, andlet e, h, f bethe standard basisfor dl(2), the
Liealgebraof PGL,. Let g bethe Lie algebraof G, and define

i={z €| [hs] = —20},
m={z € g|[h,z] = O},
n={z €g]|[h,z] =2z}

Then

g=nud®modn
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and p = m @ n isthe Lie algebra of the maximal parabolic subgroup P = M N
defined in Section 1.
Notethat e € n, f € n, and their centralizer in M is

SO(2n — 1) x (£1) = Cmle) = Cu(f)-

Let Q@ = LU = PN PGL». ItisaBorel subgroup, and if we represent elements
in PGL , by 2 x 2 matrices, wewill assumethat () isrepresented by upper-triangul ar
matrices. In particular, an element in L will be represented by a diagonal matrix

a O
0b)
PROPOSITION 2.1. Let V' bethe minimal representation of G'. Let

a O
( b) € L C PGL3 = SO(3).

0
Then
0 b n—1 b
® H((O b))fm: o i(5e). rec:
n—1
(2) Theeigenvalues of H((Z 2)) onVy are S and S

Proof. Thisisaspecial case of Theorem 1.1.

Let x be a multiplicative character of F'. Let px denote the character of L

defined by
a O 1/2 b
PX 0 b = X (a) .

Lett, = |nd%o(3)px. If x is unitary then 7, is an irreducible tempered spherical
representation of SO(3).

Let o be an irreducible representation of SO(2n — 1). Then, by the Frobenius
reciprocity

b

a

HomMso(2n—1)xs0(3) (Vs 0 ® Ty) = HOMso2, 1)1, (Vs 0 @ px).
Hence, 0 € O(r, ) if and only if o ® px isaquotient of V5. Since

0—-Cr(w)g—=Vg—Vy—0
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we need to understand C°(w) ;. Let NN be the complement of U in N with
respect to theform (, ). Put

ww=wNNN.
LEMMA 2.2.
Co(w)g = € (ww).

_ Proof. Let usrecall few known facts about Jacquet functors. Let (w, E) be a
U-module. Then E; = E/E(U) where E(U) can be defined either as the space
spanned by the elements {7 (u)v —v | u € U,v € E} or the space of al v such
that

/_ (@)vda =0

U

for some open compact subgroup Uy C U depending on v (2.33 [BZ]).
Obviously, C2°(ww) is a quotient of C°(w) and by Theorem 1.1 (1), U acts

trivially on C2°(ww). Let f € C°(w) suchthat f|.,, = 0. To provethe lemma, we

need to find an open compact subgroup Uk such that

~ Y((z,u))f(z)du =0
Uk
fordlzew. B
Fix achain {U,}, i € Z, of open compact subgroups of U such that

Ui - Ui+1 and UUZ =U.

Let = be such that f(z) # 0. Since z is not in NN, there exists an open
compact subgroup U, in the family, such that +({x, u)) isanon-trivial character of
U... Also, there exists an open compact neighbourhood O, of = suchthat 4 ((y, @))
isanon-trivial character of U,, for any y € O,.. Since the support of f is compact,
afinite collection of O, coversthe support of f. The union of the corresponding
U, isthe desired Uy . The lemmafollows.

We can, therefore, summarize the situation with the following proposition.
PROPOSITION 2.3. Vj; has afiltration with two succesive quotients
Cgo (ww)a and Vi,

where C2°(ww) is a submodule, and Vi a quotient. As SO(2n — 1) x L-modules:

a O b
& HU((O b)Xg)f(w)z‘a

"y (Leteg), s ecmn
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b n—1

a

b

(2) Vx=EV(M)® +1® p

where V (M) isthe minimal representation of M (center acting trivially).

Note that NN = F?*~! and ww is the null-cone of the SO(2n — 1)-invariant
quadratic form (with O excluded). Let C*°(ww) be the space of locally constant
functions on ww. We can define degenerate principal series representations o, of
SO(2n — 1) by

oy = {f € C¥(ww) | f(cz) = x(c)[c|¥? " f(a)}.
Analogously, o, can be defined as a quotient of C°(ww) consisting of f such that
flex) = x(0)|e|¥27) f(x).
If x is unramified and unitary then o, is an irreducible unitarizable spherical
representation by aresult of Tadi€ [T2], Theorem 9.2. We are now ready to state

and prove the main result of this section.

PROPOSITION 2.4. Let y beanunramified, unitary multiplicative character. Then
O(7y) = {oy}.

Proof. By the Frobenius reciprocity, o ® 7, is aquotient of V' if and only if
o ® px isaquotient of V;;. We need the following.

LEMMA 2.5. Let T be a p-adic reductive group and

O—-Vi—=Vo—=>Vz—0
a sequence of smooth I'-modules. Assume that there exists an element T in the
Bernstein center (see[BD]) of I" such that V3 decomposesas a sum of finitely many
eigenspacesfor T’

Va=Va(A1) @ - @ Va(\p).
Let W be a smooth I"-module on which 7" acts as a scalar p. If i isdifferent form

all \;, then W isaquotient of V7 if and only if it is a quotient of V3.
Proof. Obvious.

We apply the lemmato

0—Cr(ww) = Vg —=Vy—0
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and T = L. Let @ bethe uniformizing element of F, |w| = ¢~ 1. Put

w 0
T=11I .
Since ¢%?x(w) is different from ¢" 1 and ¢ if  is unitary, it follows from the

lemmathat o ® 7, isaquotient of V' if and only if o ® px is quotient of C2°(ww).
Thisimplies the proposition.

3. Group Eg

In this section we describe a reductive group G, whose quotient modulo its center
isthe split adjoint group of type Fe.

Werecall from [Cx] that the algebra O is a non-associative division algebra of
rank 8 over F'

F+Fei+ Fey+ Fes+ Fea+ Fes+ Feg+ Fey
egz—l al g

e+ (eir1-€iy3) = (€ - €i11) - ej43 @l (mod7).
By
e, = —e;
one defines the standard F'-linear anti-involution of ©. On @, we have the trace

Tr:0 — F,
T— T+,

which is F-linear, and the norm

N: O — F,

r—x-x==-x,

which satisfiesN(z - y) = N(z)N(y). Although the multiplication is neither com-
mutative nor associative, we have

Tr(z-y) =Tr(y - x)
Tr(z - (y-2)) =Tr((z - y) - 2).

We denote the latter rational number ssimply by Tr(zyz).
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Theexceptional Jordan algebraisthe vector space of 3 x 3 Hermitian symmetric
matrices over the algebra of Octonions O over F'

a
A=z
Yy

S W
SIS

Kl
o

wherea, b, c arein F and z, y, z arein Q. The multiplication in .J is given by the
formula

where AB and B A stand for the ordinary multiplication of 3 x 3 matrices.
The determinant

det(A) = abc + Tr(zyz) — aN(z) — bN(y) — cN(2).

gives an F-valued cubic form on J. The group G can be defined as the group of
linear transformations g of J wich satisfy

det(g(A)) = Alg) det(A)

for a similitude A\(g) in F* [A1]. The cubic form defines a symmetric trilinear
form (A, B, C) on J (the Dickson form) normalized by
(A, A, A) = 6det(A).
Let P bethe maximal parabolic subgroup in G stabilizing the line through

0 0O
D=0 0 O
0 01

This parabolic subgroup is opposite to the one defined in the introduction, as the
stabilizer of Jyo, the 10-dimensional subspace of J consisting of all matrices in
J such that the coefficients in the third row and the third column are zero. In
particular, we have adecomposition P = M N, wherethe Levi factor M isdefined
asthestabilizerin P of Jio. Then[M, M] = Spinjgand Qp(X,Y) = (X,Y, D) is
aSpin,-invariant quadratic formon .J1g. The unipotent radical NV, can beidentified
with the spacein J consisting of matrices

00
00

Y

(3.1)

o 8

81
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([A1], (4.7), (2)). The group G has three non-trivial orbits on J. Let © be the
smallest orbit. It is the orbit of D and its dimension is 17. It can be characterized
as the set of all non-zero matrices A in J such that

A% =Tr(A)A,
or, in terms of the Dickson form,
(A,A, X) =0 foral X € J.

On the other hand, M has two non-trivial orbits on N and the smaller (using the
identification 3.1) is

w=0NN.

4. Dual pair G2 x PGL3

Let G be the reductive group described in the previous section. We first describe a
closed subgroup

G2 x GL3 C G.

The exceptional group G is the automorphism group of the Octonion algebra O,
so the action of G on the entries of matricesin J inducestheinclusion G> C G.
On the other hand, GL 3 actson J by

A — det(g) * gAg',

where det(g) and g* are the determinant and the transpose of g in GL3. Note that
this action of GL 3 isfaithful, and

Ag) = det(g) .

Since J is an irreducible G-module, the center of G' consists of transformations
A— zA, where z € F*. Hence, it coincides with the center of GL3, and we have
a closed subgroup (dual pair)

Gz X PGL3

in the adjoint group of type Es. However, we shall continue working with G, asiit
is more convenient.

Let Q = LU = P N GL3 be the corresponding maximal parabolic in GL3. It
consists of lower-triangular block matrices, and the Levi factor L = GL, x GL1.
The unipotent radical U C N can be identified with the space of al matrices
(3.1) in J such that z and y arein F'. In particular, if we identify NV with pairs of
Octonions (y, ), the conjugation action of L on N is given by

l1(y,Z)l; %, € I x 13 GLo x GL1.

Using this identifications, Theorem 1.1 can be reformulated as:
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PROPOSITION 4.1. Let V bethe minimal representationof G. Let f € C°(w) C
V. Then

1) W@f((y.2)=f(gy.97'2), g€ G

2
(2) Tz x W)f((y2)) = |d|‘i|lj|

I x 11 € GLy x GL1,

FUT Ny, 2)l2),

where det denotes the usual determinant of 2 x 2 matrices.

Let 7 be an irreducible representation of GL3. Assume that 7 is isomorphic
to IndgLB(r) for some irreducible representation 7 of L. Let o be an irreducible
representation of G'2. By the Frobenius reciprocity

HOI’T]G2><G|_3(V,O' ® |ndgl'3(7')) = HOI’T]szL(VU,U X 7').
Hence, o ® wisaquotient of V' if and only if o ® 7 isaquotient of V. Since
0=Cl(wg—=Vg—=Vy—0

we need to understand C2°(w) ;. Let NN bethe orthogonal complement of U in N
with respect to the pairing between N and N, induced by the Killing form. Since
NN isthe unique 14-dimensiona Go-invariant subspace, it is given by the space
of all matrices (3.1) in J such that « and y are traceless Octonions, i.e. z = —z
andy = —y.

Let

ww=wNNN.
AsinLemma?2.2
CX (W) = € (ww),
and we have to understand the structure of G'» x L orbits on ww.

PROPOSITION 4.2. (1) ww = {(y,Z) # (0,0) | & = —2,7 = —y; 2% = y? =
z -y =0}
(2) Let AA and BB be the subsets of ww consisting all pairs (y, z) such that
the space F'z + F'y hasdimension 2 and 1 respectively. Clearly,
ww = AAU BB (BB is contained in the closure of AA).

Moreover, AA and BB are G, x GLy-orhits.
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Proof. Letn bean elementin N. Asbefore, represent it as

0
0

3

Il
< O O
O 8

T

Now, n isin NN precisely when z and y are traceless. Furthermore, sincen is
traceless, itisinQ if andonly if n2 = 0. Butthisisequivalenttoz? = y? = z-y = O.
Thefirst part of the proposition is proved.

We go on to observe that G» has three orbits on the set of spaces of traceless
Octonions with the property that the Octonion multiplication is trivial. These are
characterized by their dimension; the possible choicesbeing 0, 1, 2. The stabilizers
of the nontrivial spaces are the maximal parabolics of G.

Let z beatraceless Octonion such that ~? = 0. Let P; be the maximal parabolic
subgroup of G stabilizing the line F'z. The Levi factor of P; is ‘spanned’ by a
long root. Consider

B = {(az,0) | a € F and « # 0}.

Let QQ be the maximal parabolic subgroup of GL, C L stabilizing B. Then
P; x QQ actstransitively on B and

BB = (GZ X GLZ) X(P1><QQ) B.
Let z and y be two traceless and linearly independent Octonions such that 2 =
y> =z -y = 0. Let P, be the maximal parabolic subgroup of G stabilizing the
space Fx + Fy. The Levi factor of P, is‘spanned’ by a short root. Consider

A={(ax +by,cx +dy) | a,b,c,d € F and ad — bc # 0}.

Then P, x GL, acts transitively on A and since (i acts transitively on the set of
all two-dimensional spaces of traceless Octonions with trivial multiplication,

AA =Gy xp, A.
The proposition is proved.

We can now summarize the structure of V;; as a G2 x GLz-module in the
following theorem (compare [Ku]. Here GL, isthefirst factor of L = GL, x GL1.

THEOREM 4.3. V}; has afiltration with succesive quotients:

CSO(AA)v CSO(BB)a and Vi,
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whereC°(AA) isasubmodule, and V a quotient. Moreover
(1) CX(AA) =indF2(C°(A)) ® | det|?,

(2) CZ(BB) =indgZGh2(C°(B)) @ | det |2,

(3) Vy=Vy®|det]|+1®|det|?

as G2 x GLo-modules.
Proof. We have

0—=C(ww) = Vg = Vy—0
and
0— CX(AA) = CX(ww) = C(BB) — 0.

Parts (1) and (2) follow from the description of AA and BB given in the proof of
Proposition 4.2. The theoremis proved.

We now givethe first application. Namely, we show the following.

THEOREM 4.4. Let ®:SL3(C) — G2(C) be the standard inclusion of the dual
groupsof PGL3 and G2; SL3(C) isgenerated by thelong root spacesof G»(C). Let
7 be a tempered spherical representation of PGL3. Let s € SL3(C) be its Satake
parameter. Let 7' be the tempered spherical representation of G, whose Satake
parameter is s’ = ®(s). The representation #’ is also called the Langlands lift of
. Then

Proof. We first describe the Langlands lift from PGL3 to G, of a spherical
tempered representation 7. Write

= |ndgL3(T).

Note that there are up to three different choices for 7. Since  is a representation
of PGL3, the representation 7 is completely determined by its restriciton to GL
(thefirst factor of L). Henceforth, wethink of = asarepresentation of GL», and let
(x1|- %2, x2| - |/?) beits parameter, where x1 and . areunitary characters; | - |2/2
comes from the normalization of the parabolic induction, x1 and x» are unitary
because 7 is tempered.

Let U, be the unipotent radical of P. It is a Heisenberg group. Let Z be the
center of Us,. The Levi factor GL, of P, acts on Z via the character det, and its
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action on Uy/Z isisomorphic to S3(F2) @ det ™. It follows that the normalization
of the parabolic induction in this caseis given by py, = | det |¥/2.

Let 7' be a spherical representation of GL, with the parameter (x73|-|%/2,
Xz '1+[*?), andlet

' = Indg2(r').

The representation 7’ is tempered and, thus, irreducible by aresult of Keys[Ke].
The representation 7’ is the Langlands lift of 7. Indeed, the Satake parameter
of ' is

x1(@) 0
( 0 Xz(W)> € GL2(C) C G2(0),

where GL»(C) is the Levi factor of the parabolic subgroup P;(C) (‘spanned’ be
along root). Since SL3(C) is ‘spanned’ by long roots of G2(C), 7’ must be alift
of arepresentation of PGL3 induced from Q: = or 7*. Note that replacing the pair
(x1, x2) by (x7% x5 1) does not change 7’ but replaces by 7*.

We now proceed with the proof of the Theorem. As we have remarked earlier,
o ® m isaquotient of V' if and only if o ® 7 is a quotient of V5. We need the
following lemma.

LEMMA 45. Let o be a representation of G2, and 7 the representation of GL
defined above. Then o ® 7 is a quotient of Vj; if and only if it is a quotient of
C(AA).

Proof. We again useLemma 2.5, so we need to construct appropriate operators.
Recall that the component of the Bernstein center of GL» acting non-trivially on
representations generated by their lwahori-fixed vectorsisisomorphic to

Cla, 2™,y y™ W

where W = {1, w}, w(z) = y and w(y) = = isthe Weyl group of GL. Let I be
the Iwahori subgroup of GL,. Let w be the uniformizing element in F. Then any
unramified character y is determined by itsvalueon w. If E isasubguotient of an
induced representation with the parameter (1, x2) then

(x +vy) = x1(w) + x2(w) and zy = x1(w)x2(w)
onFE. Let
Ty=q"Pat+y ™) — g Hay)

where g = |w|™1. On 7, Ty acts asthe scalar

2= q0xa(@) 7+ xe(@) ) — xa(w) xe(@)

We need the following:
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LEMMA 4.6. Let z1 = a3 + b1 and zo = ay + iby be two complex numbers of
norm1. Let z be the complex number

z = q(z1 + 22) — z122.
Then R(z) < 2¢q, whereR(z) isthereal part of 2.

Proof. The lemma follows from the sequence of inequalities:

b2 + b3

R(z) = q(a1 + a2) — a1az2 + bibz < g(ar + a2) — a1a2 + 5

(1—aj) + (1-dj)

= q(a1 + az) —a1a2 +

2
3 (1-a1—ap)?
:(q—l)(al—i-az)—i-é—#

< (¢g—1)2+2=2.

Since C°(B) is the regular representation of GL1, the GL>-module C°(BB)
consistsof induced representationswhoseinducing parametersare (|-|3/2, x). Such
an induced representation has an Iwahori-fixed vector only when  is unramified,
and then, T} actsas

¢ = ¢"?(¢¥* + x(w) 1) — ¢ x(w) 7.

Since 2q < ¢, the eigenvalue ¢ of Ty on the Iwahoric component of C°(BB) is
different from the eigenvalue z of T, on 7.
Let

To = xy.

Then T actson 7 as |w|x1(w)x2(w) which is different from |w|? and |w|?*, the
eigenvalues of 7> on the Iwahoric component of V.
Lemma 4.5 follows from Lemma 2.5 applied to T3 and T5.

We can now finish the proof of the theorem. Note that C2°(A) is the regular
representation of GL,. After taking into account the twist with | det|?, it follows
that o ® 7 isaquoteint of

|ndg22(7'l) RT=7Q®T.

Therefore o = 7/, and the theorem is proved.
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5. Dual pair G2 x PGSpg

Let G bethe split adjoint group of type E;. Let P = M N bethe maximal parabolic
subgroup of G definedin the Section 1. Then M isthe group introduced in Section
3, i.e. itisthe group of isogenies of the cubic form on J. The unipotent radical N
is commutative, and isomorphic to J asan M-module. Let Go x GL3 be the dua
pair in M, described in Section 4. The centralizer of G in G is PGSp(6). This can
be easily seen on the level of Lie algebras. Let g bethe Lie algebraof G. Then

g=ndmodn,

wherep = m@nisthelLieagebraof P. Since G, iscontainedin M, we can write
its centralizer in g as

Co(G2) =u @ D,

where! C m, 1 C nandu C n. Obviuogly, [ = gI(3), and u C n corresponds to
the inclusion Jg C J of the subalgebra consisiting of 3 x 3 symmetric matrices,
since J92 = Js. Therefore C,y(G2) = sp(6) whosethe Siegel parabolic subalgebra
g=I[Du.

Let @ = LU = PGLge N P be the Siegel parabolic subgroup of PGSpg, cor-
responding to the Lie algebra q. Remarkably, the group L is isomorphic to GL3:
Recall that the Levi factor of the Siegel parabolic in Sp,,, is GL,,. Let Z™ be the
standard co-character lattice for GL,,. Then

Ap=17(3...,3)+Z"C R

is a co-character lattice of the Levi factor in PGSp,,,. For n = 3, however, these
two lattices are isomorphic

T:7% - As,

where T is given by the matrix

L 1 -1 -1
-1-1 1 -1
2
-1 -1 1
Since the isomorphism 7' commutes with the action of S3, the Weyl group of GL 3,
we have
L = GLs.

With this identification, the conjugation action of L on N = J is given by

gAg~t = det(g) "t gAg".
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Again, asin Sections 2 and 4, we want to compute V;;. Since
0—C(w)g = Viy,— Vy =0,

we need to understand C2°(w) . Let NN be the orthogonal complement of U in
N with respect to theform (, ). Since U can be identified with .J, and the pairing
with Tr(AB), it follows that

o

NN = |Z=—z,y=-y and z=—z

O N
O 8

NSEEERN]
81

Letww =wNNN.AsinLemma2.2
Co(w)g = € (ww)
and we have

PROPOSITION 5.1. Identify NN with the set of triples of traceless Octonions
(z,y,2). Let f € C°(ww) C V7. Then

(1) Tg(9)f((,y,2) = f((g .9 'y, 9 2), g€ G

(2) Hglg)f((x,y,2)) = |detg]*f((z,y,2)g), g€ Gla.

Proof. Thisisareformulation of Theorem 1.1. Note, however, that in this case
we are already describing the action on C2° (ww).

We have to understand the structure of G2 x GL3 orbits on ww.

PROPOSITION 5.2. (1) ww = {(z,y,2) |Z = —z,§ = —y, 2 = —2; 2% = y° =

P=g-y=y-z2=2z-z=0}

(2) Let AA and BB be the subsets of ww consisting of all triples (z, y, z) such
that the space F'z + Fy + Fz hasdimension 2 and 1 respectively. Then

ww = AAU BB.

Moreover, AA and BB are G x GL,-orhits.
Proof. Let

0

€ ww.

S

Il
NSEEEN
8 O N
o &8
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Sincen isin NN, z,y and z are traceless. Furthermore, it is atraceless matrix in
Q, hencen? = 0. But thisisequivalenttoz? = y° = 2° =z-y =y-2 = z-2 = 0.
Thefirst part of the proposition is proved.

Again, recall that G hasthree orbits on the set of spaces of traceless Octonions
with the property that the Octonion multiplication is trivial. These are character-
ized by their dimension; the possible choices being 0, 1, 2. The stabilizers of the
nontrivial spaces are the maximal parabolics of G. It follows that =, y and z are
linearly dependent. Hence ww = AA U BB. It remainsto show that AA and BB
are single orbits. The proof is analogousto the proof of Proposition 4.2.

Let z beatraceless Octonion such that ~° = 0. Let P; be the maximal parabolic
subgroup of G stabilizing the line F'z. Consider

B = {(az,0,0) | a € F anda # 0}.

Let ; bethe maximal parabolic of GL3 stabilizing B. Then P, x )1 actstransi-
tively on B and

BB = (Gz X GL3) X(PlXQl) B.

Let 2 and y be two traceless and linearly independent Octonions such that 2 =
y> =y -z = 0. Let P, be the maximal parabolic subgroup of G stabilizing the
space F'x + Fy. Consider

A ={(az + by, cx + dy,0) | a,b,c,d € F and ad — bc # 0}.

Let ()» be the maximal parabolic subgroup of GL3 stabilizing A. Then P, x Q2
actstransitively on A and

AA = (G2 x GL3) X(p,xq,) A

The proposition is proved.
We can now summarize the structure of V; asa G, x GLz-module.

THEOREM 5.3. Vj; has afiltration with succesive quotients

CX(AA), CX(BB), and Vy,
where C2°(AA) isasubmodule, and Vi a quotient. Moreover

(1) C(AA) =indi2 g, (C(A)) @ | det 2

() CX(BB) =indi25(CX(B)) © |det|?,

(3) Vg 2 V(M)®|det|+ 1 |det|?

as G2 x GLz-modules. Here det denotes the usual determinant of 3 x 3 matrices.
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We are now ready to state and prove aresult about ©-correspondence.

THEOREM 5.4. Let ®: G»(C) — Spiny(C) be the standard inclusion of the dual
groups of G and PGSpg; G2(C) fixes a non-zero vector in the 8-dimensional
spin representation of Spin,(C). Let 7' be a tempered spherical representation of
PGSpg. Then O(n') is not empty only if the Satake parameter of ' is s’ = @(s)
for some s, a Satake parameter of a tempered spherical representation 7w of G2. In
that case

O(n') = {r}.

Proof. Letn’ beaspherical tempered representation of PGSpg. Every tempered
spherical representation of PGSpg is fully induced (see [T1] Theorem 7.5), so we
can write

7' = Indy ¥ (r @ | det ),

where 7 is atempered spherical representation of GL3 (note that p; = | det|).

Assume now that the parameter of 7’ is ®(s). This means that ~ can be taken
to be a tempered representation of PGL3. Moreover, the representation = of G2
with the parameter s is the Langlands lift of 7. By Theorem 5.3 the minimal
representation of Eg (twisted by | det|) is a quotient of V7, so it follows from
Theorem 4.4, and the Frobenius reciprocity that

{r} C O(x).

The rest of the theorem follows from the knowledge of V;. Indeed, let o bein
©(7"). Then, by the Frobeniusreciprocity, o ® (7 @ | det|) isaquotient of V, i.e.
it is a quotient of one of the three pieces in Theorem 5.3. For example, if it isa
quotient of V, then o = 7, by Theorem 4.4. We leave the details of the other two
cases to the reader to check. The reader can also consult [GS] wherethe map @ is
described, and it is shown that a spherical representation of PGSpg (not necessarily
tempered) is a quotient of V' only when its parameter is of the form &(s).

6. Heisenbergparabolic of G

In this section we prove a variant of Theorem 1.1 for the maximal parabolic
subgroup P of G, whose unipotent radical IV is a Heisenberg group. We call this
parabolic subgroup the Heisenberg parabolic subgroup.

Let g be a simple split exceptional Lie algebra of rank > 4, over F. For our
purposes, this algebras can be best desribed in terms of a Z /3Z-gradation (see
[HPS)]). Let A bethe Dynkin diagram of g. We shall identify it with aset of ssimple
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roots. Let & be the highest positive root. Let « be the unique simple root not
perpendicular to &. Let

p=mon

be the maximal parabolic subalgebra corresponding the simple root «.. Extend A
by adding —ca. Let 8 be the unique simple root not perpendicular to «.. Remove
the vertex corresponding to the simple root 5. The extended diagram breaks into
several pieces, one of whichisan A, diagram correspondingto {«, —&}. Letl C g
be the semi-simple subalgebra, corresponding to the rest of the diagram. Under the
adjoint action of sl(3) @ I, g decomposes as

g=d@aleWele(WaeI),

where W is the standard 3-dimensional representation of si(3). The irreducible
[-module I has unigue (up to normalization) I-invariant symmetric trilinear form
onl.

Asin[HPS], this Z /3z-gradation can be used to construct the dual pair

g2 xXhCag.

Indeed, choose an element e in I such that (e,e,e) = 6 (rescale the form, if
needed). The algebrap isthe centralizer in [ of e:

b= Ci(e).
Sincethe centralizer of h in I is F'e, it follows that
Co(h) =)@ W W" =g,

(for the last isomorphism see [FH], p. 361). The possible cases are given by the
Freudenthal’s magic square:

I | g m [ b
Jr Fy 03 Az A]_
Jg Ee A5 Az X Az Az
J1s E7 Dsg As C3

J Eg E; Eg Fy

Where Jg isthe vector space over F' of 3 x 3-symmetric matrices, Jg is the vector
spaceover F of al 3 x 3-matrices, and .J15 isthe vector space over F of 6 x 6-skew
Symmetric matrices.

EXAMPLE: Let vy, . .., vg be astandard basis of a 6-dimensional vector space
over F'. Then Ji5 = A2F® with abasis

Tij = Vi \vj 1<i<j<6b.
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The sl(6)-invariant trilinear form on J15 is given by

(A2FB) A (A2F®) A (AN2F®) — AFO =~ F.
Then (e, e,e) = 6for

€ =T16 + Z25 + X34,

and the centralizer of e in 9(6) issp(6).
The trilinear form on I can be used to define a structure of Jordan algebra of
rank 3, with identity e, on I. For example,

2Tr(a) = (a,e,e) and
Tr(ab) = —(a,b,e) 4+ Tr(a)Tr(b).

Converdly,

(a,b,c) = 2Tr(abc) — Tr(a)Tr(bc) — Tr(b)Tr(ac)
—Tr(c)Tr(ab) + Tr(a)Tr(b)Tr(c).

Now, it is asimple matter to check that the following two are equivalent
(1) a?® = Tr(a)a.
(2 (a,a,z) =0foral zinI.

These elements are also called rank-one, and they are highest weight vectors in
the irreducible I-module I. Finaly, note that the bilinear form Tr(ab) gives an
h-invariant identification of I and I'*.

Lett C d(3) bethemaximal Cartan subal gebraconsisiting of diagonal matrices.
Let

Define

g(k) ={z € g | [h,z] = kz}.
Sincethe eigenvaluesof / on the standard 3-dimensional representation W of sl(3)
ae —1,0,1, g(k) # Ofor k = —2,—1,0,1,2. Also, one easily checks that the
maximal parabolic subalgebrap = m @ nisgiven by

{ng(O)ZI*@t@[GBI,
n=g(1) ®g(2).
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The nilpotent radical n is a Heisenberg Lie agebra, with the center ; = g(2).
Furthermore, under the action of t @ [ C m, we have a direct sum decomposition

ni=g(l)=Folol" o F .

Let P = M N bethe maximal parabolic subgroup of G, with Lie algebrayp. Let
Z bethe center of N. Let P = M N be the parabolic subgroup opposite to P, and
Z the center of N. The Killing form on g, defines a non-degenerate pairing ( , )
between N/Z and N/Z. Let Q be the smallest non-trivial M-orbit in N/Z. It is
simply the orbit of a highest weight vector.

THEOREM 6.1. (p # 2if G = Eg) Let (I1,V) be the minimal representation of
G. Let Z bethe center of N asabove. Let V; and Vg be the maximal Z-invariant
and N-invariant quotients of V. Then

0—-CX () =V, = Vy—0,

where C2°(£2) denotesthe spaceof locally constant, compactly suppor ted functions
on §).

(1) Theaction of P on C°(€2) is given by

Iz (n)f(z) = (=, 2))f(z), neEN
lz(m)f(z) = | det(m)|*/*f (m~txm), m e M,

NI

3

(2)
Vi = V(M) ® |det|/?+ | det|*/

where V(M) isthe minimal representation of M (center acting trivially).

Here det isthe determinant of the representation of M on N/ Z, d isthe dimension
of N/Z. Thevaluesof s and ¢ are given by the following table.

G | s t d
Eg 4 3 20
E; 6 4 32
Eg 10 6 56

Proof. Part (2) isProposition 4.1 [S1]. Next, every element x € N/Z definesa
character

Y (y) = P((z,9))

of N.
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LEMMA 6.2. (p # 2if G = Eg) Letz € N/Z, x # 0. Then

anditisoneifandonlyif z € Q.

Proof. If p # 2, then the character expansion of V' and [MW] imply that
dimVy, = O0orlanditisoneif andonly if 2 € 2. Now assumethat G # Es.
Let P' = M'N' bethe maximal parabolic subgroup of G asin Theorem 1.1. Then,
by Theorem 1.1,

0—-CPW) =V — Vi —0,

where ' is the minimal M’-orbit in N’. Assume that P’ and P are in a standard
position, i.e. P’ N P containsaBorel subgroup of G (in particular, Z isthe highest
root group). Obviously, dim Vi ,, -isconstant along M -orbitsin N/Z. Since N/Z
is an irreducible M-module, in each non-trivial M-orbit in N/Z we can choose z
such that the restriction of ¢, to N’ N N is non-trivial. Hence

Vi, =C (W) Ny,

anddimVy ,, clearly does not depend on p. The lemmafollows.

Let E be the kernel of the projection of V; onto V. Then by Lemma 6.2
dmEy , = O0orlanditisoneif andonlyif z € Q. Letz € Q. Let M, be
the stabilizer of 2 in M and § the character of M, describing the action of M, on
Ey ., - By the Frobenius reciprocity there exists a non-trivial P-homomorphism

T:E — Ind}, (0@ 4,).

Let C>°(©2) denote the space of locally constant functions on 2. Note that we have
aninclusion

Ind}, (6 ®4hs) C C(Q).

Letw € E and f = T(w). We need to show that f is a compactly supported
functionon Q. Let N(k), k € Z beachain of latticesin N /Z suchthat Uy N (k) =
N/Z and NN (k) = 0. Let N(k) be their dual lattices in N/Z. Since E is a
smooth module, there exists an integer k1 depending on w suchthat I ; (n)w = w
for al n € N(k1). Thisimpliesthat f is supported inside N (k7). Since Ey = 0
there exists an integer k, depending on w such that

/7 I1;(n)wdn =0
N (k2)

(see2.33[BZ]). Thisimpliesthat f is supported outside N (k3). Since 2 islocaly
closed and the boundary is {0}, it followsthat f € C2°(2). Let ind denote smooth
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induction with compact support. By the Bernstein—Zelevinsky analogue of Mackey
Theory (see [BZ], pages 46-47)

indh, (6 ® 1) = CZ(Q)

is an irreducible P-module. Hence T(E) = C°(£2). Let E’ be the kernel of T.
Since

forany + € N/Z, it follows that E'; = O forany z € N/Z (2.35 [BZ]).

N Y
Therefore E' = 0 by 5.14 [BZ].
Note that the inclusion M, — M induces an isomorphism

My /[ My, M) = M/[M, M).

This can be easily checked by choosing « to be in the root space g,,. Hence, 6 isa
character of M and to finish the proof we have to show that

§(m) = | det(m)|*/* m e M.

Furthermore, P, = G2 N P isaHeisenberg maximal parabolic subgroup P, of
G. Its Levi factor is isomorphic to GL,, and the inclusion of GL, x H into M
induces in isomorphism

GLo/SL x H/[H, H] = M/[M, M].

Thereforeit sufficestofindtherestrictionof 6 toGL,/SLo x H/[H, H]. InSection 8
we shall use the information on correspondences obtained in previous sections to
find the character.

7. Jacquet functor for G - Heisenberg parabolic

Thissection continuesthe notation and hypothesesof Section 6. In particular, p # 2
if G = Eg. Let

P,=G,NP and pzZGzﬂp

be the Heisenberg parabolic of G2 and its opposite parabolic subgroup. Note that
7 C Py,and Z C Ps. ldentifying I* with I viathe trace form on I, we obtain

N/Z2N/Z=FololadF,
with the pairing (, ) given by

((z,u,0,9), (Z,8,0,7)) = 2T + Tr(ua) + Tr(v?) + y7.
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Let U, and U, be the unipotent radicals of P> and P,. Then
Uy)Z 2Uy)]Z X F@®Fe® Fed F.

Hence the orhogonal complement of U,/Z in N/Z is
NN=’gI°c FolelaF,

where 19 is the set of traceless elementsin 1.
By Theorem 6.1

0—C(Q)g, = Vg, — Vy = 0.
Let QQ = QN NN. Then, asinLemmaZ2.2,
C2(Q)g, = C(09),
and Theorem 6.1 implies:

I?ROPOSITION 7.1. Identify the Levi factor of P, with (}inso that it acts on
Z via the character det, and the action on the quotient U,/Z is isomorphic to
S3(F?)@det . 1dentify NN with pairsof elementsin I°. Let f € C°(QQ) C V.
Then

(D) Hg,(9)f(y,2) = flg y,g12), geH.
(2) Ug,(9)f(y,2) = |det(g)]*f((y,2)g), g € Gla.

Heredet istheusual determinant of 2 x 2-matrices, and s is2, 3and 5, respectively.

Again, we need to describe GL, x H-orbits on Q2. We say that a subspace S
of 10 issingular, if the Jordan multiplication istrivial on S. In terms of thetrilinear
form, thisiseqivalentto S C zA, for every z in .S, where

zA={uel]|(z,u,v) =0foral v el}.

The group H actstransitively on singular points. We need to understand H-orbits
of singular two-dimensional subspacesin I°. We have two different cases.

Jg is the Jordan algebra of all 3 x 3-matrices with coefficientsin F and H =
PGL 3 acts by conjugation. In this case, singular pointsin I° are nilpotent rank-one
matrices. There are two PGL3-orbits of singular two-dimensional spaces in I°.
Indeed, let Fz + Fy beasingular space. Then either the images,

Im(z) = Im(y)
or the kernels

ker(z) = ker(y)
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of these two linear maps on F2 coincide. If wefix ST and S~ two non-conjugated
singular subspaces, then their stabilizersin PGL 3 are two non-conjugated maximal
parabolic subgroups Q* and Q.

In the other two cases, a stabilizer of a singular two-dimensional space is a
parabolic subgroup only if the spaceis ‘amber’. This notion is due to Aschbacher
[A1]. For an element x in I, one defines

() ={uezsAnI®| (e,u,v) =0 foral vezANI°.

DEFINITION 7.2. Let S C I° be a singular space. We say that S is amber if
S C p(x) for every nonzeroz € S.

PROPOSITION 7.3. If I = Ji5 or J, thenthe group H actstransitively on the set
of amber, singular two-dimensional subspaces of 1°.

Proof. If I = J thisisaresult of Aschbacher, 9.3-5[A1]. We now give a proof
for Ji5. Fix e and the trilinear form on

Jis=AN2F® =< ;> 1<i<j<6.

asin Section 6, and let GSpg be the subgroup of al g in GLg suchthat g(e) = A(g)e
for ascalar A(g) in F*. Then

2
/\F6®>\_1

defines afaithfull action of H = PGSpg on Jss, fixing e.
Let Fz + Fy be an amber spacein I°. Since H acts transitively on the set of
singular points, we can assumethat z = z12. A sSimple computation shows that

‘fI"lZA = <5L'12,£E17Z',£U2,j> 27] 75 17 27
and

pu(z12) = (12, ©13, T14, 23, T24).

Let Q1 bethe parabolic subgroup stabilizing the line through the singular point 1.
ItsLevi factor L1 = GL, x GLo/AF* actson the4-dimensional space u(z)/Fx12
as on the space of 2 x 2-matrices. So it hastwo non-trivial orbits, the smaller being
the orbit of the singular x13. The proposition is proved.

PROPOSITION 7.4. (1) QQ = {(z,y) # (0,0) | =,y € I° thespace Fz +
Fyissingular and amber }.

(2) Let AA and BB be the subsets of Q2 consisting of all pairs (z,y) such
that the space F'z: + F'y hasdimension 2 and 1 respectively. Then GL, x H acts
transitively on BB. It also acts transitively on AA if I # Jg. If I = Jg then then
AA isaunion of two GL, x PGL3-orbits.
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Proof. Asbefore, write
nz3=FolaoloF.
Then the maximal parabolic subalgebra
g=teNelcm=re (tol)el,
stabilizes the partial flag

FoeleloFDI®I®FDOI®FDF.

More precisely, let w € I, bein the unipotent radical of ¢, and (a, z,y,b) € n/;.
Then

u(a, z,y,b) = (0,au,u x z, Tr(uy)),
where u x z, the cross product, is the element of I such that
Tr((u x z)v) = (z,u,v)

foralv e I.

LEMMA 7.5. Let Q C M be the corresponding maximal parabolic subgroup.
Then @ has4 orbitson Q2. Their representativesare

v1 = (1,0,0,0), v = (0, 2,0,0),
vz = (0,0, z,0), vq = (0,0,0,1),

where z is any non-zero element in I such that 2% = Tr(z)z.

Proof. Notethat P(2) = M/Q. Wehavetocompute @\ M /@ whichisthesame
as Wi \Wy; /Wy, here W), and W, denote the Weyl groupsof M and L (L C Q
correspondsto I C q). Since N/Z is aminiscule representation of M, its weight
vectors are al contained in one W ,-orhit, it follows that they are parametrized
by Wy /Wy, On the other hand, I and I* are miniscule representations of L so
Wi \Wu /Wy, hasfour orbits.

The group L acts transitively on the set of elements such that 22 = Tr(z)z. Itis
simply the orbit of a highest weight vector, and hence of any weight vector, since
the representation is miniscule. Hence, the vectorsv;, (1 < 7 < 4) clearly represent
4 different orbits, so the lemmais proved.

Let (0, z,y,0) € QQ. If z # 0then Lemma 7.5 implies that it isin the Q-orbit
of v. Hence x isin the L-orbit of z, so z is singular. Since the action of GL;, the
Levi factor of P, is

a b
(x,y)< d) = (ax + cy, bz + dy),
C
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the same argument implies that any element of Fz + F'y is singular. Hence
e? = (z+y)?=y*=0,

and
2roy = (z+y)?—z?—y>=0.

We have shown that S isasingular space.
Furthermore, (0, z,y, 0) is Q-conjugated to (0, z, 0, 0). But this two elements
can be conjugated only by an element of the unipotent radical of ). Hence

(07 x? y? O) = exp(u)(07 ‘II;7 07 0)7

for somew in I. Thisimpliesthat y = u x . Since Tr((u x z)v) = (u, z,v) for
dlvinI,and (e,y,v) = —Tr(yv) for any v in I° (see Section 6), it follows that

(e,y,v) = _(U,IE,’U) =0

if v € 2ANI° Hencey € u(x). Since the same argument can be repeated for any
linear combination of x and y, thefirst part of the proposition follows.

Let z € 19 suchthat 22 = 0. Let 1 be the parabolic subgroup of H stabilizing
theline F'z. Consider

B = {(az,0) |a € F and a # 0}.

Let Q@) C GL, bethe Borel subgroup stabilizing theline B. Then QQ x 1 acts
transitively on B and

BB = (GLZ X H) X(QQXQl) B.

Assumenow that I = Jis or J. Let Fz + Fy C I° bea2-dimensional singular,
amber space. L et (9 bethe parabolic subgroup of H stabilizing the space Fx + Fy.
Consider

A ={(az + by,cx + dy) | a,b,c,d € F and ad — be # 0}.
Then GL, x @), actstransitively on A and
AA = H xg, A.

In Jg we have two orbits of singular two-dimensional spaces. Let Fz ' + Fy™
and Fz~ + Fy~ betheir representativesand Q™ and ()~ their stabilizersin PGL 3.
One can define A* and A~ as above, hence

AA =PGL3 X+ AT U PGL3 XgQ- A~

The proposition is proved.
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THEOREM 7.6. Vy;, has a filtration with three succesive quotients
Co(AA), C2(BB), and Vg,

where C°(AA) is a submodule, and V3 a quotient. Moreover, as GL, x H-
modules,

(1) CX(AA) =|det| ®indZ (C°(A)) if H # PGLa,

C°(AA) = | det|* @ indg12(C°(AT)) + | det|* @ indi2(Co(A7)).
(2) CX(BB)=|det|* @ind)3r ] (C2(B)),

(3) Vy|det|'®@ V(M) + |det|* ®1,

where V (M) isthe minimal representation of M (center acting trivially).
In the above formulas det is the usual determinant of 2 x 2 matrices, and s and
t are given by the following table

G | s t
Eg 2 3/2
E; 3 2
Eg 5 3

Proof. Thisfollowsfrom Theorem 6.1, Proposition 7.1 and 7.4.

8. O-liftsfrom G»

In this section we compute O-lifts of spherical tempered representations of G2
in al three cases. In the process we also compute the normalizing factors (i.e.
coefficients s) in Theorem 6.1 and 7.6.

We study the dual pair G, x F4 inasimple group G of type Fg first. Let m bea
spherical tempered representation of G2. Write

m = IndZ?()

where 7 is a spherical representation of GL, with the parameter (x7%| - [¥/2, x5 1| -
/2. Asbefore, x1 and x2 must beunitary characters. Let Q, = L,V beamaximal
parabolic subgroup of F, stabilizing a singular, amber two-dimensional space in
J. The action of L, on the corresponding amber line gives an exact sequence

1—-Sl3—>L,—>GLy— 1,
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where SL3 is ‘spanned’ by two simple long roots. One checks that py, = | det|’,
where det is the usual determinant on GL», the quotient of L, by SL3. Let 7/ be
a spherical representation of GL, with the parameter (x1| - |"/2, x2| - |/?). Pull 7/
back to L,. Let

F
r' = Ind5 ().

Note that 7’ is a unitarizable representation of Fy. It is quite possible that 7’ is
always irreducible but we do not know.

THEOREM 8.1. (p # 2) Let 7 be the spherical tempered representation of G
and 7' the representation of F;, defined above. Assume, for simplicity, that #’ is
irreducible. Then©(7) = {«'}. Let s € G2(C) bethe Satake parameter of 7. Then
the Satake parameter of ' is U(s x p) where

U: G2(C) x SO3(C) — Fy4(C)

is the embedding of the dual pair G(C) x SO3(C) in F4(C), and p € SO3(C) is
the Satake parameter of the trivial representation of SL».

Proof. Let P = M N bethe Heisenberg parabolic subgroup of G. In Section 6,
we described an embedding of the dual pair G x F4in G suchthat Go N P isthe
Heisenberg maximal parabolic subgroup P.

Yet another embedding of the dual pair G, x Fjy is given by the inclusion of
Jordan algebras Jg — J (use the Z /3Z-gradation of the exceptional Lie algebras
given in Section 6). In this case,

G, CM and F4NP = Qs = L4Vy,

the Heisenberg maximal parabolic subgroup of Fj4. The Levi component Ly is
isomorphic to GSpg. Note that the inclusion GSpg — M induces an isomorphism
GSpg/Spg = M/[M, M]. Thisis easily seen by considering the action of GSpg
and M on Z, the center of both, V; and N.

Let V bethe minimal representation of G. Let Vy be the maximal N-invariant
quotient of V. Obvioudly, itisaG, x GSpg-module. By Proposition 4.1 of [S1],

Vv 2 V(M) |det]® + 1@ | det |,

where V(M) isthe minimal representation of M, with center acting trivially, and
det denotesthe usual determinant of GSpg. Note that the quotient of M by its center
is the adjoint group of type E7. So, if o isthe Langlands lift of = to PGSpg, by
Theorem 5.4, 7 ® o isaquotient of V' (M), and of Vy. Hence, by the Frobenius
reciprocity, # ® o’ isaquotient of V' for some subquotient o’ of

Indf}! (o ® | det ).
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In particular, © () is not empty.
On the other hand, by the Frobenius reciprocity, 7 ® o' isaquotient of V. So,

for ageneric choiceof x1 and x2, 7 ® ¢’ will beaquotient of C>°(AA) in Theorem
7.6. Recall that

C(AA) = §(det) ® indg,(C°(A))

for acertain character 6 which we shall now determine. Since C2°(A) is aregular
representation of GL, twisted by §, 7 ® ¢’ must be a quotient of

7 ® Indgy, (')

where 7' isthe representation of L, pulled back from arepresentation of GL, with
aparameter (x16 | | ~3/2, x20| - | ~%/?). We get that o’ is a subquotient of both,

Indg! (o @ |det|*) and Indg (7).
Thisimmediately implies that
5(det) = |det|* and Indf(r') = ',
Moreover, the knowledge of ¢ implies that any =, with x; and x» unitary, is a
quotient of C>°(AA) only. Hence, by the Frobenius reciprocity, a ©-lift of = must
be a quotient of 7.
It remains to check the statement about Satake parameters. The dual Langlands
group of Fy is Fx(C). Let Q3 = L3V3 be the maximal parabolic subgroup of £y
suchthat L3(C) isthedual group of Ly. In particular, it fitsinto the exact sequence
1 — GL»(C) — L3(C) — PGL3(C) — 1.

Let s € GL,(C) bethe parameter (1, x2). The Satake parameter of 7’ is
s x p € GLy(C) x SO3(C) C L3(CT).

On the other hand, the centralizer of SO3(C) in F4(C) isG>(C). Since
L3(C) N G2(C) = GLy(C),

and s is the Satake parameter of 7 (see the proof of Theorem 4.4), the theorem
follows.

Theorem 7.6 can be used, in asimilar way, to prove converses of Theorems 4.4
and 5.4. We state results without giving details of proofs.
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THEOREM 8.2. Let ®:SL3(C) — G2(C) be the standard inclusion of the dual
groups of PGL3 and G». Let = be a tempered spherical representation of G.
The Satake parameter of 7 is ®(s) for some s, the Satake parameter of a tempered
spherical representation o of PGL 3. Notethat ®(s) = ®(s*) where s* isthe Satake
parameter of o*, the dual of 0. Then

O(n) ={o,0"}.

THEOREM 8.3. Let ®: G»(C) — Spiny(C) be the standard inclusion of the dual
groupsof G, and PGSpg. Let 7 be a tempered spherical representation of G'2. Then

O(m) = {r'},
where ' isthe spherical tempered representation of PGSpg whose Satake parame-
ter is®(s).
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