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Introduction

Let F be a p-adic field, and G be either a split SO(2n + 2), or a split adjoint
group of type ofEn, (n = 6; 7; 8) over F . In this article we study correspondences
arising by restricting the minimal representation (�; V ) of G (introduced in [KS])
to various dual pairs in G.

Recall, from [S1], how one can measure the size of a smooth, admissible
representation E of G: FixKn, (n = 1; 2 : : :), a chain of principal congruence
subgroups of G. Let EKn be the subspace of Kn-fixed vectors in E. Obviously,

E = [
1

n=1E
Kn ; E

Kn �E
Kn+1 and dim E

Kn <1:

Moreover, if the representation E has finite length, it follows from the character
expansion of E that

dimE
Kn = P (qn) if n� 0;

where q is the order of the residual field of F , and P is a polynomial with the
degree equal 1

2 the dimension of a nilpotent orbit which appears as a leading term
in the character expansion ofE. The leading term for V is the unique minimal, non-
trivial nilpotent orbit ofG, so dimV Kn grows at the slowest possible rate (amongst
non-trivial representations). It is precisely in this sense that V is an analogue of the
Weil representation of Sp2n. So Rallis has asked if one can use V to obtain new
dual pair correspondences.
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90 KAY MAGAARD AND GORDAN SAVIN

Recall that if A�B is a dual pair in Sp(2n) and � an irreducible representation
of A, we say that an irreducible representation � of B is a �-lift of � if � 
 � is a
quotient of the Weil representation (see [H1]). Let �(�) be the set of all such �.

In this paper we study the restricition of V to the following dual pairs

SO(2n� 1)� SO(3) � SO(2n+ 2)

and

G2 �H (1)

with H adjoint,

H =

8>><
>>:

PGL3 if G = E6;

PGSp6 if G = E7

F4 if G = E8:

Although these exceptional dual pairs have been known, at least at the level of Lie
algebras, since the work of Dynkin [D], the reader might not be very familiar with
them. So, as an illustration, we describe the dual pair

G2 � PGL3:

First of all, let O be an 8-dimensional algebra of Octonions over F (see Section 3).
Then G2 is the automorphism group of O [J3]

G2 = Aut(O):

Next, let J be the exceptional Jordan algebra, consisting of 3 � 3 Hermitian
symmetric matrices with coefficients in the algebra Octonions O over F

A =

0
B@
a z �y

�z b x

y �x c

1
CA ;

where a; b; c are in F , and x; y; z are in O (the reader can find more details in
Section 3). The algebra J plays an important role in this paper. Let

det :J ! F

det(A) = abc+ Tr(xyz)� aN(x) � bN(y) � cN(z);

be a cubic F -valued form on J . Now, the group of isogenies of the form det is a
reductive group of typeE6 (see [A1]). Obviously, this group containsG2; the group
G2 acts on the entries of A in J . Also, GL3 acts faithfully on J by the formula

A 7! det(g)�1
gAg

t
;

comp3917.tex; 17/06/1997; 10:07; v.7; p.2

https://doi.org/10.1023/A:1000139424441 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000139424441


EXCEPTIONAL �-CORRESPONDENCES I 91

where det(g) and gt are the determinant and the transpose of the 3 � 3 matrix g,
respectively. Clearly, these two actions commute, and the center of GL3 coincides
with the center of the reductive group. The dual pair G2 � PGL3 is obtained by
passing to the adjoint quotients.

In this paper we first compute �-lifts of tempered spherical representations
of SO(3) �= PGL2 to SO(2n � 1), by restricting the minimal representation of
SO(2n + 2). This is the simplest case and as such it is a good introduction to
exceptional dual pairs which form a more interesting part of this work.

We then compute �-lifts of tempered spherical representations of PGL3 to G2.
In particular, for such representations, this lift is functorial for the homomorphism

SL3(C ) ! G2(C )

of the dual Langlands groups ([B]). Recall that spherical representations are para-
metrized by the Satake parameters, i.e. by semi-simple conjugacy classes in the
dual group [Ca]. The main tool is the computation of the Jacquet functor of the
minimal representation V with respect to a maximal parabolic subgroup of PGL3.
More precisely, let �P be the maximal parabolic subgroup of G, whose preimage in
the reductive cover is the group stabilizing the 10-dimensional subspace J10 of J ,
consisiting of elements0

BB@
a z 0

�z b 0

0 0 0

1
CCA

([A1], 3.14). Then Theorem 1.1 gives a nice model, not for the minimal repre-
sentation itself, but its restriction to �P . Since the stabilizer of J10 in GL3 is the
maximal parabolic subgroup consisitng of lower-triangular block matrices, and the
Levi factor GL2 � GL1, it follows that

(G2 � PGL3) \ �P = G2 � �Q;

where �Q is a maximal parabolic subgroup of PGL3, hence this model can be used,
in a manner analogous to what is done in the classical case (Kudla [Ku] and Rallis
[Ra]), to compute the Jacquet functor of V for �Q.

Next, we compute �-lifts of tempered spherical representations of PGSp6.
Again, the main tool is a computation of the Jacquet functor, this time with respect
to the Siegel maximal parabolic subgroup of PGSp6. We finish the paper by com-
puting �-lifts of tempered spherical representations of G2 to H , in all three cases
(assuming that p 6= 2). In particular, for such representations, the lift from G2 to
PGSp6 obtained by restricting the minimal representation of E7 is functorial for
the homomorphism

G2(C ) ! Spin7(C )
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92 KAY MAGAARD AND GORDAN SAVIN

of their dual groups.
Local computations are, in a way, a preparation for global correspondences

(i.e. correspondences of automorphic forms). So it is worth mentioning that in a
forthcoming work, D. Ginzburg, S. Rallis and D. Soudry are studying a global
variant of exceptional correspondences. Another possible global application has
recently been initiated by B. Gross in connection to a realization of a G2-motive
[G1]. Also, in [G2], B. Gross has given a conjectural answer for the exceptional
correspondences. The evidence presented in this paper supports his conjectures.

1. Minimal representation

Let G be a simple, split, group of type A2n�1, Dn or En. Let bG(C ) be the dual
Langlands group of G (see [B]). By a well known result of Kostant, the conju-
gacy classes of unipotent elements in bG(C ) correspond to conjugacy classes of
homomorphisms

': SL2(C ) ! bG(C ):
Assume now that ' corresponds to the subregular unipotent orbit. Let

s = '

 
q1=2

0

0

q�1=2

!
:

Then V is the spherical representation of G with the Satake parameter s.
We now describe the character expansion of V . Let g be the Lie algebra of G.

Let h ; i be the Killing form on g. Throughout this paper we also fix a non-trivial
unitary character

 :F ! C
�
:

Let C1c (g) denote the space of locally constant, compactly supported functions
on g. Define the Fourier transform on C1c (g) by

bf(y) = Z
g

f(x) (hx; yi) dx;

where dx is a self-dual measure on the vector space g. Let Omin be the unique
minimal nilpotentG-orbit in g and�Omin aG-invariant measure onOmin normalized
as in [MW]. It is shown in [S1], that there exists a lattice L in g, containing 0, such
that

Tr�(f) = Tr
Z
g

f(x)�(expx) dx =
Z bf�Omin + c bf(0)

for any f 2 C1c (L).
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Let� be the Dynkin diagram ofG. Mark the diagram� as follows. Attach 0 to
the unique branch vertex (or to the middle vertex of � is the type of G is A2n�1)
and 2 to all other vertices. This marking corresponds to the subregular nilpotent
orbit [D]. Let P = MN be a maximal parabolic subgroup of G. Let �M be the
Dynkin diagram of M . Assume that we are in the following favorable situation:

(1) N is a commutative group.
(2) The marking of� corresponding to the subregular nilpotent orbit ofG restricts

to the marking of �M corresponding to the subregular nilpotent orbit of M .

The possible cases are given by the following table:

G M N

Dn+1 Dn F 2n

E6 D5 F 16

E7 E6 F 27

Here F 2n is the standard representation of Dn, F 16 is a spin-representation of D5
and F 27 is isomorphic to the exceptional Jordan algebra. We say that a point in N
is singular if it is a highest weight vector for a Borel subgroup of M . Let ! and be
the set of singular vectors in N . Note that ! is the smallest non-trivial M -orbit in
N . If G = Dn+1 then ! is the null-cone in F 2n of the invariant quadratic form for
Dn, with 0 excluded.

THEOREM 1.1. Let �P = M �N be the maximal parabolic subgroup, opposite to
P . The minimal representation (�; V ) of G has a �P -invariant filtration

0 ! C
1

c (!)! V ! V �N ! 0:

Here C1c (!) denotes the space of locally constant, compactly supported functions
on ! and V �N is the space of �N -coinvariants of V (Jacquet functor).
(1) Let f 2 C1c (!). The action of �P is given by

�(n)f(x) =  (hx; �ni)f(x); �n 2 �N

and

�(m)f(x) = j det(m)js=df(m�1
xm); m 2M:

(2) V �N
�= V (M)
 j det jt=d + j det js=d;

where V (M) is the minimal representation of M (center acting trivially).

Here h ; i is an F -valued pairing betweenN and �N induced by the Killing form
on g, and det is determinant of the representation of M on �N . The values of s and
t are given in the following table

G s t

Dn+1 n� 1 1
E6 4 2
E7 6 3
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94 KAY MAGAARD AND GORDAN SAVIN

and d is the dimension of N .
Proof. This is just Theorem 6.5 in [S1] if G is E7. Note however that the other

two cases also satisfy the conditions of Proposition 4.1 in [S1]. Hence the proof
carries over with no changes. The proof given there, however, is valid only if p 6= 2,
and this restricition enters through the work of Moeglin and Waldspurger [MW].

Let x be an element in N , and define a character  x of �N by

 x(�n) =  (hx; �ni):

Let V �N; x
be the quotient of V by the space spanned by the elements f�(�n)v �

 x(�n)v j �n 2 �N; v 2 V g. The key point in the proof of Theorem 6.5 in [S1] is to
show that

V �N; x
= 0;

for x 6= 0 and not in !, i.e. the �N -spectrum of V is supported on the closure of !.
This follows from the character expansion of V and and [MW], if p 6= 2.

To extend the theorem to p = 2, we use a global argument. Let k be a number
field and A its ring of adelès. Ginzburg, Rallis and Soudry [GRS] have construced
a square integrable automorphic form on GA , whose local components are the
minimal representations. Arguing as Howe (Lemma 2.4 in [H2]), one shows that
if the �N -spectrum is supported on ! at one place, then it is supported on ! at all
places. This completes the proof of the theorem.

2. Dual pair SO(2n� 1)� SO(3)

Let G = SO(2n+ 2). We have an embedding

SO(2n� 1)� SO(3) � SO(2n+ 2)

given by decomposing the standard representation F 2n+2 of G as a direct sum of
a 2n� 1-dimensional and a 3-dimensional orthogonal subspaces. We will assume
that all three orthogonal groups are split.

We identify SO(3) with PGL2, and let e; h; f be the standard basis for sl(2), the
Lie algebra of PGL2. Let g be the Lie algebra of G, and define

8>><
>>:
�n = fx 2 g j [h; x] = �2xg;

m = fx 2 g j [h; x] = 0g;

n = fx 2 g j [h; x] = 2xg:

Then

g = �n� m� n
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and p = m � n is the Lie algebra of the maximal parabolic subgroup P = MN

defined in Section 1.
Note that e 2 n, f 2 �n, and their centralizer in M is

SO(2n� 1)� h�1i = CM (e) = CM (f):

LetQ = LU = P \PGL2. It is a Borel subgroup, and if we represent elements
in PGL2 by 2�2 matrices, we will assume thatQ is represented by upper-triangular
matrices. In particular, an element in L will be represented by a diagonal matrix 

a 0

0 b

!
:

PROPOSITION 2.1. Let V be the minimal representation of G. Let 
a 0

0 b

!
2 L � PGL2

�= SO(3):

Then

(1) �

  
a 0

0 b

!!
f(x) =

���� ba
����
n�1

f

�
b

a
x

�
; f 2 C

1

c (!):

(2) The eigenvalues of �

  
a 0

0 b

!!
on V �N are

���� ba
���� and

���� ba
����
n�1

:

Proof. This is a special case of Theorem 1.1.

Let � be a multiplicative character of F . Let �� denote the character of L
defined by

��

  
a 0

0 b

!!
=

���� ba
����
1=2

�

�
b

a

�
:

Let �� = IndSO(3)
�Q

��. If � is unitary then �� is an irreducible tempered spherical
representation of SO(3).

Let � be an irreducible representation of SO(2n � 1). Then, by the Frobenius
reciprocity

HomSO(2n�1)�SO(3)(V; � 
 ��) = HomSO(2n�1)�L(VU ; � 
 ��):

Hence, � 2 �(��) if and only if � 
 �� is a quotient of V �U . Since

0 ! C
1

c (!) �U ! V �U ! V �N ! 0
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we need to understand C1c (!) �U . Let NN be the complement of �U in N with
respect to the form h ; i. Put

!! = ! \NN:

LEMMA 2.2.

C
1

c (!) �U = C
1

c (!!):

Proof. Let us recall few known facts about Jacquet functors. Let (�;E) be a
�U -module. Then E �U = E=E( �U ) where E( �U) can be defined either as the space
spanned by the elements f�(�u)v � v j �u 2 �U; v 2 Eg or the space of all v such
that Z

�UK

�(�u)v d�u = 0

for some open compact subgroup �UK � �U depending on v (2.33 [BZ]).
Obviously, C1c (!!) is a quotient of C1c (!) and by Theorem 1.1 (1), �U acts

trivially on C1c (!!). Let f 2 C1c (!) such that f j!! = 0. To prove the lemma, we
need to find an open compact subgroup �UK such thatZ

�UK

 (hx; �ui)f(x)d�u = 0

for all x 2 !.
Fix a chain f �Uig, i 2 Z, of open compact subgroups of �U such that

�Ui � �Ui+1 and
[
i

�Ui = �U:

Let x be such that f(x) 6= 0. Since x is not in NN , there exists an open
compact subgroup �Ux in the family, such that  (hx; �ui) is a non-trivial character of
�Ux. Also, there exists an open compact neighbourhoodOx of x such that  (hy; �ui)
is a non-trivial character of �Ux for any y 2 Ox. Since the support of f is compact,
a finite collection of Ox covers the support of f . The union of the corresponding
�Ux is the desired �UK . The lemma follows.

We can, therefore, summarize the situation with the following proposition.

PROPOSITION 2.3. V �U has a filtration with two succesive quotients

C
1

c (!!); and V �N ;

where C1c (!!) is a submodule, and V �N a quotient. As SO(2n� 1)� L-modules:

(1) � �U

  
a 0

0 b

!
� g

!
f(x) =

���� ba
����
n�1

f

�
b

a
g
�1
xg

�
; f 2 C

1

c (!!):
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(2) V �N
�= V (M)


���� ba
����+ 1


���� ba
����
n�1

where V (M) is the minimal representation of M (center acting trivially).

Note that NN = F 2n�1 and !! is the null-cone of the SO(2n � 1)-invariant
quadratic form (with 0 excluded). Let C1(!!) be the space of locally constant
functions on !!. We can define degenerate principal series representations �� of
SO(2n� 1) by

�� = ff 2 C
1(!!) j f(cx) = �(c)jcj(3=2)�n

f(x)g:

Analogously, �� can be defined as a quotient of C1c (!!) consisting of �f such that

�f(cx) = �(c)jcj(3=2�n) �f(x):

If � is unramified and unitary then �� is an irreducible unitarizable spherical
representation by a result of Tadić [T2], Theorem 9.2. We are now ready to state
and prove the main result of this section.

PROPOSITION 2.4. Let� be an unramified, unitary multiplicative character. Then

�(��) = f��g:

Proof. By the Frobenius reciprocity, � 
 �� is a quotient of V if and only if
� 
 �� is a quotient of V �U . We need the following.

LEMMA 2.5. Let � be a p-adic reductive group and

0 ! V1 ! V2 ! V3 ! 0

a sequence of smooth �-modules. Assume that there exists an element T in the
Bernstein center (see [BD]) of � such that V3 decomposes as a sum of finitely many
eigenspaces for T

V3 = V3(�1)� � � � � V3(�n):

Let W be a smooth �-module on which T acts as a scalar �. If � is different form
all �i, then W is a quotient of V2 if and only if it is a quotient of V1.

Proof. Obvious.

We apply the lemma to

0 ! C
1

c (!!)! V �U ! V �N ! 0
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and � = L. Let $ be the uniformizing element of F , j$j = q�1. Put

T = �

 
$ 0

0 1

!
:

Since q1=2�($) is different from qn�1 and q if � is unitary, it follows from the
lemma that � 
 �� is a quotient of V if and only if � 
 �� is quotient of C1c (!!).
This implies the proposition.

3. Group E6

In this section we describe a reductive group G, whose quotient modulo its center
is the split adjoint group of type E6.

We recall from [Cx] that the algebra O is a non-associative division algebra of
rank 8 over F8>><

>>:
F + Fe1 + Fe2 + Fe3 + Fe4 + Fe5 + Fe6 + Fe7

e2
i = �1 all i

ei � (ei+1 � ei+3) = (ei � ei+1) � ei+3 all i (mod 7).

By

�ei = �ei

one defines the standard F -linear anti-involution of O . On O , we have the trace

Tr : O ! F;

x 7! x+ �x;

which is F -linear, and the norm

N: O ! F;

x 7! x � �x = �x � x;

which satisfies N(x � y) = N(x)N(y). Although the multiplication is neither com-
mutative nor associative, we have

Tr(x � y) = Tr(y � x)

Tr(x � (y � z)) = Tr((x � y) � z):

We denote the latter rational number simply by Tr(xyz).
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The exceptional Jordan algebra is the vector space of 3�3 Hermitian symmetric
matrices over the algebra of Octonions O over F

A =

0
BB@
a z �y

�z b x

y �x c

1
CCA ;

where a; b; c are in F and x; y; z are in O . The multiplication in J is given by the
formula

A � B = 1
2(AB +BA);

where AB and BA stand for the ordinary multiplication of 3� 3 matrices.
The determinant

det(A) = abc+ Tr(xyz)� aN(x) � bN(y) � cN(z):

gives an F -valued cubic form on J . The group G can be defined as the group of
linear transformations g of J wich satisfy

det(g(A)) = �(g) det(A)

for a similitude �(g) in F� [A1]. The cubic form defines a symmetric trilinear
form (A;B;C) on J (the Dickson form) normalized by

(A;A;A) = 6 det(A):

Let P be the maximal parabolic subgroup in G stabilizing the line through

D =

0
BB@

0 0 0

0 0 0

0 0 1

1
CCA :

This parabolic subgroup is opposite to the one defined in the introduction, as the
stabilizer of J10, the 10-dimensional subspace of J consisting of all matrices in
J such that the coefficients in the third row and the third column are zero. In
particular, we have a decompositionP =MN , where the Levi factorM is defined
as the stabilizer in P of J10. Then [M;M ] = Spin10 andQD(X;Y ) = (X;Y;D) is
a Spin10-invariant quadratic form on J10. The unipotent radicalN , can be identified
with the space in J consisting of matrices0

BB@
0 0 �y

0 0 x

y �x 0

1
CCA (3.1)
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([A1], (4.7), (2)). The group G has three non-trivial orbits on J . Let 
 be the
smallest orbit. It is the orbit of D and its dimension is 17. It can be characterized
as the set of all non-zero matrices A in J such that

A
2 = Tr(A)A;

or, in terms of the Dickson form,

(A;A;X) = 0 for all X 2 J:

On the other hand, M has two non-trivial orbits on N and the smaller (using the
identification 3.1) is

! = 
 \N:

4. Dual pair G2 � PGL3

Let G be the reductive group described in the previous section. We first describe a
closed subgroup

G2 � GL3 � G:

The exceptional group G2 is the automorphism group of the Octonion algebra O ,
so the action of G2 on the entries of matrices in J induces the inclusion G2 � G.

On the other hand, GL3 acts on J by

A 7! det(g)�1
gAg

t
;

where det(g) and gt are the determinant and the transpose of g in GL3. Note that
this action of GL3 is faithful, and

�(g) = det(g)�1
:

Since J is an irreducible G-module, the center of G consists of transformations
A 7! zA, where z 2 F�. Hence, it coincides with the center of GL3, and we have
a closed subgroup (dual pair)

G2 � PGL3

in the adjoint group of type E6. However, we shall continue working with G, as it
is more convenient.

Let Q = LU = P \ GL3 be the corresponding maximal parabolic in GL3. It
consists of lower-triangular block matrices, and the Levi factor L = GL2 � GL1.
The unipotent radical U � N can be identified with the space of all matrices
(3.1) in J such that x and y are in F . In particular, if we identify N with pairs of
Octonions (y; �x), the conjugation action of L on N is given by

l1(y; �x)l
�1
2 ;2 l2 � l1 GL2 � GL1:

Using this identifications, Theorem 1.1 can be reformulated as:
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PROPOSITION 4.1. Let V be the minimal representation of G. Let f 2 C1c (!) �
V . Then

(1) �(g)f((y; �x)) = f((g�1y; g�1�x)); g 2 G2:

(2) �(l2 � l1)f((y; �x)) =
j det l2j2

jl1j
4 f(l�1

1 (y; �x)l2);

l2 � l1 2 GL2 � GL1;

where det denotes the usual determinant of 2� 2 matrices.

Let � be an irreducible representation of GL3. Assume that � is isomorphic
to IndGL3

�Q
(�) for some irreducible representation � of L. Let � be an irreducible

representation of G2. By the Frobenius reciprocity

HomG2�GL3(V; � 
 IndGL3
�Q
(�)) = HomG2�L(V �U ; � 
 �):

Hence, � 
 � is a quotient of V if and only if � 
 � is a quotient of V �U . Since

0 ! C
1

c (!) �U ! V �U ! V �N ! 0

we need to understand C1c (!) �U . LetNN be the orthogonal complement of �U inN
with respect to the pairing between N and �N , induced by the Killing form. Since
NN is the unique 14-dimensional G2-invariant subspace, it is given by the space
of all matrices (3.1) in J such that x and y are traceless Octonions, i.e. �x = �x

and �y = �y.
Let

!! = ! \NN:

As in Lemma 2.2

C
1

c (!) �U = C
1

c (!!);

and we have to understand the structure of G2 � L orbits on !!.

PROPOSITION 4.2. (1) !! = f(y; �x) 6= (0; 0) j �x = �x; �y = �y;x2 = y2 =
x � y = 0g.

(2) Let AA and BB be the subsets of !! consisting all pairs (y; �x) such that
the space Fx+ Fy has dimension 2 and 1 respectively. Clearly,

!! = AA [BB (BB is contained in the closure of AA):

Moreover,AA and BB are G2 � GL2-orbits.
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Proof. Let n be an element in N . As before, represent it as

n =

0
BB@

0 0 �y

0 0 x

y �x 0

1
CCA :

Now, n is in NN precisely when x and y are traceless. Furthermore, since n is
traceless, it is in
 if and only ifn2 = 0. But this is equivalent tox2 = y2 = x�y = 0.
The first part of the proposition is proved.

We go on to observe that G2 has three orbits on the set of spaces of traceless
Octonions with the property that the Octonion multiplication is trivial. These are
characterized by their dimension; the possible choices being 0; 1; 2. The stabilizers
of the nontrivial spaces are the maximal parabolics of G2.

Let z be a traceless Octonion such that z2 = 0. Let P1 be the maximal parabolic
subgroup of G2 stabilizing the line Fz. The Levi factor of P1 is ‘spanned’ by a
long root. Consider

B = f(az; 0) j a 2 F and a 6= 0g:

Let QQ be the maximal parabolic subgroup of GL2 � L stabilizing B. Then
P1 �QQ acts transitively on B and

BB = (G2 �GL2)�(P1�QQ) B:

Let x and y be two traceless and linearly independent Octonions such that x2 =
y2 = x � y = 0. Let P2 be the maximal parabolic subgroup of G2 stabilizing the
space Fx+ Fy. The Levi factor of P2 is ‘spanned’ by a short root. Consider

A = f(ax+ by; cx+ dy) j a; b; c; d 2 F and ad� bc 6= 0g:

Then P2 � GL2 acts transitively on A and since G2 acts transitively on the set of
all two-dimensional spaces of traceless Octonions with trivial multiplication,

AA = G2 �P2 A:

The proposition is proved.

We can now summarize the structure of V �U as a G2 � GL2-module in the
following theorem (compare [Ku]. Here GL2 is the first factor of L = GL2 �GL1.

THEOREM 4.3. V �U has a filtration with succesive quotients:

C
1

c (AA); C
1

c (BB); and V �N ;
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where C1c (AA) is a submodule, and V �N a quotient. Moreover

(1) C
1

c (AA) = indG2
P2
(C1c (A))
 j det j2;

(2) C
1

c (BB) = indG2�GL2
P1�QQ

(C1c (B))
 j det j2;

(3) VN
�= VM 
 j det j+ 1
 j det j2;

as G2 � GL2-modules.
Proof. We have

0 ! C
1

c (!!)! V �U ! V �N ! 0

and

0 ! C
1

c (AA)! C
1

c (!!)! C
1

c (BB)! 0:

Parts (1) and (2) follow from the description of AA and BB given in the proof of
Proposition 4.2. The theorem is proved.

We now give the first application. Namely, we show the following.

THEOREM 4.4. Let �: SL3(C ) ! G2(C ) be the standard inclusion of the dual
groups of PGL3 andG2; SL3(C ) is generated by the long root spaces ofG2(C ). Let
� be a tempered spherical representation of PGL3. Let s 2 SL3(C ) be its Satake
parameter. Let �0 be the tempered spherical representation of G2 whose Satake
parameter is s0 = �(s). The representation �0 is also called the Langlands lift of
�. Then

�(�) = f�
0
g:

Proof. We first describe the Langlands lift from PGL3 to G2 of a spherical
tempered representation �. Write

� = IndGL3
�Q
(�):

Note that there are up to three different choices for � . Since � is a representation
of PGL3, the representation � is completely determined by its restriciton to GL2

(the first factor of L). Henceforth, we think of � as a representation of GL2, and let
(�1j � j

1=2; �2j � j
1=2) be its parameter, where �1 and �2 are unitary characters; j � j1=2

comes from the normalization of the parabolic induction, �1 and �2 are unitary
because � is tempered.

Let U2 be the unipotent radical of P2. It is a Heisenberg group. Let Z be the
center of U2. The Levi factor GL2 of P2 acts on Z via the character det, and its
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action on U2=Z is isomorphic to S3(F 2)
 det�1. It follows that the normalization
of the parabolic induction in this case is given by �U2 = j det j3=2.

Let � 0 be a spherical representation of GL2 with the parameter (��1
1 j�j3=2;

�
�1
2 j�j3=2), and let

�
0 = IndG2

P2
(� 0):

The representation �0 is tempered and, thus, irreducible by a result of Keys [Ke].
The representation �0 is the Langlands lift of �. Indeed, the Satake parameter

of �0 is 
�1($) 0

0 �2($)

!
2 GL2(C ) � G2(C );

where GL2(C ) is the Levi factor of the parabolic subgroup P1(C ) (‘spanned’ be
a long root). Since SL3(C ) is ‘spanned’ by long roots of G2(C ), �0 must be a lift
of a representation of PGL3 induced from Q: � or ��. Note that replacing the pair
(�1; �2) by (��1

1 ; �
�1
2 ) does not change �0 but replaces � by ��.

We now proceed with the proof of the Theorem. As we have remarked earlier,
� 
 � is a quotient of V if and only if � 
 � is a quotient of V �U . We need the
following lemma.

LEMMA 4.5. Let � be a representation of G2, and � the representation of GL2

defined above. Then � 
 � is a quotient of V �U if and only if it is a quotient of
C1c (AA).

Proof. We again use Lemma 2.5, so we need to construct appropriate operators.
Recall that the component of the Bernstein center of GL2 acting non-trivially on
representations generated by their Iwahori-fixed vectors is isomorphic to

C [x; x�1
; y; y

�1]W

where W = f1; wg, w(x) = y and w(y) = x is the Weyl group of GL2. Let I be
the Iwahori subgroup of GL2. Let $ be the uniformizing element in F . Then any
unramified character � is determined by its value on$. If E is a subquotient of an
induced representation with the parameter (�1; �2) then

(x+ y) = �1($) + �2($) and xy = �1($)�2($)

on E. Let

T1 = q
1=2(x�1 + y

�1)� q
�1(xy)�1

;

where q = j$j�1. On � , T1 acts as the scalar

z = q(�1($)
�1 + �2($)

�1)� �1($)
�1
�2($)

�1
:

We need the following:
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LEMMA 4.6. Let z1 = a1 + ib1 and z2 = a2 + ib2 be two complex numbers of
norm 1. Let z be the complex number

z = q(z1 + z2)� z1z2:

Then R(z) < 2q, where R(z) is the real part of z.
Proof. The lemma follows from the sequence of inequalities:

R(z) = q(a1 + a2)� a1a2 + b1b2 6 q(a1 + a2)� a1a2 +
b2

1 + b2
2

2

= q(a1 + a2)� a1a2 +
(1� a2

1) + (1� a2
2)

2

= (q � 1)(a1 + a2) +
3
2
�
(1� a1 � a2)

2

2

< (q � 1)2 + 2 = 2q:

Since C1c (B) is the regular representation of GL1, the GL2-module C1c (BB)
consists of induced representations whose inducing parameters are (j�j3=2; �). Such
an induced representation has an Iwahori-fixed vector only when � is unramified,
and then, T1 acts as

q
2 = q

1=2(q3=2 + �($)�1)� q
1=2
�($)�1

:

Since 2q 6 q2, the eigenvalue q2 of T1 on the Iwahoric component of C1c (BB) is
different from the eigenvalue z of T1 on � .

Let

T2 = xy:

Then T2 acts on � as j$j�1($)�2($) which is different from j$j2 and j$j4, the
eigenvalues of T2 on the Iwahoric component of V �N .

Lemma 4.5 follows from Lemma 2.5 applied to T1 and T2.

We can now finish the proof of the theorem. Note that C1c (A) is the regular
representation of GL2. After taking into account the twist with j det j2, it follows
that � 
 � is a quoteint of

IndG2
P2
(� 0)
 � = �

0

 �:

Therefore � �= �0, and the theorem is proved.
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5. Dual pair G2 � PGSp6

LetG be the split adjoint group of typeE7. LetP =MN be the maximal parabolic
subgroup ofG defined in the Section 1. ThenM is the group introduced in Section
3, i.e. it is the group of isogenies of the cubic form on J . The unipotent radical N
is commutative, and isomorphic to J as an M -module. Let G2 � GL3 be the dual
pair inM , described in Section 4. The centralizer ofG2 in G is PGSp(6). This can
be easily seen on the level of Lie algebras. Let g be the Lie algebra of G. Then

g = �n� m� n;

where p = m� n is the Lie algebra of P . SinceG2 is contained inM , we can write
its centralizer in g as

Cg(G2) = �u� l� u;

where l � m, �u � �n and u � n. Obviuosly, l = gl(3), and u � n corresponds to
the inclusion J6 � J of the subalgebra consisiting of 3 � 3 symmetric matrices,
since JG2 = J6: ThereforeCg(G2) = sp(6)whose the Siegel parabolic subalgebra
q = l� u.

Let Q = LU = PGL6 \ P be the Siegel parabolic subgroup of PGSp6, cor-
responding to the Lie algebra q. Remarkably, the group L is isomorphic to GL3:
Recall that the Levi factor of the Siegel parabolic in Sp2n is GLn. Let Zn be the
standard co-character lattice for GLn. Then

�n = Z(1
2; : : : ;

1
2) + Z

n � R
n

is a co-character lattice of the Levi factor in PGSp2n. For n = 3, however, these
two lattices are isomorphic

T :Z3
! �3;

where T is given by the matrix

1
2

0
BB@

1 �1 �1

�1 1 �1

�1 �1 1

1
CCA :

Since the isomorphism T commutes with the action of S3, the Weyl group of GL3,
we have

L �= GL3:

With this identification, the conjugation action of L on N �= J is given by

gAg
�1 = det(g)�1

gAg
t
:
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Again, as in Sections 2 and 4, we want to compute V �U . Since

0 ! C
1

c (!) �U ! V �U ;! V �N ! 0;

we need to understand C1c (!) �U . Let NN be the orthogonal complement of �U in
N with respect to the form h ; i. Since �U can be identified with J6, and the pairing
with Tr(AB), it follows that

NN =

8>><
>>:

0
BB@

0 z �y

�z 0 x

y �x 0

1
CCA j �x = �x; �y = �y and �z = �z

9>>=
>>; :

Let !! = ! \NN . As in Lemma 2.2

C
1

c (!) �U = C
1

c (!!)

and we have

PROPOSITION 5.1. Identify NN with the set of triples of traceless Octonions
(x; y; z). Let f 2 C1c (!!) � V �U . Then

(1) � �U (g)f((x; y; z)) = f((g�1
x; g

�1
y; g

�1
z)); g 2 G2:

(2) � �U (g)f((x; y; z)) = j det gj2f((x; y; z)g); g 2 GL3:

Proof. This is a reformulation of Theorem 1.1. Note, however, that in this case
we are already describing the action on C1c (!!).

We have to understand the structure of G2 � GL3 orbits on !!.

PROPOSITION 5.2. (1) !! = f(x; y; z) j �x = �x; �y = �y; �z = �z; x2 = y2 =
z2 = x � y = y � z = z � x = 0g.

(2) Let AA and BB be the subsets of !! consisting of all triples (x; y; z) such
that the space Fx+ Fy + Fz has dimension 2 and 1 respectively. Then

!! = AA [BB:

Moreover,AA and BB are G2 � GL2-orbits.
Proof. Let

n =

0
BB@

0 z �y

�z 0 x

y �x 0

1
CCA 2 !!:
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Since n is in NN , x; y and z are traceless. Furthermore, it is a traceless matrix in

, hencen2 = 0. But this is equivalent to x2 = y2 = z2 = x �y = y �z = z �x = 0.
The first part of the proposition is proved.

Again, recall that G2 has three orbits on the set of spaces of traceless Octonions
with the property that the Octonion multiplication is trivial. These are character-
ized by their dimension; the possible choices being 0; 1; 2. The stabilizers of the
nontrivial spaces are the maximal parabolics of G2. It follows that x, y and z are
linearly dependent. Hence !! = AA [BB. It remains to show that AA and BB
are single orbits. The proof is analogous to the proof of Proposition 4.2.

Let z be a traceless Octonion such that z2 = 0. Let P1 be the maximal parabolic
subgroup of G2 stabilizing the line Fz. Consider

B = f(az; 0; 0) j a 2 F and a 6= 0g:

Let Q1 be the maximal parabolic of GL3 stabilizing B. Then P1 �Q1 acts transi-
tively on B and

BB = (G2 �GL3)�(P1�Q1)
B:

Let x and y be two traceless and linearly independent Octonions such that x2 =
y2 = y � z = 0. Let P2 be the maximal parabolic subgroup of G2 stabilizing the
space Fx+ Fy. Consider

A = f(ax+ by; cx+ dy; 0) j a; b; c; d 2 F and ad� bc 6= 0g:

Let Q2 be the maximal parabolic subgroup of GL3 stabilizing A. Then P2 � Q2

acts transitively on A and

AA = (G2 � GL3)�(P2�Q2)
A:

The proposition is proved.

We can now summarize the structure of V �U as a G2 � GL3-module.

THEOREM 5.3. V �U has a filtration with succesive quotients

C
1

c (AA); C
1

c (BB); and V �N ;

where C1c (AA) is a submodule, and V �N a quotient. Moreover

(1) C
1

c (AA) = indG2�GL3
P2�Q2

(C1c (A)) 
 j det j2;

(2) C
1

c (BB) = indG2�GL3
P1�Q1

(C1c (B))
 j det j2;

(3) V �N
�= V (M)
 j det j+ 1
 j det j2

as G2 � GL3-modules. Here det denotes the usual determinant of 3� 3 matrices.
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We are now ready to state and prove a result about �-correspondence.

THEOREM 5.4. Let �:G2(C ) ! Spin7(C ) be the standard inclusion of the dual
groups of G2 and PGSp6; G2(C ) fixes a non-zero vector in the 8-dimensional
spin representation of Spin7(C ). Let �0 be a tempered spherical representation of
PGSp6. Then �(�0) is not empty only if the Satake parameter of �0 is s0 = �(s)
for some s, a Satake parameter of a tempered spherical representation � of G2. In
that case

�(�0) = f�g:

Proof. Let �0 be a spherical tempered representation of PGSp6. Every tempered
spherical representation of PGSp6 is fully induced (see [T1] Theorem 7.5), so we
can write

�
0 = IndPGSp6

�Q
(� 
 j det j);

where � is a tempered spherical representation of GL3 (note that � �U = j det j).
Assume now that the parameter of �0 is �(s). This means that � can be taken

to be a tempered representation of PGL3. Moreover, the representation � of G2

with the parameter s is the Langlands lift of � . By Theorem 5.3 the minimal
representation of E6 (twisted by j det j) is a quotient of V �U , so it follows from
Theorem 4.4, and the Frobenius reciprocity that

f�g � �(�0):

The rest of the theorem follows from the knowledge of V �U . Indeed, let � be in
�(�0). Then, by the Frobenius reciprocity, �
 (� 
 j det j) is a quotient of V �U , i.e.
it is a quotient of one of the three pieces in Theorem 5.3. For example, if it is a
quotient of V �N , then � �= �, by Theorem 4.4. We leave the details of the other two
cases to the reader to check. The reader can also consult [GS] where the map � is
described, and it is shown that a spherical representation of PGSp6 (not necessarily
tempered) is a quotient of V only when its parameter is of the form �(s).

6. Heisenberg parabolic of G

In this section we prove a variant of Theorem 1.1 for the maximal parabolic
subgroup P of G, whose unipotent radical N is a Heisenberg group. We call this
parabolic subgroup the Heisenberg parabolic subgroup.

Let g be a simple split exceptional Lie algebra of rank > 4, over F . For our
purposes, this algebras can be best desribed in terms of a Z=3Z-gradation (see
[HPS]). Let� be the Dynkin diagram of g. We shall identify it with a set of simple
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roots. Let ~� be the highest positive root. Let � be the unique simple root not
perpendicular to ~�. Let

p = m� n

be the maximal parabolic subalgebra corresponding the simple root �. Extend �
by adding �~�. Let � be the unique simple root not perpendicular to �. Remove
the vertex corresponding to the simple root �. The extended diagram breaks into
several pieces, one of which is anA2 diagram corresponding to f�;�~�g. Let l � g

be the semi-simple subalgebra, corresponding to the rest of the diagram. Under the
adjoint action of sl(3)� l, g decomposes as

g = sl(3)� l �W 
 I � (W 
 I)�;

where W is the standard 3-dimensional representation of sl(3). The irreducible
l-module I has unique (up to normalization) l-invariant symmetric trilinear form
on I .

As in [HPS], this Z=3Z-gradation can be used to construct the dual pair

g2 � h � g:

Indeed, choose an element e in I such that (e; e; e) = 6 (rescale the form, if
needed). The algebra h is the centralizer in l of e:

h = Cl(e):

Since the centralizer of h in I is Fe, it follows that

Cg(h) = sl(3)�W �W
� �= g2

(for the last isomorphism see [FH], p. 361). The possible cases are given by the
Freudenthal’s magic square:

I g m l h

JF F4 C3 A2 A1

J9 E6 A5 A2 �A2 A2

J15 E7 D6 A5 C3

J E8 E7 E6 F4

Where J6 is the vector space over F of 3� 3-symmetric matrices, J9 is the vector
space overF of all 3�3-matrices, and J15 is the vector space overF of 6�6-skew
symmetric matrices.

EXAMPLE: Let v1; : : : ; v6 be a standard basis of a 6-dimensional vector space
over F . Then J15 = ^2F 6 with a basis

xij = vi ^ vj 1 6 i < j 6 6:
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The sl(6)-invariant trilinear form on J15 is given by

(^2
F

6) ^ (^2
F

6) ^ (^2
F

6)! ^
6
F

6 �= F:

Then (e; e; e) = 6 for

e = x16 + x25 + x34;

and the centralizer of e in sl(6) is sp(6).
The trilinear form on I can be used to define a structure of Jordan algebra of

rank 3, with identity e, on I . For example,

2Tr(a) = (a; e; e) and

Tr(ab) = �(a; b; e) + Tr(a)Tr(b):

Conversly,

(a; b; c) = 2Tr(abc)� Tr(a)Tr(bc) � Tr(b)Tr(ac)

�Tr(c)Tr(ab) + Tr(a)Tr(b)Tr(c):

Now, it is a simple matter to check that the following two are equivalent

(1) a2 = Tr(a)a.
(2) (a; a; x) = 0 for all x in I .

These elements are also called rank-one, and they are highest weight vectors in
the irreducible l-module I . Finally, note that the bilinear form Tr(ab) gives an
h-invariant identification of I and I�.

Let t � sl(3) be the maximal Cartan subalgebra consisiting of diagonal matrices.
Let

h =

0
BB@

1 0 0

0 0 0

0 0 �1

1
CCA 2 t:

Define

g(k) = fx 2 g j [h; x] = kxg:

Since the eigenvalues of h on the standard 3-dimensional representationW of sl(3)
are �1; 0; 1, g(k) 6= 0 for k = �2;�1; 0; 1; 2. Also, one easily checks that the
maximal parabolic subalgebra p = m� n is given by

(
m = g(0) = I� � t� l� I;

n = g(1)� g(2):
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The nilpotent radical n is a Heisenberg Lie algebra, with the center z = g(2).
Furthermore, under the action of t� l � m, we have a direct sum decomposition

n=z �= g(1) = F � I � I
�
� F

�
:

Let P =MN be the maximal parabolic subgroup of G, with Lie algebra p. Let
Z be the center of N . Let �P =M �N be the parabolic subgroup opposite to P , and
�Z the center of �N . The Killing form on g, defines a non-degenerate pairing h ; i
between N=Z and �N= �Z . Let 
 be the smallest non-trivial M -orbit in N=Z . It is
simply the orbit of a highest weight vector.

THEOREM 6.1. (p 6= 2 if G = E8) Let (�; V ) be the minimal representation of
G. Let �Z be the center of �N as above. Let V �Z and V �N be the maximal �Z-invariant
and �N -invariant quotients of V . Then

0 ! C
1

c (
)! V �Z ! V �N ! 0;

whereC1c (
) denotes the space of locally constant, compactly supported functions
on 
.

(1) The action of �P on C1c (
) is given by

� �Z(�n)f(x) =  (hx; �ni)f(x); �n 2 �N

� �Z(m)f(x) = j det(m)js=df(m�1xm); m 2M;

(2)

V �N
�= V (M)
 j det jt=d + j det js=d

where V (M) is the minimal representation of M (center acting trivially).

Here det is the determinant of the representation ofM on �N= �Z , d is the dimension
of N=Z . The values of s and t are given by the following table.

G s t d

E6 4 3 20
E7 6 4 32
E8 10 6 56

Proof. Part (2) is Proposition 4.1 [S1]. Next, every element x 2 N=Z defines a
character

 x(y) =  (hx; yi)

of �N .
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LEMMA 6.2. (p 6= 2 if G = E8) Let x 2 N=Z , x 6= 0. Then

dimV �N; x
6 1;

and it is one if and only if x 2 
.
Proof. If p 6= 2, then the character expansion of V and [MW] imply that

dimV �N; x = 0 or 1 and it is one if and only if x 2 
. Now assume that G 6= E8.
Let P 0 =M 0N 0 be the maximal parabolic subgroup ofG as in Theorem 1.1. Then,
by Theorem 1.1,

0 ! C
1

c (!
0)! V ! V �N 0 ! 0;

where !0 is the minimal M 0-orbit in N 0. Assume that P 0 and P are in a standard
position, i.e. P 0 \P contains a Borel subgroup ofG (in particular, Z is the highest
root group). Obviously, dimV �N; x

is constant alongM -orbits in N=Z . SinceN=Z
is an irreducible M -module, in each non-trivial M -orbit in N=Z we can choose x
such that the restriction of  x to �N 0 \ �N is non-trivial. Hence

V �N; x = C
1

c (!
0) �N; x ;

and dimV �N; x clearly does not depend on p. The lemma follows.

Let E be the kernel of the projection of V �Z onto V �N . Then by Lemma 6.2
dimE �N; x

= 0 or 1 and it is one if and only if x 2 
. Let x 2 
. Let Mx be
the stabilizer of x in M and � the character of Mx describing the action of Mx on
E �N; x

. By the Frobenius reciprocity there exists a non-trivial �P -homomorphism

T :E ! Ind
�P
Mx

�N (� 
  x):

Let C1(
) denote the space of locally constant functions on 
. Note that we have
an inclusion

Ind
�P
Mx

�N (� 
  x) � C
1(
):

Let w 2 E and f = T (w). We need to show that f is a compactly supported
function on 
. Let �N(k), k 2 Z be a chain of lattices in �N= �Z such that [k �N(k) =
�N= �Z and \k �N(k) = 0. Let N(k) be their dual lattices in N=Z . Since E is a

smooth module, there exists an integer k1 depending on w such that � �Z(�n)w = w

for all n 2 �N(k1). This implies that f is supported inside N(k1). Since E �N = 0
there exists an integer k2 depending on w such thatZ

�N(k2)

� �Z(�n)wd�n = 0

(see 2.33 [BZ]). This implies that f is supported outsideN(k2). Since 
 is locally
closed and the boundary is f0g, it follows that f 2 C1c (
). Let ind denote smooth
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induction with compact support. By the Bernstein–Zelevinsky analogue of Mackey
Theory (see [BZ], pages 46–47)

ind
�P
Mx

�N (� 
  x) = C
1

c (
)

is an irreducible �P -module. Hence T (E) = C1c (
). Let E0 be the kernel of T .
Since

dimE �N; x = dim C
1

c (
) �N; x

for any x 2 N=Z , it follows that E0�N; x = 0 for any x 2 N=Z (2.35 [BZ]).
Therefore E0 = 0 by 5.14 [BZ].

Note that the inclusion Mx !M induces an isomorphism

Mx=[Mx;Mx] �=M=[M;M ]:

This can be easily checked by choosing x to be in the root space g�. Hence, � is a
character of M and to finish the proof we have to show that

�(m) = j det(m)js=d m 2M:

Furthermore, P2 = G2 \ P is a Heisenberg maximal parabolic subgroup P2 of
G2. Its Levi factor is isomorphic to GL2, and the inclusion of GL2 � H into M
induces in isomorphism

GL2=SL2 �H=[H;H] �=M=[M;M ]:

Therefore it suffices to find the restriction of � to GL2=SL2�H=[H;H]. In Section 8
we shall use the information on correspondences obtained in previous sections to
find the character.

7. Jacquet functor for G2 - Heisenberg parabolic

This section continues the notation and hypotheses of Section 6. In particular, p 6= 2
if G = E8. Let

P2 = G2 \ P and �P2 = G2 \ �P

be the Heisenberg parabolic of G2 and its opposite parabolic subgroup. Note that
Z � P2, and �Z � �P2. Identifying I� with I via the trace form on I , we obtain

N=Z �= �N= �Z �= F � I � I � F;

with the pairing h ; i given by

h(x; u; v; y); (�x; �u; �v; �y)i = x�x+ Tr(u�u) + Tr(v�v) + y�y:
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Let U2 and �U2 be the unipotent radicals of P2 and �P2. Then

U2=Z
�= �U2= �Z �= F � Fe� Fe� F:

Hence the orhogonal complement of �U2= �Z in N=Z is

NN �= I
0
� I

0
� F � I � I � F;

where I0 is the set of traceless elements in I .
By Theorem 6.1

0 ! C
1

c (
) �U2
! V �U2

! V �N ! 0:

Let 

 = 
 \NN: Then, as in Lemma 2.2,

C
1

c (
) �U2
= C

1

c (

);

and Theorem 6.1 implies:

PROPOSITION 7.1. Identify the Levi factor of �P2 with GL2 so that it acts on
�Z via the character det, and the action on the quotient �U2= �Z is isomorphic to
S3(F 2)
det�1. IdentifyNN with pairs of elements in I0. Let f 2 C1c (

) � V �U2

.
Then

(1) � �U2
(g)f(y; z) = f(g�1y; g�1z); g 2 H:

(2) � �U2
(g)f(y; z) = j det(g)jsf((y; z)g); g 2 GL2:

Here det is the usual determinant of 2�2-matrices, and s is 2; 3 and 5, respectively.

Again, we need to describe GL2 �H-orbits on 

. We say that a subspace S
of I0 is singular, if the Jordan multiplication is trivial on S. In terms of the trilinear
form, this is eqivalent to S � x�; for every x in S, where

x� = fu 2 I j (x; u; v) = 0 for all v 2 Ig:

The group H acts transitively on singular points. We need to understandH-orbits
of singular two-dimensional subspaces in I0. We have two different cases.
J9 is the Jordan algebra of all 3 � 3-matrices with coefficients in F and H =

PGL3 acts by conjugation. In this case, singular points in I0 are nilpotent rank-one
matrices. There are two PGL3-orbits of singular two-dimensional spaces in I0.
Indeed, let Fx+ Fy be a singular space. Then either the images,

Im(x) = Im(y)

or the kernels

ker(x) = ker(y)
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of these two linear maps on F 3 coincide. If we fix S+ and S� two non-conjugated
singular subspaces, then their stabilizers in PGL3 are two non-conjugated maximal
parabolic subgroups Q+ and Q�.

In the other two cases, a stabilizer of a singular two-dimensional space is a
parabolic subgroup only if the space is ‘amber’. This notion is due to Aschbacher
[A1]. For an element x in I , one defines

�(x) = fu 2 x� \ I
0
j (e; u; v) = 0 for all v 2 x� \ I

0
g:

DEFINITION 7.2. Let S � I0 be a singular space. We say that S is amber if
S � �(x) for every nonzero x 2 S.

PROPOSITION 7.3. If I = J15 or J , then the group H acts transitively on the set
of amber, singular two-dimensional subspaces of I0.

Proof. If I = J this is a result of Aschbacher, 9.3-5 [A1]. We now give a proof
for J15. Fix e and the trilinear form on

J15 = ^
2
F

6 =< xij > 1 6 i < j 6 6:

as in Section 6, and let GSp6 be the subgroup of all g in GL6 such that g(e) = �(g)e
for a scalar �(g) in F�. Then

2̂

F
6

 �

�1

defines a faithfull action of H = PGSp6 on J15, fixing e.
Let Fx + Fy be an amber space in I0. Since H acts transitively on the set of

singular points, we can assume that x = x12. A simple computation shows that

x12� = hx12; x1;i; x2;ji i; j 6= 1; 2;

and

�(x12) = hx12; x13; x14; x23; x24i:

LetQ1 be the parabolic subgroup stabilizing the line through the singular pointx12.
Its Levi factorL1 = GL2�GL2=�F

� acts on the 4-dimensional space�(x)=Fx12

as on the space of 2�2-matrices. So it has two non-trivial orbits, the smaller being
the orbit of the singular x13. The proposition is proved.

PROPOSITION 7.4. (1) 

 = f(x; y) 6= (0; 0) j x; y 2 I0; the space Fx +
Fy is singular and amberg.

(2) Let AA and BB be the subsets of 

 consisting of all pairs (x; y) such
that the space Fx + Fy has dimension 2 and 1 respectively. Then GL2 �H acts
transitively on BB. It also acts transitively on AA if I 6= J9. If I = J9 then then
AA is a union of two GL2 � PGL3-orbits.
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Proof. As before, write

n=z = F � I � I � F:

Then the maximal parabolic subalgebra

q = (t� l)� I � m = I
�
� (t� l)� I;

stabilizes the partial flag

F � I � I � F � I � I � F � I � F � F:

More precisely, let u 2 I , be in the unipotent radical of q, and (a; x; y; b) 2 n=z.
Then

u(a; x; y; b) = (0; au; u� x;Tr(uy));

where u� x, the cross product, is the element of I such that

Tr((u� x)v) = (x; u; v)

for all v 2 I .

LEMMA 7.5. Let Q � M be the corresponding maximal parabolic subgroup.
Then Q has 4 orbits on 
. Their representatives are

v1 = (1; 0; 0; 0); v2 = (0; z; 0; 0);

v3 = (0; 0; z; 0); v4 = (0; 0; 0; 1);

where z is any non-zero element in I such that z2 = Tr(z)z.
Proof. Note thatP(
) =M=Q. We have to computeQnM=Qwhich is the same

as WLnWM=WL, here WM and WL denote the Weyl groups of M and L (L � Q

corresponds to l � q). Since N=Z is a miniscule representation of M , its weight
vectors are all contained in one WM -orbit, it follows that they are parametrized
by WM=WL. On the other hand, I and I� are miniscule representations of L so
WLnWM=WL has four orbits.

The group L acts transitively on the set of elements such that z2 = Tr(z)z. It is
simply the orbit of a highest weight vector, and hence of any weight vector, since
the representation is miniscule. Hence, the vectors vi, (1 6 i 6 4) clearly represent
4 different orbits, so the lemma is proved.

Let (0; x; y; 0) 2 

. If x 6= 0 then Lemma 7.5 implies that it is in the Q-orbit
of v2. Hence x is in the L-orbit of z, so x is singular. Since the action of GL2, the
Levi factor of �P2, is

(x; y)

 
a b

c d

!
= (ax+ cy; bx+ dy);
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the same argument implies that any element of Fx+ Fy is singular. Hence

x
2 = (x+ y)2 = y

2 = 0;

and

2x � y = (x+ y)2
� x

2
� y

2 = 0:

We have shown that S is a singular space.
Furthermore, (0; x; y; 0) is Q-conjugated to (0; x; 0; 0). But this two elements

can be conjugated only by an element of the unipotent radical of Q. Hence

(0; x; y; 0) = exp(u)(0; x; 0; 0);

for some u in I . This implies that y = u � x: Since Tr((u � x)v) = (u; x; v) for
all v in I , and (e; y; v) = �Tr(yv) for any v in I0 (see Section 6), it follows that

(e; y; v) = �(u; x; v) = 0

if v 2 x�\ I0. Hence y 2 �(x). Since the same argument can be repeated for any
linear combination of x and y, the first part of the proposition follows.

Let z 2 I0 such that z2 = 0. Let Q1 be the parabolic subgroup of H stabilizing
the line Fz. Consider

B = f(az; 0) j a 2 F and a 6= 0g:

Let QQ � GL2 be the Borel subgroup stabilizing the line B. Then QQ�Q1 acts
transitively on B and

BB = (GL2 �H)�(QQ�Q1)
B:

Assume now that I = J15 or J . Let Fx+Fy � I0 be a 2-dimensional singular,
amber space. LetQ2 be the parabolic subgroup ofH stabilizing the spaceFx+Fy.
Consider

A = f(ax+ by; cx+ dy) j a; b; c; d 2 F and ad� bc 6= 0g:

Then GL2 �Q2 acts transitively on A and

AA = H �Q2 A:

In J9 we have two orbits of singular two-dimensional spaces. Let Fx+ + Fy+

and Fx�+Fy� be their representatives andQ+ andQ� their stabilizers in PGL3.
One can define A+ and A� as above, hence

AA = PGL3 �Q+ A
+
[ PGL3 �Q� A

�
:

The proposition is proved.
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THEOREM 7.6. VU2 has a filtration with three succesive quotients

C
1

c (AA); C
1

c (BB); and V �N ;

where C1c (AA) is a submodule, and V �N a quotient. Moreover, as GL2 � H-
modules,

(1) C
1

c (AA) = j det js 
 indHQ2
(C1c (A)) if H 6= PGL3;

C
1

c (AA) = j det js 
 indPGL3
Q+

(C1c (A
+)) + j det js 
 indPGL3

Q�
(C1c (A

�)):

(2) C
1

c (BB) = j det js 
 indGL2�H
QQ�Q1

(C1c (B));

(3) V �N
�= j det jt 
 V (M) + j det js 
 1;

where V (M) is the minimal representation of M (center acting trivially).
In the above formulas det is the usual determinant of 2� 2 matrices, and s and

t are given by the following table

G s t

E6 2 3=2
E7 3 2
E8 5 3

Proof. This follows from Theorem 6.1, Proposition 7.1 and 7.4.

8. �-lifts from G2

In this section we compute �-lifts of spherical tempered representations of G2

in all three cases. In the process we also compute the normalizing factors (i.e.
coefficients s) in Theorem 6.1 and 7.6.

We study the dual pair G2 �F4 in a simple groupG of type E8 first. Let � be a
spherical tempered representation of G2. Write

� = IndG2
�P2
(�)

where � is a spherical representation of GL2 with the parameter (��1
1 j � j3=2; �

�1
2 j �

j3=2). As before,�1 and�2 must be unitary characters. LetQ2 = L2V2 be a maximal
parabolic subgroup of F4 stabilizing a singular, amber two-dimensional space in
J . The action of L2 on the corresponding amber line gives an exact sequence

1 ! SL3 ! L2 ! GL2 ! 1;
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where SL3 is ‘spanned’ by two simple long roots. One checks that �V2 = j det j7,
where det is the usual determinant on GL2, the quotient of L2 by SL3. Let � 0 be
a spherical representation of GL2 with the parameter (�1j � j

7=2; �2j � j
7=2): Pull � 0

back to L2. Let

�
0 = IndF4

Q2
(� 0):

Note that �0 is a unitarizable representation of F4. It is quite possible that �0 is
always irreducible but we do not know.

THEOREM 8.1. (p 6= 2) Let � be the spherical tempered representation of G2

and �0 the representation of F4, defined above. Assume, for simplicity, that �0 is
irreducible. Then�(�) = f�0g: Let s 2 G2(C ) be the Satake parameter of �. Then
the Satake parameter of �0 is 	(s� �) where

	:G2(C ) � SO3(C ) ! F4(C )

is the embedding of the dual pair G2(C ) � SO3(C ) in F4(C ), and � 2 SO3(C ) is
the Satake parameter of the trivial representation of SL2.

Proof. Let P =MN be the Heisenberg parabolic subgroup ofG. In Section 6,
we described an embedding of the dual pair G2 � F4 in G such that G2 \ P is the
Heisenberg maximal parabolic subgroup P2.

Yet another embedding of the dual pair G2 � F4 is given by the inclusion of
Jordan algebras J6 ! J (use the Z=3Z-gradation of the exceptional Lie algebras
given in Section 6). In this case,

G2 �M and F4 \ P = Q4 = L4V4;

the Heisenberg maximal parabolic subgroup of F4. The Levi component L4 is
isomorphic to GSp6. Note that the inclusion GSp6 ! M induces an isomorphism
GSp6=Sp6

�= M=[M;M ]. This is easily seen by considering the action of GSp6
and M on Z , the center of both, V4 and N .

Let V be the minimal representation of G. Let VN be the maximal N -invariant
quotient of V . Obviously, it is a G2 � GSp6-module. By Proposition 4.1 of [S1],

VN
�= V (M)
 j det j3 + 1
 j det j5;

where V (M) is the minimal representation of M , with center acting trivially, and
det denotes the usual determinant of GSp6. Note that the quotient ofM by its center
is the adjoint group of type E7. So, if � is the Langlands lift of � to PGSp6, by
Theorem 5.4, � 
 � is a quotient of V (M), and of VN . Hence, by the Frobenius
reciprocity, � 
 �0 is a quotient of V for some subquotient �0 of

IndF4
Q4
(� 
 j det j3):
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In particular, �(�) is not empty.
On the other hand, by the Frobenius reciprocity, � 
 �0 is a quotient of V �U2

. So,
for a generic choice of �1 and �2, � 
�0 will be a quotient of C1c (AA) in Theorem
7.6. Recall that

C
1

c (AA) = �(det)
 indHQ2
(C1c (A))

for a certain character � which we shall now determine. Since C1c (A) is a regular
representation of GL2 twisted by �, � 
 �0 must be a quotient of

� 
 IndF4
Q2
(� 0)

where � 0 is the representation of L2 pulled back from a representation of GL2 with
a parameter (�1� j �j

�3=2; �2�j � j
�3=2): We get that �0 is a subquotient of both,

IndF4
Q4
(� 
 j det j3) and IndF4

Q2
(� 0):

This immediately implies that

�(det) = j det j5 and IndF4
Q2
(� 0) = �

0
:

Moreover, the knowledge of � implies that any � , with �1 and �2 unitary, is a
quotient of C1c (AA) only. Hence, by the Frobenius reciprocity, a �-lift of � must
be a quotient of �0.

It remains to check the statement about Satake parameters. The dual Langlands
group of F4 is F4(C ). Let Q3 = L3V3 be the maximal parabolic subgroup of F4

such that L3(C ) is the dual group of L2. In particular, it fits into the exact sequence

1 ! GL2(C ) ! L3(C ) ! PGL3(C ) ! 1:

Let s 2 GL2(C ) be the parameter (�1; �2). The Satake parameter of �0 is

s� � 2 GL2(C ) � SO3(C ) � L3(C ):

On the other hand, the centralizer of SO3(C ) in F4(C ) is G2(C ). Since

L3(C ) \G2(C ) = GL2(C );

and s is the Satake parameter of � (see the proof of Theorem 4.4), the theorem
follows.

Theorem 7.6 can be used, in a similar way, to prove converses of Theorems 4.4
and 5.4. We state results without giving details of proofs.
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THEOREM 8.2. Let �: SL3(C ) ! G2(C ) be the standard inclusion of the dual
groups of PGL3 and G2. Let � be a tempered spherical representation of G2.
The Satake parameter of � is �(s) for some s, the Satake parameter of a tempered
spherical representation� of PGL3. Note that�(s) = �(s�)where s� is the Satake
parameter of ��, the dual of �. Then

�(�) = f�; �
�
g:

THEOREM 8.3. Let �:G2(C ) ! Spin7(C ) be the standard inclusion of the dual
groups ofG2 and PGSp6. Let � be a tempered spherical representation ofG2. Then

�(�) = f�
0
g;

where �0 is the spherical tempered representation of PGSp6 whose Satake parame-
ter is �(s).
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