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In resolvent analyses of turbulent channel flows it has been common practice to neglect
or model the nonlinear forcing term that forms the input of the resolvent. However, the
spatiotemporal structure of this term is mostly unknown. Here, this nonlinear forcing
term is quantified. The Fourier transform of its two-point space–time correlation, its
cross-spectral density (CSD), is computed. The CSD is evaluated for two channel flows at
friction Reynolds numbers Reτ = 179 and Reτ = 543 via direct numerical simulations
(DNS). The CSDs are computed for energetic structures typical of buffer-layer and
large-scale motions, for different temporal frequencies. It is found that the forcing is
structured and that its solenoidal part, which is the only one affecting the velocity
field, is the combination of an oblique streamwise vortical forcing and a streamwise
component that counteract each other, as in a destructive interference. It is shown that
a rank-2 approximation of the forcing, with only the most energetic spectral proper
orthogonal decomposition (SPOD) modes, leads to the bulk of the response. Moreover,
it is found that the nonlinear forcing term has a non-negligible projection onto the linear
sub-optimal forcings of resolvent analysis, which demonstrates that the linear optimal
forcing is not representative of the nonlinear forcing. Finally, it is clarified that the Cess
eddy-viscosity-modelled forcing improves the accuracy of resolvent analysis prediction
because the modelled forcing projects onto the linear sub-optimal forcings similarly to
DNS data.

Key words: turbulent boundary layers

1. Introduction

Despite general agreement on the existence of self-sustained processes in wall-bounded
turbulence, there are different understandings of the mechanisms involved. A common

† Email address for correspondence: pmorra@mech.kth.se
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technique to tackle this problem consists in writing the Navier–Stokes (N–S) equations
as a linear evolution equation with nonlinear feedback; the nonlinear feedback being a
forcing that includes the instantaneous nonlinear advection terms associated with the
velocity fluctuations. The flow is decomposed into a time-invariant reference state and
a fluctuation component, the reference state is usually assumed to be known, and the
fluctuations become the unknown variable. Thus, the system dynamics is clearly described
as the combination of the energy amplification and the energy redistribution mechanisms,
which are represented by the linear operator and the nonlinear forcing.

The choice of the reference state and the treatment of the nonlinear forcing in the
mentioned framework is key. A set of studies bypassed the explicit computation of the
nonlinear term and dealt solely with the linear evolution operator. The approach consists of
taking the time-averaged field as the reference state and introducing assumptions to avoid
the computation of the nonlinear forcing (Malkus 1956; Butler & Farrell 1993; Farrell &
Ioannou 1993; McKeon & Sharma 2010). Another approach, first proposed by Reynolds
& Tiederman (1967), Reynolds & Hussain (1972) and later revived by Bottaro, Souied &
Galletti (2006), del Álamo & Jimenez (2006), Cossu, Pujals & Depardon (2009), Pujals
et al. (2009) and Hwang & Cossu (2010a,c), consists of modelling part of the nonlinear
forcing with an eddy viscosity and introducing assumptions to avoid the computation of
the remainder of the nonlinear forcing. This leads to a modified linear operator. A review of
these two approaches with the benefits and limitations of using an eddy-viscosity model
can be found in McKeon (2017) or Cossu & Hwang (2017). It is noteworthy that these
approaches do not need a priori knowledge of the flow fluctuations.

A set of studies takes the time-averaged field as a reference state and treats the nonlinear
forcing as an unknown (exogenous) stochastic input. This approach consists of assuming
this stochastic input as uncorrelated in space and time, and in predicting the dynamics
with a ‘to-be-designed’ estimator as the Kalman filter (Chevalier et al. 2006; Illingworth,
Monty & Marusic 2018). The estimator consists of the original system without the
nonlinear forcing (i.e. the stochastic input) but with the addition of a correction term,
which is designed to minimize the variance of the prediction error. It is noteworthy
that this approach requires the instantaneous knowledge of a linear combination (i.e. a
measurement) of the fluctuation quantities.

Another approach, introduced by Zare, Jovanović & Georgiou (2017), consists of
computing simultaneously the covariances of both the flow fluctuations and the stochastic
input. The stochastic input is not restricted to be uncorrelated in space or time, nor it is
assumed to be a function of the fluctuations. The relationship between the fluctuations and
the input is enforced by the Lyapunov equation associated with the original system with
the nonlinear forcing treated as an unknown (exogenous) stochastic input. The method
is a constrained optimization problem. The constraints are the Lyapunov equation and
the fact that the covariance of the fluctuation quantities must be consistent with available
data. The objective function to minimize is the result of a ‘regularized maximum entropy
formalism’, where the ‘maximum entropy formalism’ utilized is known to be equivalent to
the ‘maximum likelihood formalism’ (see Goodwin & Payne (1977) or Della Pietra, Della
Pietra & Lafferty (1997) for details).

Another approach, presented by Towne, Lozano-Durán & Yang (2020), uses the
resolvent to compute an approximation of the cross-spectral density (CSD) of the nonlinear
forcing. The method exploits the input–output relationship described by the resolvent in
the frequency domain. The approach assumes the knowledge of the output, which is taken
with a number of sensors, and makes use of the singular values and singular vectors
of the resolvent to reconstruct the corresponding input, which is the nonlinear forcing.
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The colour of forcing statistics in resolvent analyses 907 A24-3

The technique consists of a projection approach, equivalent to the application of the
pseudo-inverse of the resolvent operator to the known statistics. Therefore, the computed
forcing is the best attainable in a least-squares sense.

The aforementioned works deal with an approximation of the nonlinear forcing based
on available statistics. Quantifying this forcing directly from the nonlinear advection term
of the sole fluctuation velocity, which is the definition, is not sought there. Rosenberg &
McKeon (2019) analysed this term for two ‘exact coherent states’ (i.e. invariant solutions
of the N–S) of an incompressible channel flow at friction Reynolds number Reτ = 85
(Nagata 1990; Park & Graham 2015). They utilized the Orr–Sommerfeld–Squire (OSS)
equations (Schmid & Henningson 2001) to build the resolvent operator and focused
on the solenoidal part of the nonlinear forcing, which is the only one affecting the
velocity field of an incompressible flow (Chorin & Marsden 1993). However, the authors
focused on the variance of the solenoidal forcing, so the analysis did not distinguish
between the contribution of different frequencies. Symon, Sipp & McKeon (2019)
isolated the contribution of each frequency by employing the spectral proper orthogonal
decomposition (SPOD) (Lumley 1970; Picard & Delville 2000). However, they used
data from particle image velocimetry (PIV) of the flow around a NACA0018 airfoil at
a chord-based Reynolds number Re = 10 250, and the forcing is not decomposed in its
solenoidal and irrotational parts.

The nonlinear forcing term is non-solenoidal by construction. To evaluate its solenoidal
part, one of the variants of the Helmholtz–Hodge decomposition (HHD) can be performed
(see Chorin & Marsden (1993) or Bhatia et al. (2013) for details; see Wu, Zhou &
Wu (1996) or Rosenberg & McKeon (2019) for examples of applications). The HHD
requires specific boundary conditions to assure the orthogonality and the uniqueness of the
resulting solenoidal and irrotational fields (Chorin & Marsden 1993; Bhatia et al. 2013),
which amounts to imposing a priori the unknown solenoidal field be parallel to the wall.
This assumption and the use of the HHD can be avoided when using the OSS because the
solenoidal part of the forcing can be retrieved directly with the operators of the OSS, as
presented here in appendix B.

Access to a quantitative characterization of the nonlinear forcing term can be helpful
for addressing the domain of validity of modelling techniques that aim at mimicking its
effects on the dynamics. Beneddine et al. (2016) mentioned that such quantification is
convenient also to assess the validity of mean flow stability analysis, which has generally
been based on the sole singular values of the resolvent. Moreover, even though there is
general agreement on the existence of self-sustained coherent motions and visualizations
of such motions are presented, there is no documentation of the spatiotemporal structure of
the nonlinear forcing terms resulting from the fluctuation velocities for turbulent channel
flows. As these nonlinear forcing terms cause the feedback mechanism in the linearized
system dynamics, its quantification is of interest to further understand the ‘recycling’ of
the amplified outputs in the input from the nonlinear terms.

Moreover, it is understood that the shape of the linear optimal forcing that results from
resolvent analyses similar to Farrell & Ioannou (1993) or McKeon & Sharma (2010) does
not necessarily coincide with that of the nonlinear forcing term of a turbulent channel
flow. Beneddine et al. (2016), among others, remarked on this. This linear optimal forcing
is the right singular vector of the resolvent associated with the highest singular value.
Morra et al. (2019) showed a case where using the right-singular vectors as forcing to the
resolvent does not result in the same velocity field of direct numerical simulations (DNS).
As the right singular vectors of the resolvent form a basis that spans the forcing space, it
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can be inferred that the nonlinear forcing term has significant projection onto the linear
sub-optimals. However, there is no such verification.

When dealing with coherent motions in the framework of stochastic forcing and
response, the resolvent operator and the SPOD prove to be useful tools. SPOD assures
the resulting modes to be coherent in space and time (Towne, Schmidt & Colonius
2018), whereas the resolvent operator can describe the input–output relationship between
the CSDs of the input and the output, on which the SPOD is based. The usage of the
CSD allows us to isolate the dominant energetic structures, so it avoids blurring the
interpretation of the results. It is known that a relation exists between the SPOD modes
and the singular modes of the resolvent operator (Towne et al. 2018; Cavalieri, Jordan &
Lesshafft 2019; Lesshafft et al. 2019), but investigations of turbulent channel flows have
been based on assumptions, without quantifying the effects of the nonlinear forcing term
as input.

In this work a quantification of the nonlinear forcing term, usually treated as an input
in resolvent analyses, is accomplished for turbulent channel flows. The investigated flows
have friction Reynolds numbers Reτ = 179 and Reτ = 543. The resolvent framework is
employed. The reference state upon which the resolvent is built is the time-averaged
field, so the nonlinear forcing term consists of the advection term with the fluctuation
velocities. The nonlinear forcing is quantified through its CSD for the most energetic
near-wall and large-scale structures, such that the input–output relation of the most
energetic motions is highlighted. The CSD of the nonlinear forcing term is computed
directly from snapshots of DNS data by means of the Welch method, with the same
technique as discussed by Nogueira et al. (2021). The complete non-solenoidal forcing
and its solenoidal part are presented, and its effects on the output discussed. The expected
coherence of the forcing is quantified here. Moreover, inspired by the discussion in
Beneddine et al. (2016), a quantification of the key parameters to assess the accuracy
of resolvent analyses is possible and performed here. Thus, an evaluation of the errors
introduced by neglecting or modelling the nonlinear forcing is possible and presented. The
aim of this work is to compensate the lack in the literature of an explicit characterization
of the spatiotemporal structure of the nonlinear forcing term for turbulent channel flows,
and provide a foundation for all the studies which choose to include assumptions about
this nonlinear forcing term to facilitate the mathematical treatment.

This paper is structured as follows. In § 2 the governing equations of the problem
addressed are summarized. In § 3 the results of the DNS are presented, the CSD of the
forcing is shown and discussed. In § 4 the effects of the nonlinear forcing term are analysed
and the low-rank property of the associated CSD demonstrated. In § 5 an assessment of
the errors introduced when resorting to modelling the nonlinear forcing term are discussed
by comparison with the nonlinear forcing term computed from DNS data. The results
are summarized and discussed in § 6. Further details about the operators involved in the
analysis and the Welch method are provided in appendices A, B, and C.

2. Governing equations

2.1. Evolution equations for the fluctuation quantities
This work focuses on the dynamics of perturbations about the time-averaged fields in a
channel flow. The flow is incompressible and the density constant. The quantities treated
here are non-dimensionalized, and the Reynolds number Re = (3/2)Ubulkh/ν is based
on the channel half-height h, the constant mass-averaged streamwise velocity Ubulk and
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the fluid molecular viscosity ν. The domain is described with Cartesian coordinates
x = (x, y, z)T, which correspond to the streamwise, wall-normal and spanwise directions.
The total velocity and pressure fields can be described as the superposition of the
time-averaged fields and the fluctuations, utot = U + u and ptot = P + p, as in the
Reynolds decomposition. Here, U = (U( y), 0, 0)T is the mean flow in the channel, P =
P(x) the time-averaged pressure field, u = (u(x, t), v(x, t), w(x, t))T the perturbation
velocity and p = p(x, t) the perturbation pressure; t being the non-dimensional time. Both
the mean flow and the perturbation velocity are subject to the incompressibility condition
∇ · U = 0 and ∇ · u = 0, with ∇ = (∂x , ∂y, ∂z)

T such that ∇2 = ∇ · ∇. Assuming U and
P to be known, the momentum equations

∂u
∂t

+ (U · ∇)u + (u · ∇)U = −∇p + 1
Re

∇2u + b + f , (2.1)

are the evolution equations for the fluctuations, where the density is included in
the pressure term, b = −∇P + Re−1∇2U − (U · ∇)U includes the contribution of
time-averaged quantities only, and f = −(u · ∇)u the instantaneous Reynolds stresses
from the fluctuations; it is assumed that there is no external body force. It is notable that
(2.1) has the same structure of the perturbation equation of a flow linearized about an
equilibrium solution of the N–S equations, in which case b = 0 by construction.

2.2. Harmonic and stochastic forcing analysis
As the mean flow is homogeneous in the wall-parallel directions, the Fourier transform can
be applied along those directions and the same manipulations to obtain the OSS equations
can be performed. Thus, by introducing q̂� = (v̂(α, y, β, t), ω̂y(α, y, β, t)) as the vector
containing the wall-normal velocity and vorticity Fourier modes, (2.1) can be written in
terms of q̂�(α, y, β, t) exp(i(αx + βz)) and f̂ �(α, y, β, t) exp(i(αx + βz)) Fourier modes.
Moreover, by discretizing the wall-normal direction with Ny points, and by introducing the
vectors q̂, 2Ny × 1, and f̂ , 3Ny × 1, as the discrete counterparts of q̂� and f̂ �, (2.1) reduces
to the system

∂ q̂
∂t

= Aq̂ + Bf̂ , (2.2)

where b is not included because the focus of this study is on α /= 0 and β /= 0, and b is
constant along the wall-parallel directions. In the discretized domain the Fourier modes of
the fluctuation velocity û�(α, y, β, t) exp(i(αx + βz)) correspond to the vector û, 3Ny × 1,
and can be computed as û = Cq̂, whereas q̂ = Dû. The expressions for the matrices A,
B, C and D are given in appendix A. For the sake of readability dependencies on the
wavenumbers α and β are no longer written explicitly.

As U and P are the time-averaged fields of a turbulent channel flow, the system
described by (2.2) is linearly stable (Reynolds & Tiederman 1967), so a finite amplitude
forcing can be studied by performing the Fourier transform in time on (2.2). Then, the
harmonic forcing f̂ = f̃ (ω) e−iωt and the harmonic response û = ũ(ω) e−iωt are related by
ũ(ω) = R(ω) f̃ (ω), with

R(ω) = −C(iωI + A)−1B, (2.3)

the 3Ny × 3Ny matrix form of the resolvent operator (with boundary conditions
ṽ = ∂ṽ/∂y = ω̃y = 0 or, equivalently, ũ = ṽ = w̃ = 0, at y = ±1). A singular value
decomposition (SVD) allows the resolvent matrix R(ω) to be expressed in terms of its
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left-singular vectors ψ i(ω), its singular values σi(ω) and its right-singular vectors φi(ω),
such that

φH
i Wφj = δij, (2.4a)

ψH
i Wψ j = δij, (2.4b)

with H the complex conjugate transpose, δij the Kronecker delta and W the positive-definite
Hermitian matrix, 3Ny × 3Ny , of quadrature weights necessary to compute the energy
norm on the discrete grid of the wall-normal direction.

If instead of harmonic excitation a stochastic and statistically stationary forcing is
considered, the response will also be stochastic and statistically stationary. In this case the
Fourier transform in time cannot be applied because

∫ ∞
−∞ |û|2 dt < ∞ (or

∫ ∞
−∞ |q̂|2 dt <

∞) and
∫ ∞

−∞ | f̂ |2 dt < ∞ do not hold (Chibbaro & Minier 2014). A quantity that exists
and can be computed for a statistically stationary process is the CSD (Stark & Woods
1986), which is defined for the vectors û and f̂ as

S(ω) = lim
T→∞

E

[(
1

2π

∫ T

−T
û(t) e−iωt dt

) (
1

2π

∫ T

−T
û(t)H eiωt dt

)]
2T

, (2.5a)

P(ω) = lim
T→∞

E

[(
1

2π

∫ T

−T
f̂ (t) e−iωt dt

) (
1

2π

∫ T

−T
f̂ (t)H eiωt dt

)]
2T

, (2.5b)

where T is the total time, the expectation E[·] is the ensemble average over different
stochastic realizations and the CSDs are the 3Ny × 3Ny matrices S(ω) and P(ω). The
diagonals of S(ω) and P(ω) contain the power-spectral density (PSD) of the three velocity
and forcing components at the discrete points of the wall-normal direction for a given
angular frequency ω (and the omitted α and β). For the sake of readability the streamwise,
wall-normal and spanwise components on the diagonal of S(ω) and P(ω) are from now on
referred to with the Ny × 1 vectors suu, svv, sww, and puu, pvv, pww. Then, the premultiplied
streamwise kinetic energy spectra can be computed as

αβekin
uu = αβ

∫ ∞

−∞
suu(ω) dω. (2.6)

As the system in (2.2) is stable, it also holds (Stark & Woods 1986)

S(ω) = R(ω)P(ω)R(ω)H, (2.7)

which is the input–output relation of the CSDs. For the sake of readability dependencies
on the angular frequency ω are no longer written explicitly.

As S and P are CSDs, the Karhunen–Loève decomposition can be performed, which
for quantities in the frequency domain is referred to as SPOD (Lumley 1970; Picard &
Delville 2000; Towne et al. 2018). The SPOD modes of the matrices S and P correspond
to the 3Ny × 1 eigenvectors ξ i and ζ i of the matrix eigenvalue problems SWξ i = μiξ i and
PWζ i = ηiζ i. The eigenvectors are orthogonal in ξH

i Wξ j = δij and ζH
i Wζ j = δij. Thus, the

CSDs can be expanded as S = ∑
i μiξ iξ

H
i and P = ∑

i ηiζ iζ
H
i , such that the diagonal of S
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and P can be written as

diag(S) =
∑

i

μi|ξ i|2, (2.8a)

diag(P) =
∑

i

ηi|ζ i|2, (2.8b)

with | · | the absolute value of each entry of the vector. It can be noted that because the
SPOD modes are orthogonal in the inner product associated with the energy norm, the
ratios μi/

∑
i μi and ηi/

∑
i ηi represent the fraction of power associated with the ith SPOD

mode.
The computation of the left- and right-singular vectors of R allows the input–output

relation S = RPRH to be split into three steps: (i) the projection of P onto the
right-singular vectors φi, which results in a scalar

b2
i = φH

i W PWφi (2.9)

for each φi; (ii) the amplification or damping of the associated singular values σi by bi,
which results in a scalar ai = σibi; and (iii) the linear combination of the left-singular
vectors ψ i weighted with ai such that

diag(S) =
∑

i

|ψ i|2a2
i . (2.10)

As σi do not depend on P and a2
i = σ 2

i b2
i , it is the coefficients bi that quantify the

contribution of the forcing P to the output S. Note that if bi = 1, then P ≡ I .
It can be remarked that S is built upon a solenoidal vector field because the velocity field

is divergence free in incompressible flows, whereas P is built upon a non-solenoidal vector
field because the divergence of the nonlinear forcing f is non-zero. Moreover, if the flow
is incompressible only the solenoidal part of the forcing affects the velocity field (Chorin
& Marsden 1993). Therefore, if the forcing is written as the sum of a solenoidal and an
irrotational vector field, the irrotational part gives a null response in (2.7). This implies
that R is singular, and that its null space spans the set of all possible non-solenoidal fields.

It follows that there must be an injective linear transformation between the velocity field
and the solenoidal part of the nonlinear forcing field, which may be exploited to extract
the solenoidal part of P when S is known. In appendix B it is shown that

L = −C(iωI + A)D (2.11)

constitutes such a linear relationship. The solenoidal part of P can be retrieved as LSLH .
It should be noted that L is not exactly the inverse of R in (2.7) because R is singular.
In appendix B it is also shown that if the forcing f̂ is known, its solenoidal part can
be computed also as CB f̂ , which can be employed to evaluate the solenoidal part of P
as (CB)P(CB)H . Resorting to L or CB to compute the solenoidal part of the forcing is
equivalent. A more detailed discussion about L and CB is presented in appendix B.

2.3. Modelling the nonlinear forcing terms
The input–output relationship described by (2.7) includes the contribution of the nonlinear
terms, those responsible for the Reynolds stresses, in the input P. The nonlinear terms are
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usually unknown, and the input P is modelled. The lack of knowledge about the nonlinear
terms implies that the accuracy of these modelling techniques cannot be based on a direct
comparison with them. Instead, the error in the prediction of the velocity field or its
statistics is evaluated. As this work aims at presenting the actual P that appears in the
N–S, its direct comparison with a modelled P can be evaluated. Moreover, P has never
been quantified from instantaneous realizations f̂ of a turbulent channel flow. Thus, a
comparison with the results from often used modelling methods is clearly of interest.

The two modelling approaches discussed in this work are: (i) the assumption that the
nonlinear terms are uncorrelated in space P = γν I (with γν a normalization scalar, and I the
identity); and (ii) the introduction of an eddy-viscosity νt to model a part of the nonlinear
terms via the Boussinesq expression. In (ii) the unmodelled part of the nonlinear terms is
treated as uncorrelated in space. The two approaches lead to the predictions

SRν
= γνRRH, (2.12a)

SRνt
= γνt Rνt R

H
νt
, (2.12b)

where Rνt is a modified resolvent that includes the eddy-viscosity modelling (details about
the operator are given in appendix A), and γνt a normalization scalar.

The forcing necessary to obtain the prediction SRνt
by means of R, such that SRνt

=
RPνt R

H , can be computed as
Pνt = LSRνt

LH, (2.13)

which quantifies how the eddy-viscosity approach models P. The effects of the modelling
with P = γν I , of the eddy-viscosity approach with P = Pνt , are compared with the P

computed from instantaneous realizations of f̂ via the coefficients bi in (2.9).
The normalization scalars γν and γνt are function of the wavenumbers α, β and the

angular frequency ω. They are computed here from the PSDs as

γν(α, β, ω) = ||diag(S)||∞
||diag(RνRH

ν )||∞
, (2.14a)

γνt(α, β, ω) = ||diag(S)||∞
||diag(Rνt R

H
νt
)||∞

, (2.14b)

and represent a rescaling factor to compensate for the lack of knowledge on the amplitude
of the modelled forcing term such that the responses match the DNS diag(S) in the
∞-norm. The scalars also give an indication of the offset of the prediction of the
amplitude; in fact, if the modelled forcing were to coincide with that computed from
the DNS data, γν = 1 or γνt = 1. For the sake of readability, from now on the explicit
dependency of the scalars γν , γνt on α, β, ω is dropped. The ∞-norm of a vector g is
intended as ||g||∞ = maxi |gi| with i the ith term of the vector.

3. Direct numerical simulations

The flow cases analysed are at Reτ = 179 and Reτ = 543 with the box details presented
in table 1. The mean velocity profile and the root-mean-square (rms) of the three velocity
components are presented in figure 1, where it is shown that the profiles are in agreement
with the results of del Álamo & Jiménez (2003). The CSD are computed with Welch’s
method (Welch 1967), as in Towne et al. (2018) or Pintelon & Schoukens (2012).
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Reτ Rebulk Lx Lz Δx+ Δz+ Δy+
min Δy+

max

179 2800 4π 2π 11.78 5.89 5.42 × 10−2 4.42
543 10000 2π π 8.89 4.44 4.09 × 10−2 6.67

TABLE 1. Reynolds number, box dimensions and details about the resolution used in the DNS.
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FIGURE 1. Comparison of mean velocity U+ and rms values from DNS data (symbols) and the
results presented in del Álamo & Jiménez (2003) (lines). (a) Mean velocity U+ in inner units;
black is Reτ = 179, red is Reτ = 543; (b) u+

rms, v+
rms, w+

rms in inner units for Reτ = 179; black is
u+

rms, red is v+
rms, blue is w+

rms; (c) u+
rms, v+

rms, w+
rms in inner units for Reτ = 543; black is u+

rms, red
is v+

rms, blue is w+
rms.

Note that the input–output relationship is based on the windowed data. The presence of
the window, which is a function of time, needs to be accounted for in the time derivative.
Consequently, the input–output relationship in (2.2) is not valid (Martini et al. 2019).
A compensation term of the form −q̂ dW(t)/dt, with W(t) the Hann window, is added
to the forcing in order to preserve the identity in (2.2). The same procedure investigated in
Nogueira et al. (2021) is followed here. More details can be found in appendix C.

3.1. Computation of CSDs: Reτ = 179
The focus is on dominant structures of streamwise velocity in the buffer layer and at y =
0.5. Therefore, the corresponding wavenumbers are chosen by inspecting the premultiplied
streamwise kinetic energy spectra αβekin

uu at y+ = 15 and y = 0.5, shown in figure 2.
The maxima of the premultiplied spectral densities are at (λ+

x , λ+
z ) = (1130, 113) for the

near-wall structures and (λx , λz) = (4.19, 1.26) for the large-scale structures; where λx

and λz are streamwise and spanwise wavelengths normalized by the outer scale h, and
the + superscript is used when quantities are normalized by the viscous scale. These
wavenumbers represent energetically significant self-sustaining dynamics of the near-wall
and large-scale motions. Figures 3(a) and 3(b) show the PSD of the streamwise velocity
fluctuation suu for the near-wall structures (λ+

x , λ+
z ) = (1130, 113) (figure 3a) and the

large-scale structures (λx , λz) = (4.19, 1.26) (figure 3b). The near-wall structures have a
peak at y+ ≈ 15 with ω+

max = 0.065 that corresponds to a time in viscous scale λ+
t ≈ 100,

whereas the large scales have a peak around y = 0.35 with ωmax = 1.05. These peaks
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FIGURE 2. Premultiplied streamwise energy spectra αβekin
uu , with Reτ = 179: (a) y+ = 15

plane, spectra in inner units; (b) y = 0.5 plane, spectra in outer units.
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FIGURE 3. Streamwise velocity PSDs suu and puu versus phase speed c+ = ω+/α+, with
Reτ = 179. Dashed black line, mean velocity U+ in wall units; (a) suu, near-wall structures,
(λ+x , λ+z ) = (1130, 113); (b) suu, large-scale structures, (λx , λz) = (4.19, 1.26); (c) puu, near-wall
structures, (λ+x , λ+z ) = (1130, 113); (d) puu, large-scale structures, (λx , λz) = (4.19, 1.26).

correspond to a wave speed c+
max ≈ 12 for the near-wall structures and c+

max ≈ 16 for the
large-scale structures; the peaks are located in the region where the mean velocity equals
the wave speed U+ = c+.

Figures 3(c) and 3(d) show the PSD of the streamwise forcing puu for the same near-wall
and large-scale structures. Both the forcing terms have the peak at the ωmax (or c+

max ) of
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FIGURE 4. PSD, with Reτ = 179: (a,b) symbols, S = RPRH , output S with P from DNS;
lines, output S from DNS; triangles (black), streamwise component; squares (red), wall-normal
component; circles (blue), spanwise component; (c,d) solid lines, P from DNS; dashed lines,
solenoidal part of P; colour legend as in (a,b); (a) suu, svv , sww near-wall, ω+

max = 0.065
(c+

max ≈ 12); (b) suu, svv , sww large scale, ωmax = 1.05 (c+
max ≈ 16); (c) puu, pvv , pww near-wall,

ω+
max = 0.065 (c+

max ≈ 12); (d) puu, pvv , pww large scale, ωmax = 1.05 (c+
max ≈ 16).

the corresponding S11. Moreover, it is notable that both the near-wall and the large-scale
structures are forced by a near-wall forcing. This phenomenon can be appreciated also in
figure 4, where the forcing P computed from the DNS data is used to predict S = RPRH .
The fact that the curves and the symbols in figures 4(a) and 4(b) are on top of each other is
evidence of the accuracy of the computed P. Figures 4(c) and 4(d) show both the forcing
P based on the nonlinear terms and its solenoidal part. The streamwise component is
nearly unchanged, whereas the wall-parallel components are different. In particular, the
amplitude of the wall-parallel components of the solenoidal part of the forcing is lower
than it is for the total forcing and the solenoidal forcing is non-zero on the wall, but it is
parallel to it.

3.2. Computation of CSDs: Reτ = 543
Figure 5 shows the premultiplied streamwise kinetic energy spectra αβekin

uu at y+ = 15
and y = 0.5 for Reτ = 543. In this case the highest energetic activity is for (λ+

x , λ+
z ) =

(1137, 100) for the near-wall structures and (λx , λz) = (6.28, 1.57) for the large-scale
structures, so these wavenumbers are chosen for the following analysis. Figures 6(a) and
6(b) present the PSD of the streamwise velocity fluctuation suu for both the near-wall and
large-scale structures. The near-wall structures have a peak at ωmax = 0.065 (λ+

t ≈ 100)
and at y+ = 15, whereas large-scale structures have a peak at ωmax = 0.65 and y = 0.45.
These peaks correspond to a wave speed c+

max ≈ 12 for the near-wall structures and
c+

max ≈ 18 for the large-scale structures; the peaks are located in the region where the mean
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FIGURE 5. Premultiplied streamwise energy spectra αβekin
uu , with Reτ = 543: (a) y+ = 15

plane, spectra in inner units; (b) y = 0.5 plane, spectra in outer units.

velocity equals the wave speed U+ = c+. An appreciable amount of scale separation is
present for this Reynolds number. Moreover, the large-scale structure has a local maximum
at y+ = 12, which disappears when frequencies or wavenumbers are aggregated because
of its low amplitude. A similar peak emerges also for the turbulent channel flow at
Reτ = 1007 in Morra et al. (2019), where the frequency and wavenumber separation is
taken as in this paper. It is shown in § 4.1 that this peak is generated by the streamwise
component of the nonlinear forcing.

Figures 6(c) and 6(d) present the PSD of the streamwise forcing puu for both near-wall
and large-scale structures. The peaks of the forcing of both types of structures are localized
in the inner layer. The near-wall structures show a peak at ω+

max = 0.065 (λ+
t ≈ 100) and

y+ = 15, whereas the large-scale structures show a peak at ωmax = 0.65 and y+ = 6. The
input P and the output S show a peak at the same ω. The shape of all the three components
of P and S at the respective ωmax is shown in figure 7, where also the relationship S =
RPRH (the symbols in figures 7a and 7b) is presented to demonstrate the accuracy of the
computed input P. Figures 7(c) and 7(d) show the input P. The near-wall structures present
a peak of the streamwise component at y+ = 17 and at y+ = 20 for the wall-normal and
the spanwise components. The large-scale structures have a peak in P at y+ = 6 for the
streamwise component, at y+ = 12 for the wall-normal component, and at y+ = 9 for the
spanwise component. However, in addition to this near-wall peak, the forcing of large-scale
structures is spatially extended throughout the channel. It is demonstrated in § 4.3 that it is
the spatial extension of the streamwise component of this forcing which is responsible for
the bulk of the response, whereas the near-wall peak solely accounts for the near-wall local
maximum in the response. The solenoidal part of the input is also presented in figures 7(c)
and 7(d) (red lines without symbols). The streamwise component is nearly unchanged,
whereas the transverse components are different, as occurs for Reτ = 179. Moreover, the
amplitude of the wall-parallel components of the solenoidal part of the forcing is lower
than it is for the total forcing and the solenoidal forcing is non-zero on the wall, i.e.
there is a component parallel to the wall. The occurrence of a very localized peak for
the streamwise component of the Reynolds shear stresses is also documented in Kawata &
Alfredsson (2018) and Cho, Hwang & Choi (2018).

4. Input–output analysis

4.1. Effect of the sub-blocks of the input on the output
Here, the effects of the sub-blocks of the input P on the output S are analysed. As
P is the CSD matrix of the forcing vector f̂ , it can be split into nine sub-blocks of
equal dimensions. Each sub-block is a CSD. The three sub-blocks on the diagonal
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FIGURE 6. Streamwise velocity PSDs suu and puu versus phase speed c+ = ω+/α+, with
Reτ = 543. Dashed black line: mean velocity U+ in wall units; (a) suu, near-wall structures,
(λ+x , λ+z ) = (1137, 100); (b) suu, large-scale structures, (λx , λz) = (6.28, 1.57); (c) puu, near-wall
structures, (λ+x , λ+z ) = (1137, 100); (d) puu, large-scale structures, (λx , λz) = (6.28, 1.57).

are the CSD of the streamwise, wall-normal and spanwise components alone, whereas
the six off-diagonal sub-blocks are the CSD of pairs of different components. As
the input–output relationship is described in terms of CSD, quantifying the effect of
each sub-block on the output S amounts to a component-wise analysis, which here
provides insights into the nonlinear feedback mechanism of the self-sustained processes
of wall-bounded turbulence. Moreover, the influence of the off-diagonal terms on the
output is of interest for modelling the nonlinear forcing because some sub-blocks may be
negligible.

The effects of the sub-blocks of the input P on the output S can be analysed by
expanding P into a sum of nine matrices as

P = P11 + P12 + P13 + P21 + P22 + P23 + P31 + P32 + P33, (4.1)

with the P ij matrices having only the ijth sub-block different from zero. The P ij matrices
that contain the CSD of the streamwise, wall-normal and spanwise components alone
are P11, P22 and P33. The matrices P ij with i /= j have the only non-zero sub-block that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.802


907 A24-14 P. Morra and others

(×10–3)

(×10–3)

2.5

2.0

1.5

2.5

2.0

1.5

1.0

0.5

1.0

0.5

50 100 1500

(×10–3)

(×10–4)
4

3

2

5

0 5 10

1

0

(×10–2)
1.5

1.0

0.5

0.2 0.4 0.6 0.8 1.00

20 806040 20 8060400

y+

y+ y

y+

(a) (b)

(c) (d)

�s
w
w

�s
v
v
,

�s
uu

,
�
p w
w

�
p v

v
,

�
p u
u,

FIGURE 7. PSD, with Reτ = 543: (a,b) symbols, S = RPRH , output S with P from DNS;
lines, output S from DNS; triangles (black), streamwise component; squares (red), wall-normal
component; circles (blue), spanwise component; (c,d) solid lines, P from DNS; dashed lines,
solenoidal part of P; colour legend as in (a,b); (a) suu, svv , sww near-wall, ω+

max = 0.065
(λ+t ≈ 100, c+

max ≈ 12); (b) suu, svv , sww large scale, ωmax = 0.65 (c+
max ≈ 18); (c) puu, pvv ,

pww near-wall, ω+
max = 0.065 (λ+t ≈ 100, c+

max ≈ 12); (d) puu, pvv , pww large scale, ωmax = 0.65
(c+

max ≈ 18) (inset: enlarged view of the near-wall region, spanwise component only).

correspond to the CSD between pairs of different components. In other words, P ij is

P ij = lim
T→∞

E

[(
1

2π

∫ T

−T
f̂ i(t) e−iωt dt

) (
1

2π

∫ T

−T
f̂ j(t)

H eiωt dt
)]

2T
, (4.2)

with f̂ i a 3Ny × 1 vector made solely of the ith Ny × 1 component of the 3Ny × 1 vector
f̂ and the other components set to zero; with i = 1, 2, 3 corresponding to the streamwise,
wall-normal and parallel directions. Here, the focus is on the portion of the output that
corresponds to each sub-block, RP ijRH . Note that the output RP ijRH where i /= j implies
the output given by R(P ij + P ji)RH because P is Hermitian.

For the case with Reτ = 179 the results are presented in figure 8 for suu. For both
near-wall and large-scale structures the terms with i /= j give a negative contribution.
In particular, for the large-scale structures in figure 8(b) only the terms related to the
spanwise direction ( j = 3) provide a negative contribution, whereas for the near-wall
structures all the terms with i /= j give a negative contribution. Moreover, even though
the magnitude of the streamwise component of the solenoidal part of the forcing is around
one order of magnitude higher than the wall-normal and spanwise components, the forcing
cannot be approximated by the streamwise component only. In fact, the amplitudes of
the outputs associated with the wall-normal and spanwise components have the same
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FIGURE 8. Response S = RP ijRH from sub-blocks of P ij, with Reτ = 179: solid lines, response
from P1j (sub-blocks related to the streamwise component); dashed lines, response from P ij with
i /= 1; (a) suu near-wall, ω+

max = 0.065; (b) suu large scale, ωmax = 1.05.

order of magnitude of the output associated with the streamwise component. This can
be attributed to the lift-up effect, which greatly enhances the efficiency of forcing in
the wall-normal or spanwise directions, leading to streamwise vortices that, in turn, form
amplified streaks (Moffatt 1967; Ellingsen & Palm 1975; Landahl 1980; Hwang & Cossu
2010c, 2011; Brandt 2014). It is seen here that the wall-normal and spanwise components
of the forcing, associated with lift-up, lead to high-amplitude outputs when considered in
isolation (see the curves associated with P22 and P33 in figures 8a and 8b), but a complex
phase relationship between the three forcing components leads to cancellations in such
a way that the DNS output is of lower magnitude than what is predicted by considering
a single forcing component. This is a first indication of relevance of forcing colour to the
channel dynamics, as incoherent forcing components would lead to output PSDs that could
simply be summed to form the full PSD. The high magnitude of cross terms shows that
this is not the case: forcing components are coherent between them, and neglecting such
coherence would lead to appreciable errors in the prediction of the output. Similar effects
were observed for a minimal Couette flow unit by Nogueira et al. (2021).

For the case with Reτ = 543 the contribution of the terms P ij on the output S are
presented in figure 9. As occurs for Reτ = 179, the off-diagonal terms (i /= j) provide
a negative contribution to the output, indicating that coherence between the forcing
components, or forcing colour, is an important feature of the dynamics, as discussed
previously. Similar to Reτ = 179, the forcing cannot be approximated by the streamwise
component only, even though its peak amplitude is one order of magnitude higher than
it is for the wall-normal and the spanwise components. In fact, as shown in figures 9(a)
and 9(b), the amplitudes of the outputs associated with the wall-normal and spanwise
components of the forcing are larger than the output associated with the streamwise
component, owing to the higher efficiency associated with the lift-up effect. Moreover,
at Reτ = 543 the large-scale structures show a low-amplitude near-wall peak in the PSD
of the streamwise velocity component suu at y+ = 12. This low-amplitude near-wall peak
is demonstrated to be generated by the streamwise component of the forcing P. In fact, in
figure 9(c) it is clear that it is only the components of P associated with the streamwise
forcing (i = 1) that are responsible for the peak around y+ = 12 (compare the solid and
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FIGURE 9. Response S = RP ijRH from sub-blocks P ij, with Reτ = 543: solid lines, response
from P1j (sub-blocks related to the streamwise component); dashed lines, response from P ij with
i /= 1; (a) suu near-wall, ω+

max = 0.065 (λ+t ≈ 100); (b) suu large-scale, ωmax = 1.05; (c) zoom
of (b) in the near-wall region (note that P1j are the only components contributing to the near-wall
peak).

the dashed lines in figure 9c). Thus, the low-amplitude near-wall peak at y+ = 12 in suu
must be related to the near-wall peak at y+ = 6 in puu.

4.2. Low-rank approximation
Effort has been made to reconstruct the input P from sensor measurements with system
identification techniques (Jovanovic & Bamieh 2001; Zare et al. 2017; Illingworth et al.
2018; Towne et al. 2020). Here, a low-rank approximation of P, referred to as P lr, is
computed a posteriori by retaining the first two SPOD modes of P, so that

P lr = η1ζ 1ζ
H
1 + η2ζ 2ζ

H
2 . (4.3)

The second SPOD mode is also included because in a channel flow the modes are paired
because of the symmetry of the flow case. The approximated output SP lr is computed
with R and compared with the output S from DNS data in figure 10. It is remarkable
that considering only the first two SPOD modes of P leads to a recovery of most of the
output in all the cases presented. It can be remarked that for the large-scale structure of
the flow at Reτ = 543 even the local maximum at y+ = 12 is mostly retrieved. This shows
that the forcing is highly structured and coherent, as already suggested by the results in
§ 3, and its dominant structure, which is represented by the first two symmetrical and
anti-symmetrical SPOD modes, is responsible for the bulk of the flow response for both
near-wall and large-scale motions in both Reτ = 179 and Reτ = 543. This result suggests
a direction for the modelling of the structures considered here: the identification of the
nonlinear processes that lead to the observed coherent forcing may form a foundation for
reduced-order models of self-sustaining mechanisms in turbulent channel flows, similarly
to the developments of Hamilton, Kim & Waleffe (1995) and Farrell & Ioannou (2012) for
low Reynolds turbulent Couette flow in minimal boxes.

Assessing the low-rank behaviour of the forcing is helpful for those techniques that
account for the forcing through system identification methods, in a similar fashion to
Jovanovic & Bamieh (2001), Zare et al. (2017) or Illingworth et al. (2018). The low-rank
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FIGURE 10. PSD of the velocity fluctuations from the low-rank approximation: solid lines,
S from DNS data; dashed lines, Slr from low-rank approximation of P lr; black, streamwise
component; red, wall-normal component; blue, spanwise component; (a) Reτ = 179, small scale;
(b) Reτ = 179, large scale; (c) Reτ = 543, small scale; (d) Reτ = 543; large scale.

behaviour of the forcing can be a benefit because identification techniques may lose
accuracy when the number of unknown parameters increases (Hjalmarsson & Mårtensson
2007). In this case identifying the first eigenvector of the cross-power spectral density P
instead of the whole P reduces the number of unknowns from 3Ny(3Ny + 1)/2 to 3Ny (Ny

is the number of discrete point in the wall-normal direction). Thus, in this case the number
of unknowns would be reduced by two orders of magnitude. The second SPOD mode can
be retrieved later by exploiting the symmetry of the flow case.

As most of the output can be obtained from the presented low-rank approximation of
the input P, the field given by the first SPOD mode ζ 1 is of interest, so it is presented in
figure 11 together with its solenoidal part. The second SPOD mode ζ 2 is not presented
because the modes are symmetric and anti-symmetric with respect to the center line of
the channel and their behaviour on one wall is sufficient. Even though the mode ζ 1 does
not clearly appear to force the lift-up mechanism, its solenoidal part, which is the only
one responsible for the velocity field, is actually accelerating the flow in the directions and
areas typical for the occurrence of the lift-up mechanism. In fact, the solenoidal field takes
the shape of oblique vortices that appear to push near-wall fluid particles away from the
wall and further fluid particles towards the wall. This occurs for both Reτ = 179 and Reτ =
543, and for both large- and small-scale structures. Thus, it appears that the feedback of
the nonlinear terms arising from the fluctuations of the velocity field presents a significant
vortical structure forcing the lift-up mechanism. It is also notable that the magnitude of
the streamwise component of the solenoidal part of the forcing is higher than it is for the
wall-normal and the spanwise components. This behaviour is opposite to that predicted
by the linear optimal forcing, which coincides with the first right-singular vector of the
resolvent (Hwang & Cossu 2010b).
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FIGURE 11. First SPOD mode of P, ζ 1: (a–d) Reτ = 179; (e–h) Reτ = 543; (a,b,e, f ) small
scales; (c,d,g,h) large scale; (a,c,e,g) full ζ 1; (b,d, f,h) solenoidal part of ζ 1. Contours: streamwise
component of ζ 1. Vectors: spanwise and wall-normal components of ζ 1.
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Figure 11 suggests that the streamwise component counteracts the effect of the
wall-normal and spanwise components, as appears in figures 8 and 9 and is discussed in
§ 4.1. In figure 11 it can be observed that in regions where the wall-normal and spanwise
components of the forcing would generate a negative velocity fluctuation, the streamwise
component pushes the flow in the positive direction, and vice versa, in a destructive
interference. This is in accordance with the fact that the energy amplification predicted
with an approach that focuses only on the linear operator is much higher than that observed
in DNS of the nonlinear N–S. In fact, focusing solely on the linear operator implies
assuming that the forcing is mainly the linear optimal forcing, or the first right-singular
vector of R, whose streamwise component has a negligible magnitude with respect to the
other two (Hwang & Cossu 2010b). In other words, focusing the analysis of a turbulent
channel flow solely on the non-normal linear operator can be definitely misleading, as
pointed out already by Waleffe (1995). Nevertheless, because expanding the N–S system
in a reference state and its relative fluctuations is entirely general, as already clarified
by Henningson (1996), rewriting the system in terms of a (non-normal) linear operator
without dropping the nonlinear forcing terms in the analysis can be helpful to shed light
on the ‘recycling’ of the amplified outputs in the input from the nonlinear terms.

4.3. Influence of the near-wall forcing on the large-scale output: Reτ = 543
Flores & Jiménez (2006) and Flores, Jiménez & del Álamo (2007) showed with one-point
statistics that changes in the wall boundary conditions in the DNS of a turbulent channel
flow, which completely alter the near-wall statistics, did not influence the statistics in the
outer layer. Hwang & Cossu (2010c) demonstrated, with the aid of large-eddy simulations,
that large-scale motions are still present in a turbulent channel flow even when the
smaller scales typical of near-wall motions are filtered out; the filtering was possible
by adjusting the constant of the Smagorinsky eddy-viscosity model employed. Flores
& Jimenez (2010) and Hwang & Cossu (2011) further confirmed that the dynamics of
large-scale structures, although affected by smaller near-wall eddies, is mostly related to
processes with similar length scales. These results suggest that the response S is weakly
influenced by the structure of the input P near the wall. However, for the large-scale
structure (λx , λz) = (6.28, 1.57) at Reτ = 543 the streamwise component of the nonlinear
forcing puu presents a high-amplitude absolute maximum at y+ = 6, and in § 4.1 it is
shown that P11 is non-negligible to retrieve the correct response. The analysis in § 4.1
only shows that the low-amplitude peak at y+ = 12 in the streamwise component of the
response suu is caused solely by P11, but no conclusion can be drawn on how the near-wall
peak in P11 influences the bulk of the response. However, according to the conclusions
of the aforementioned studies and the results in § 4.1 it is reasonable to speculate that the
structure of P near the wall does not strongly influence the bulk of the response S.

In order to verify this statement all the points of the input P from DNS data that are
close to the wall, with y+ < 30, are set to zero, a new input Ph is computed, and the output
Sh = RPhRH is evaluated. The PSD of the resulting output Sh is presented in figure 12(a),
where the symbols represent the original output from the DNS data, the shaded area is
the area where the forcing is non-zero and the red lines are the PSDs of the output Sh.
The curves of the PSDs of Sh are almost unaltered when compared with those of S for
y+ ≥ 30, where the forcing is not set to zero. In the near-wall region y+ < 30, where the
forcing is set to zero, the PSDs of Sh do not match the DNS data, and clearly the peak in
the streamwise component is absent. In order to verify the effects of the near-wall portion
of the forcing, another forcing P y+ is computed by setting to zero the points in y+ ≥ 30,
and the output S y+ = RP y+RH is evaluated. The PSD of the output S y+ is presented in
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FIGURE 12. Effect of the inner layer on the large-scale motion of Reτ = 543. PSD: symbols,
S = RPRH ; triangle, streamwise component; circle, spanwise component; square, wall-normal
component; black lines. DNS: red lines, Sh = RPhRH (a, outer layer), Sy+ = RP y+RH

(b, inner layer); solidline, streamwise component; dotted line, spanwise component; dashed line,
wall-normal component; grey area, interval of y where the P is not zero.

figure 12(b), where it appears that the near-wall peak in the velocity is present, but the
PSDs are not matching the DNS data for y+ ≥ 30. It follows that the low-amplitude peak at
y+ = 12 in suu of the DNS data must be caused by the near-wall portion of the streamwise
forcing P11, and that the response S is not strongly influenced by the structure of the input
P near the wall.

5. Role of forcing statistics in linear resolvent analyses

Having access to P allows to quantify its projection onto the right-singular vectors
of the resolvent R, which are the key quantity to assess the accuracy of linear resolvent
analyses (Beneddine et al. 2016). These projections are quantified here for the first time
for the turbulent channel flows presented. The resolvent R is decomposed into its left-
and right-singular vectors, and the projections of the forcing term onto the right-singular
vectors of R are computed. These projections are evaluated for the forcing Pνt , modelled
with eddy viscosity, and for the forcing P from DNS data. The effects of the modelling
choice on the predictions are also discussed.

5.1. Forcing uncorrelated in space
The assumption P = γν I leads to the prediction SRν

= γνRRH . In this case, the PSD
of the output can be written as diag(SRν

) = γν

∑
i σ

2
i |ψ i|2, which is the sum of the

left singular vectors of R times the square of the corresponding singular values. As
b2

i = diag(φH
i W PWφi), diag(SRν

) = ∑
i |ψ i|2a2

i and ai = σibi from (2.9) and (2.10), this
modelling corresponds to setting bi = γν or ai = σiγν . If there are sufficiently large gains
σi to neglect the others, the shape of diag(SRν

) is mainly given by the ψ i corresponding
to such σi. It is shown in Morra et al. (2019) and Pickering et al. (2020) that for turbulent
channel flows and for turbulent jets predictions with a diagonal input matrix can lead
to significant errors in the output. In Morra et al. (2019) P is not presented, and the
conclusions are drawn by comparing SRν

with S from the DNS results. The reason for
the mismatch between the prediction SRν

= γνRRH and the DNS results is clear once the
nonlinear forcing P from the DNS is projected onto the basis of the right-singular vectors
φi, as shown in figure 13.

In figure 13 the trends are normalized by their value at the first mode i = 1; the reference
value for the normalization and the γν used are summarized in table 2. The resolvent
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FIGURE 13. Singular values σi of R, projection coefficients bi, weights ai = σibi. The values
are rescaled by their value at i = 1 (see table 2): triangle, projection of P onto the right-singular
vectors φi of R (bi coefficients); filled symbols, DNS data; empty symbols, eddy-viscosity
model; square, singular values σi of R; circle, ai = σibi; filled symbols, DNS data; empty
symbols, eddy-viscosity model; (a,c) Reτ = 179; (b,d) Reτ = 543; (a,b) small scales; (c,d) large
scales.

gains σi are plotted as red squares for both near-wall and large-scale structures and for
both Reτ = 179 and Reτ = 543. In turbulent channel flows the resolvent modes appear in
pairs with nearly identical gains because of the symmetrical or anti-symmetrical behaviour
of the flow at the walls. It appears that for all considered cases there is a notable gain
separation between the leading pair of gains σ1 and σ2 and the subsequent ones. However,
there are other two worthwhile observations. First, for both Reτ = 179 and Reτ = 543
and for both near-wall and large-scale structures the coefficients bi are such that the
forcing has a non-negligible projection onto the right-singular vectors of R, ψ i, which
correspond to the σi with lower magnitude. In figure 13 note that the magnitude of b1
and b2 is lower than it is for all other bi with i > 2, and compare bi with σi for i > 2
(black-filled triangle symbols in figure 13). Second, for both Reτ = 179 and Reτ = 543
the average magnitude of this projection onto higher-order right eigenfunctions is more
significant for large-scale structures than for small-scale structures. The first observation
explains why the assumption P = γν I can lead to an erroneous prediction diag(SRν

) =
γν diag(RRH) = γν

∑
i σ

2
i |ψ i|2. The magnitude of the projections of the forcing P onto the

right-singular vector φi, which is bi, can compensate a small singular value σi and increase
the relative weight ai = σibi of a left-singular vectorψ i in the linear combination that leads
to the output. The coefficients ai are shown with blue-filled circle symbols in figure 13.
The second observation explains why the assumption P = γν I gives less erroneous
predictions SRν

= γν

∑
i σ

2
i |ψ i|2 for near-wall structures: the magnitude of the projection

P onto φi is such that the trend of the weights ai, which multiply the left-singular
vector ψ i in the linear combination, is less modified than it is for large-scale structures.
This can be seen by comparing figures 13(a) and 13(b) with figures 13(c) and 13(d):
for the near-wall structures the trend of the blue-filled circle symbols, which are ai, is
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more similar to the square red symbols, which represent σi, than it is for the large-scale
structures.

The discussion about the coefficients ai, bi, and the singular values σi and their effect
on the output is consistent with the results shown in figure 14, where the streamwise
component of SRν

is presented. In particular, the assumption P = γν I leads to very
localized large-scale structures, which do not resemble the DNS data, whereas the
near-wall structures approximate better the shape of the DNS data, as presented by Morra
et al. (2019) for a turbulent channel at Reτ = 1007. This occurs owing to the discrepancy,
which is more pronounced for the large-scale structures than the near-wall structures,
between σi and ai = σibi. It is noticeable that for both the Reτ presented and for both
small-scale and large-scale structures the prediction based on the assumption that the
forcing arising from the nonlinear terms is uncorrelated in space is erroneous because
the assumption is not verified in a turbulent flow, as the shapes of P in figures 3 and 6
show.

5.2. Forcing from the eddy-viscosity model
In eddy-viscosity modelling the nonlinear forcing term is modelled by means of the
Boussinesq expression, which states that the unknown Reynolds stresses are proportional
to the rate of strain tensor given by the known field through a scalar νt. Here νt is the eddy
(or turbulent) viscosity, whose structure is prescribed by the chosen modelling approach.
In the most general case νt is not constant in space, so its effect on the dynamics are
(i) modifying the local dissipation rate by a factor 1 + νt/ν and (ii) introducing some
additional terms proportional to the (partial) derivatives of νt and linear in the velocity
fluctuations.

The focus of this work is neither a discussion on the choice of the eddy-viscosity
modelling strategy nor a detailed study on the specific effects of a specific eddy-viscosity
model. Here, the eddy-viscosity model employed in the resolvent analyses of Hwang &
Cossu (2010a,c) and Morra et al. (2019) is used as an example, and its effects are compared
with those produced by the forcing P computed from the DNS data. It is noteworthy that
the model for the eddy viscosity νt adopted here, taken from Cess (1958), is tuned at
Reτ = 2000, so its performance at lower Reτ is not assured. This eddy-viscosity modelling
approach was first proposed by Reynolds & Hussain (1972) and is based on the assumption
that the fluctuations around the mean flow can be decomposed into a coherent and an
incoherent part. The incoherent part is assumed to be unknown, so its contribution to
the Reynolds stresses is modelled, whereas the coherent part is assumed to be known
and it is used for the modelling (see Reynolds & Hussain (1972) for more details). The
results from the eddy-viscosity modelling are discussed by comparing P from DNS data
with Pνt , where Pνt is the equivalent forcing introduced by the eddy-viscosity model such
that SRνt

= RPνt R
H = γνt RRH and is computed as in (2.13). The normalization scalars are

presented in table 2.
The square root of the coefficients b2

i = diag(φH
i W Pνt Wφi), which quantify the

projection of Pνt onto the right-singular vectors φi of R, are presented in figure 13
with black empty triangles. The coefficients ai = σibi which define the shape of the
prediction diag(SRνt

) = ∑
i |ψ i|2a2

i are also presented in figure 13 as blue empty circles.
These quantities are presented for both Reτ = 179 and Reτ = 543, and for both
near-wall and large-scale structures. The trends presented in figure 13 are normalized
by their value for the first mode; the reference for the normalization is presented
in table 2. It appears that the equivalent forcing Pνt , provided by the eddy-viscosity
modelling, is able to modify the relative weights ai = σibi in the linear combination
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Reτ (length scale) γν γνt σ1 b1

179 (large scale) 2.54 × 10−9 8.70 × 10−7 2.14 × 102 7.46 × 10−6

179 (near wall) 1.83 × 10−8 5.26 × 10−7 1.10 × 102 6.50 × 10−5

543 (large scale) 9.61 × 10−10 2.29 × 10−6 1.11 × 103 2.91 × 10−6

543 (near wall) 1.03 × 10−8 4.65 × 10−7 3.74 × 101 5.27 × 10−6

TABLE 2. Normalization factors γν and γνt ; first singular value σ1; first projection coefficient
b1; Reτ = 179 and Reτ = 543. Large-scale and near-wall structures.
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FIGURE 14. PSD. Streamwise component suu: (a,b) Reτ = 179; (c,d) Reτ = 543; (a,c) small
scale; (b,d) large scales. Black line with triangles: DNS data. Red line with squares: Sν =
γνRRH . Blue line with circles: Sνt = γνt Rνt R

H
νt

.

diag(SRνt
) = ∑

i |ψ i|2a2
i of the right-singular vectors ψ i of R similarly to P from DNS

data, as shown in figure 13. In this figure DNS data are represented by the black
filled triangles and blue filled circles. This occurs because Pνt provides coefficients
bi whose magnitude is comparable with that of the coefficients bi given by P from
DNS data.

The discussion about the coefficients ai, bi and the singular values σi and their effect
on the output is consistent with the results shown in figure 14, where the streamwise
component of SRνt

is presented. Here SRνt
is in better accordance with S than SRν

, as
shown in Morra et al. (2019) for a turbulent channel at Reτ = 1007. In particular, the
eddy-viscosity modelling gives an improved approximation of the output also for near-wall
structures. This is expected from the trend of the coefficients ai (and bi) in figure 13: the
empty circles (and triangles) which represent ai (and bi) from Pνt are closer to the filled
circles (and triangles) which represent ai (and bi) for P from DNS data than they are for
P = γν I . Note that for P = γν I it is ai = σiγν and ai/a1 = σi/σ1 in figure 13 coincide with
the red-filled squares.

It is noteworthy that the prediction improves when the relative weight ai for i > 2 is
ai > σi in all the cases presented, which is expected by inspecting the trend of ai and
bi based on P from DNS data. The right-singular vectors of R with i > 2 correspond to
sub-optimals in linear analyses based on the resolvent R. Thus, if a significant part of
the forcing is spanned by linear sub-optimals, such linear analyses can be inaccurate. It is
remarked in Beneddine et al. (2016) that the assessment of the accuracy of linear analyses
based solely on the resolvent R should not hinge solely on the trend of the singular values
σi but on the coefficients ai = σibi, which include the projection of the forcing onto the
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right-singular vectors of R. Here, this statement is quantified for the presented channel
flows.

Thus, the results with the eddy-viscosity model indicate that accounting for the
nonlinear forcing term P improves accuracy for all the cases presented here, not only
for large-scale structures, which is in accordance with the discussion in Pickering et al.
(2020) and Morra et al. (2019). However, it is notable that also in this case the prediction
is erroneous because the provided forcing is not exactly the P computed from the DNS
data. In fact, in figure 13 the filled symbols and the empty symbols for ai and bi, which
represent the projections bi and the coefficients ai of the linear combination of φi for P
and for Pνt are not superposed. Nevertheless, it is clear that the accuracy of the prediction
is improved if the modelled forcing term mimics the coefficients bi from the projection
of P computed from the DNS data. Thus, an eddy-viscosity modelling approach may be
tempting for these sort of predictions, as it leads to an effective forcing Pνt whose structure,
or colour, leads to outputs close to the observations from DNS data.

6. Conclusions

In this work the CSD of the nonlinear forcing term associated with the velocity
fluctuation, which is the input to the resolvent operator based on the mean flow, is
quantified for the first time for turbulent channel flows. The computation is based
on snapshots of DNS of turbulent channel flows at Reτ = 179 and Reτ = 543. The
nonlinear forcing is computed at fixed time instants and the realizations are used with
the Welch method. The CSD of the velocity fluctuations is computed with the same
technique. The CSDs are computed for highly energetic structures typical of buffer-layer
motions, (λ+

x , λ+
z ) = (1130, 113) at Reτ = 179 and (λ+

x , λ+
z ) = (1137, 100) at Reτ = 543,

and large-scale motions, (λx , λz) = (4.19, 1.26) at Reτ = 179 and (λx , λz) = (6.28, 1.57)

at Reτ = 543. The accuracy of the computed nonlinear forcing term is assessed by
computing its response with the resolvent. This response is then compared with the
velocity fluctuations from DNS data. The two PSDs appear to be indistinguishable, which
shows the evaluation to be accurate. The computed CSD of the forcing owing to the
nonlinear terms is shown not to be uncorrelated (or white) in space, which implies the
forcing is structured.

As the nonlinear forcing is non-solenoidal by construction and the velocity field of
the incompressible N–S is affected only by the solenoidal part of the forcing (Chorin
& Marsden 1993), the PSD associated with the solenoidal part of the nonlinear forcing is
evaluated and presented. It is seen that the wall-normal and the spanwise components of
the nonlinear forcing are very different from their solenoidal counterpart for all the cases
presented. In particular, in the solenoidal part of the forcing these two components have
the shape of quasi-streamwise vortices, which are typical of the lift-up mechanism. On the
other hand, the streamwise component of the forcing is almost unchanged in its solenoidal
counterpart. For all the cases presented, it is shown that the transverse components of
the forcing generate a response which is counteracted by the response of the streamwise
component of the forcing, as in a destructive interference. It is also demonstrated that
the high-amplitude peak at y+ = 6 in the streamwise component of the forcing for the
large-scale structure (λx , λz) = (6.28, 1.57) at Reτ = 543 is necessary to recover the local
maximum at y+ = 12 of the streamwise component of the velocity, thus, the streamwise
shear, but it is not relevant for the bulk of the response. This explicitly verifies the
conclusions of Flores & Jimenez (2010); Hwang & Cossu (2011) that the dynamics of
large-scale motions, although affected by smaller near-wall structures, is mostly related
to similar length scales. This last statement is also verified by the fact that a low-rank
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approximation of the forcing, which includes only the pair of most energetic symmetric
and antisymmetric SPOD modes that have the same length scale of the response, leads to
the bulk of the response for both near-wall and large-scale structures and for both Reynolds
numbers.

The projection of the nonlinear forcing term onto the right-singular vectors of the
resolvent is evaluated. It appears that the multiplication of the singular values σi of
the resolvent with the projection coefficients bi modifies the relative importance of the
left-singular vectors of the resolvent in the linear combination that defines the shape of
the response. It is seen that the left-singular vectors of the resolvent associated with very
low-magnitude singular values are non-negligible because the nonlinear forcing term has a
non-negligible projection onto the linear sub-optimals of the resolvent analysis introduced
by McKeon & Sharma (2010). This occurs for both near-wall and large-scale structures at
both Reynolds numbers, but the effect is stronger for large-scale structures. As the response
is given by the linear combination of the left-singular vectors of the resolvent weighted
with the terms ai = σibi, the evaluation of bi is an explicit quantification of the accuracy
of resolvent analysis, as discussed in Beneddine et al. (2016). The same coefficients bi
are computed when the stochastic forcing is modelled with an eddy-viscosity approach.
It is here clarified that this modelling leads to an improvement in the accuracy of
the prediction of the response (Morra et al. 2019) because the resulting coefficients
bi are closer to those associated with the nonlinear forcing term evaluated from DNS
data.

These findings corroborate the conjecture that the nonlinear forcing term of turbulent
channel flows have spatiotemporal coherence, and indicate that the level of coherence
is high. Spatiotemporal coherence was already hypothesized by Reynolds & Hussain
(1972) but has never been quantified explicitly for a turbulent channel flow, even though
it has been used as ‘ansatz’ in many studies. Instead, the question of ‘how much’
coherent may be the forcing has been addressed by some recent studies on turbulent jets
(Schmidt et al. 2018; Lesshafft et al. 2019). These studies show reasonable predictions
of the flow quantities with the assumption of a forcing uncorrelated in space. However,
because here a rank-2 approximation of the forcing leads to the bulk of the response, it
can be concluded that the forcing has high coherence for the present turbulent channel
flows.

The found coherence affects positively the techniques that account for the forcing
through system identification methods, in a similar fashion to Jovanovic & Bamieh (2001),
Zare et al. (2017) or Illingworth et al. (2018). In fact, the low-rank characteristic of
the forcing reduces the number of unknown parameters to identify, which reduces the
complexity of the identification problem and increases the accuracy of the estimation
(Hjalmarsson & Mårtensson 2007). Moreover, the found low-rank approximation of
the forcing can be helpful to the control community for the design or placement
of a counteracting forcing as actuator, following ideas similar to Sasaki et al.
(2020).

Finally, these findings are valid for the presented Reynolds numbers and cannot be used
to infer the level of spatiotemporal coherence of the nonlinear forcing for flows with higher
Reynolds number. Investigations along these directions are under way.
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Appendix A. Resolvent operators

The linear system in (2.2) is derived from the (2.1), as in Schmid & Henningson (2001).
The matrices A and B are defined as

A =
[
Δ−1LOS 0
−iβU′ LSQ

]
, B =

[−iαΔ−1D −k2Δ−1 −iβΔ−1D
iβ 0 −iα

]
, (A 1a,b)

where the discretized version of the generalized OSS operators (Cossu et al. 2009; Pujals
et al. 2009) are

LOS = −iα(UΔ − U′′) + νTΔ2 + 2ν ′
TΔD + ν ′′

T(D2 + k2), (A 2a)

LSQ = −iαU + νTΔ + ν ′
TD, (A 2b)

with D and ′ representing d/dy, k2 = α2 + β2, Δ = D2 − k2, and U( y) the reference flow.
νT = ν + νt with ν the molecular viscosity and νt the eddy-viscosity model. Note that
setting νt = 0 reduces (A 2) and (2.2) to the standard OSS equations. The eddy-viscosity
used is that proposed by Cess (1958), as reported by Reynolds & Tiederman (1967),

νt

ν
= 1

2

[
1 + κ2Re2

τ

9
(1 − y2)2(1 + 2y2)2(1 − exp(−Reτ (1 − |y|)/A))2

]1/2

− 1
2
, (A 3)

with Reτ = uτ h/ν the Reynolds number based on the friction velocity. The von Kármán
constant is κ = 0.426 and the constant A = 25.4 as in Pujals et al. (2009) and Hwang
& Cossu (2010b). This model is tuned for Reτ = 2000. Here νt = 0 results in (2.12a),
whereas νt as in (A 3) results in (2.12b). Homogeneous boundary conditions are enforced
on both walls: v̂(±1) = ∂y v̂(±1) = ω̂y(±1) = 0. The matrices relating û and q̂ are

C = 1
k2

⎡
⎢⎣

iαD −iβ

k2 0

iβD iα

⎤
⎥⎦ , D =

[
0 1 0

iβ 0 −iα

]
. (A 4a,b)

Appendix B. Solenoidal part of the forcing with L or CB

Take a general forcing field f as the sum of a solenoidal field f s and an irrotational
field f r, such that ∇ · f s = 0 and ∇ × f r = 0. Take f r = ∇χ , with χ a scalar field. For
given wavenumbers (α, β) the Fourier modes of f , f s and f r, discretized with Ny points
in the wall-normal direction are the 3Ny × 1 vectors f̂ , f̂ s, f̂ r and the Fourier mode of χ
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discretized with Ny points in the wall-normal direction is the Ny × 1 vector χ̂ . Applying
B to f̂ corresponds to B f̂ = Bf̂ s + B f̂ r. It holds that

Bf̂ r =
[

k2Dχ̂ − k2Dχ̂
−αβχ̂ + βαχ̂

]
= 0, (B 1)

and

Bf̂ s =
[ ˆf s

y

iβ ˆf s
x − iαf̂ s

z

]
≡ Df̂ s, (B 2)

with ˆf s
x , f̂ s

y and f̂ s
z the Ny × 1 vectors of the streamwise, wall-normal and spanwise

components of f̂ s.
As û = Cq̂ and q̂ = Dû, it follows that û = CDû. Thus, f̂ s = CD f̂ s = CB f̂ , which

provides a first way to isolate the solenoidal part of the forcing.
The Fourier transform in time of (2.2) leads to −(iωI + A)q̃ = B f̃ , which is equivalent

to −(iωI + A)Dũ = D f̃ s. Thus, Lũ = CD f̃ s = f̃ s, with L = −C(iωI + A)D.
It follows that Lũ = f̃ s = CB f̃ , which leads to the solenoidal part of the forcing from

the velocity field. Thus, using L or CB to compute the solenoidal part of the forcing is
equivalent.

Appendix C. DNS and data analysis details

The simulations were performed by means of the SIMSON code (see Chevalier et al.
(2007) for details) for the simulation of the turbulent channel at Reτ = 179 and by means
of Channelflow code (see www.channelflow.ch (2018) for details) for the simulation of the
turbulent channel at Reτ = 543.

The initial transient of the simulation is discarded. Welch’s method with Hann
windowing and 75 % overlap is used to compute the CSDs S and P using a total of
Ns = 10001 snapshots of the DNS solutions with sampling interval Δts = 0.5 for a total
acquisition time Tmax = 5000 for Reτ = 179, and using Ns = 2000 snapshots sampled
every Δts = 0.15 for a total acquisition time Tmax = 299.85 for Reτ = 543. Data have
also been averaged between the two walls.
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