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ABSTRACT

This paper shows how the multivariate finite time ruin probability function, in
a phase-type environment, inherits the phase-type structure and can be effi-
ciently approximated with only one Laplace transform inversion.

From a theoretical point of view, we also provide below a generalization
of Thorin’s formula (1971) for the double Laplace transform of the finite time
ruin probability, by considering also the deficit at ruin; the model is that of a
Sparre Andersen (renewal) risk process with phase-type interarrival times.

In the case when the claims distribution is of phase-type as well, we obtain
also an alternative formula for the single Laplace transform in time (or “expo-
nentially killed probability’’), in terms of the roots with positive real part of the
Lundberg’s equations, which complements Asmussen’s representation (1992) in
terms of the roots with negative real part1.

KEYWORDS

Finite time ruin probability, exponentially killed ruin probability, deficit at ruin,
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1. INTRODUCTION

The convenience of phase-type modelling has been amply demonstrated in
both risk and queueing theory, but mostly for ultimate ruin probabilities. For
the considerably more challenging case of finite time ruin probabilities with
deficit at ruin, phase-type approximations were recently provided only in the
classical Poisson arrivals case in Asmussen, Avram and Usábel (2001) (using
Erlang killing) and in Avram and Usábel (2001) (via a single Laplace inversion).

This work is continued below; under the assumption of phase-type inter-
arrival times, we extend first the formula of the double Laplace transform of
the finite time ruin probability of a renewal risk process, obtained by Thorin

1 The authors gratefully acknowledge the financial support from the Dep. of Actuarial Mathematics
and Statistics, Heriot-Watt University, Edinburgh and MCyT SEC2001-1169.
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(1971) and by Cohen (1985) in the context of queueing theory, to include the
deficit at ruin as well. Our solution emphasizes the importance of a certain
“structure matrix’’ (see below), already encountered in the previously studied
classic case with phase-type claims.

We consider a Sparre Andersen risk process in continuous time {Zt}t ≥ 0 with
Uk claim sizes and premium c per time unit, i.e.

kZ u ct Ut
k

N

1

t

= + -
=

! (1)

where u are the initial reserves and Nt the total number of claims up to time t.
The claim times sequence forms an ordinary renewal process with common
c.d.f. of the waiting times between claims A(t) with mean 1/l. The claims {Uk}
are independent one another and also independent of Nt, with c.d.f. B (u) the
distribution function of claim sizes Uk with mean m. The premium rate is usu-
ally defined in actuarial literature as c = lm(1 + q) where q is the relative safety
loading. The distributions A(t),B (u) are concentrated on (0,∞) and have den-
sities and Laplace transforms denoted by a(t), b(u) and a*(m), b*(n), respectively.
We consider here the case when furthermore A(t) and sometimes B (u) are of
“phase-type’’ (see below).

Let us now define t = inf{w > 0 : Zw < 0} as the ruin time and Y = – Zt as
the deficit exactly at ruin time or severity of ruin. Let 

Ct,u,y = Pu{t < t,Y ≤ y} 

denote the probability of ruin within time span t, with initial reserves u and
severity of ruin less than y (the particular case Cu,y = Pu{t < ∞, Y ≤ y} being
known as the perpetual or ultimate ruin probability).

For a particular choice of the parameters u and y, the function Ct,u,y is a
defective distribution function with respect t; we study below the density func-
tion of the ruin time 

tc
C
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, ,

t u y
t u y
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2
=

This interesting function has been treated frequently in the actuarial literature;
see the related works by Egidio dos Reis (1993, 2000), Dickson and Egidio dos
Reis (1996) and Willmot (1998, 2000).

Using a renewal argument, see for instance Thorin (70, 71, 82), we can eas-
ily obtain the following integral equation for the multivariate ruin probability
(with deficit at ruin y) for the ordinary case

( )

( ) ( )

B u cs y B u cs a s ds

b z a s dz ds

C

C

, ,

, ,

t u y

t

t s u cs z y

u cst

0

00

= + + - +

+ - + -

+

#

##

^ ]^ h gh

316 F. AVRAM AND M. USABEL

https://doi.org/10.2143/AST.34.2.505146 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505146


The corresponding equation for the density is
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The classical approach to solve the ruin problem, going back to Cràmer (1955)
and Sparre Andersen (1955), consists in applying integral transforms to the for-
mer integral equations, like for instance the double Laplace-Stieltjes operator 

e dudtC C, , , ,m n y t u y
mt nu

ut 00
=

33
- -

==

** ##

to the integral equations above. Then the original ruin probability function can
be approximated using Laplace transform inversion techniques, see Usábel
(1999, 2001) and Thorin (1970, 71, 73, 77, 82), Thorin and Wikstad (1973), Wik-
stad (1971, 77) who used the Piessens (1969) inversion method of the Laplace
transform, Bohman (1971, 74, 75) who used the Fourier transform and Seal
(1971, 74, 77) who dealt with both Laplace and Fourier numerical inversions.

Assumption: We assume throughout the paper that the interarrival distribution
is PH(�, A, r), i.e. that 

A(t) = 1 – �et A1 

where A is a Markovian subgenerator matrix of order r (i.e. with all offdiag-
onal elements nonnegative, and such that the vector a = –A1 has nonegative
elements, out of which at least one is strictly positive). It follows that the den-
sity is:

a(t) = �eAta

The Laplace transform, defined by the integral e st

0

3 -# A(dt) for Re(s) ≥ 0, is:

a*(s) = �(sI – A)–1 a = � a*[s]

and this extends for all s ∈ � except for the poles that are the eigenvalues of A,
by analytic continuation. An important role below will be played by the vec-
tor a*[s] = (sI – A)–1 a of Laplace transforms with fixed starting phase.

We provide in the Appendix B some further necessary background on phase-
type distribution; the reader is referred to Rolski, Schmidli, Schmidt and
Teugels (1999) and Asmussen (2000) for other results and applications of this
family.

Contents: In the present work, in section 2, we obtain in Theorem 1 the dou-
ble Laplace transform for the multivariate problem (considering the deficit at
ruin y) under the assumption of phase-type interarrivals, generalizing formula 3.4
of Thorin (1971).
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In section 3 an interesting application of theorem 1 is presented when the
claim sizes are also of phase-type nature. This result, expressed in terms of the
non-negative roots (not necessarily distinct) of the Lundberg’s equation gen-
eralizes several particular cases which have been presented in the literature like
Dickson and Hipp (1998, 2000) and Willmot (1999) and yields an alternative
representation of Asmussen’s result (1992) which had used the negative (assumed
distinct) roots.

The numerical illustrations contained in section 4 clearly show that the method
presented can lead to very efficient approximations of the rather challenging
multivariate finite time ruin probabilities. Moreover, the approximations inherit
the phase-type nature as well, see (15).

Finally, in section 5, a short hint on the applications to actuarial practice
is offered, mainly based on the interesting properties of the phase-type distri-
butions.

2. THE DOUBLE LAPLACE TRANSFORM OF THE FINITE TIME

MULTIVARIATE RUIN PROBABILITY

The following result yields the double Laplace transform of the multivariate
ruin probabilities, including in the usually ignored case when the Cramer-Lund-
berg equation has multiple roots. We will denote by f k)(n) the k’th derivative
with respect to n of a general function f (n).

Theorem 1. Suppose that the waiting times of a risk process are distributed
PH(�, A, r) (assumed minimal PH representation). Let

y ( )B n B a y B a e da
a

na

0
= + -

3

=

-* # ^ ]^ h gh (3)

and introduce the r ≈ r structure matrix:

Cm

= (a*0)[m – cnm1],…,a*sm1–1)[m – cnm1],…,a*0)[m – cnmq],…,a*smq–1)[m – cnmq])

where {nmj}
q
j = 1 the complex roots with non-negative real part of the Cramer-Lund-

berg equation

1 – b*(n)a*(m – cn) = 0 

with respective multiplicities smj, j = 1, ..., q.

Then, the double Laplace transform of ct,u,y (see (2)) is given for all complex m
and n with non-negative real part by:

* *

* *y

( ) ( )
( ) ( )

e du dt b n a m cn
B n a m cn m cnD C a

c c
1, , , ,

,
m n y

mt nu
t u y

m y m
1

00
= =

- -

- - -33
- -

-

**
*

##
6 @

(4)

318 F. AVRAM AND M. USABEL

https://doi.org/10.2143/AST.34.2.505146 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505146


where the row 1 ≈ r vector Dm,y is
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and for simplicity in the notation Dm,y(n) = B*
y (n)a*(m – cn)

Proof. Applying the double-Laplace transform operator 
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to (2) and using the lemma in Appendix A we find that
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where, for convenience in the notation

*
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*
y( ) ( ) ( )D n B n a m cn,m y = -* (8)

and �*[m – cn] = ((m – cn)I – A)–1a by definition.
To obtain the values of the row 1 ≈ r vector Uy(m) we use the fact that

as a double Laplace transform, the function c**
m,n,y is finite for any value of n,

Re(n) ≥ 0, and hence that at nmj , j = 1, ...,q the numerator of (6) must have
roots of at least the same multiplicity as those of the denominator. The C-L
equation has exactly r roots (r is the order of the minimal PH representation)
with non-negative real part. Something easy to prove bearing in mind that the
Laplace transform a*(m – cn) is just a quotient of polynomials with denomi-
nator of order r (greater than the one of the numerator).

This yields the following system of r equations and unknowns 

Uy(m) a*l )[m – cnmj] = Dl )
m,y(nmj); j = 1, ..., q l = 0, ..., smj – 1 

where a*l )[m – cnmj] and Dl )
m,y(nmj) are the l-th derivatives with respect n at nmj,

or, using matrix notation

Uy(m)Cm = Dm,y (9)

The former system of equations has a unique solution because of the nature of
Uy(m) (see (7)): indeed for a particular choice of � and A, in this case the minimal
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PH representation, the values of the matrix functions *
, ,m y

,bc c
mI A

c
mI A

-
-** ^ h and

yB c
mI A-*^ h are unique. This last fact means that should Cm be singular the for-

mer systems of equations had infinite solutions Uy(m) reaching an absurd state-
ment. Subsequently 

Uy(m) = Dm,yC –1
m ¬

Note: This result reduces the ruin problem to the computation of the roots
with nonnegative part of the Cramèr-Lundberg equation and that of C –1

m .
Theorem 1 is an extension of the multivariate problem (considering the
deficit at ruin y), under the assumption of phase-type interarrivals, generalizing
formula 3.4 of Thorin(1971).

Unfortunately, using theorem 1, approximations to Ct,u,y, considering a
general claim size distribution b(x), can only be obtained after two Laplace
transform inversions. However, two interesting cases only need one Laplace
transform inversion:

1. the ultimate multivariate ruin probability for general claim size distribution
b(x), easily obtained using just c , ,n y0

** .
2. the finite time multivariate ruin probability for phase-type claim sizes, con-

sidered in the next section.

3. MULTIVARIATE RUIN PROBABILITIES FOR PHASE-TYPE CLAIM SIZES

AND WAITING TIMES

Let us now focus on the phase-type environment both for claim sizes and wait-
ing times. This particular choice is not too restrictive, because this family is
dense in the sense that any probability distribution can be approximated using
phase-type distributions (see the concluding comments section for details).

The following theorem offers the finite time multivariate ruin probability
using only one Laplace inversion.

Theorem 2. Under the assumption of PH(b,B,k), claim sizes and PH(�,A,r),
waiting times are phase-type, the single Laplace transform in time of the multi-
variate ruin probability is

;

m e eI

Q B b b B

C j

j

1
1

1

, ,m u y m
u y

m m

Q Bm= -

= + = -
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and
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and nmi, i = 1,...,q are the complex roots (not necessarily distinct) with non-neg-
ative real parts of the C-L equation and Dl)

m(n) denotes the l’th derivative with
respect to n of D0)

m(n).

Proof. Let us start considering the single Laplace transform in time of the
ruin functions

e dt
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The reader can easily realize that the expression above shows the multivariate
ruin probability function for an exponentially killed process, see Avram and
Usábel (2001) and Asmussen, Avram and Usábel (2002)

This function admits a simple renewal representation similar to the ultimate
ruin probability
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in terms of a new shifted waiting times distribution with d.f. am(t) = e – mta (t)

c*
m,u,y ≡ C∞,u,y with waiting times d.f. am(t) (12)
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Let us now follow the reasoning presented in Asmussen (2000). Chapter 8.
Theorem 4.4. for the ultimate case when claim sizes are PH(b,B,k)

c*
m,u,∞ = jm eQm u 1
Qm = B + bjm; b = – B1

where jm, the initial phase distribution of the ladder heights, is obtained in
proposition 4.3 using a fixed point equation.

However, a different approach is used here based on proposition 4.1. a) in
the mentioned text: it suffices to find the ladder height PH distribution of the
shifted risk process (or killed following an exponential distribution) 

Gm(y) = jm(I – eBy)1

Thence using lemma 3 (see below in this section)

( )G y c D C a1
,m m y m=

1-
b l (13)

It is easily proved that for PH(b,B,k) claim sizes

B*
y(n) = b (nI – B)–1(I – eBy)1

Dl)
m,y(n) = a *(m – cn)B*

y (n)
= Dl)

m(n) (I – eBy)1

and since Dm,y is a row vector (see (5)) and C –1
m a is a column vector with com-

ponents (C1
m ··· Cr

m)� and the last two terms in the RHS above are independent
of n, they may be factored outside the vector Dm,y using a block product in the
first factor, denoted by ≈
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proving (11).
One should notice that the row vector jm eQm u provides the initial phase

structure when the process crosses the ruin barrier or reaches zero reserves (see
again Asmussen (2000), chapter 8). Afterwards the claim causing ruin will
evolve following the intensity matrix B and obviously 

c*
m,u,y = jm eQm u (I – eBy)1,

see also Avram and Usábel (2001) and Asmussen, Avram and Usábel (2001).

Lemma 3 is now presented and proved. ¬
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Lemma 3. The c.d.f. of the ladder height of the shifted (or exponentially killed)
risk process

( )G y c D C a1
,m m y m

1= -
b l (14)

Proof. It is easy to see that 
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Remark 1. Corollary 4.1 in Asmussen (1992) can be also applied to obtain jm
using the negative (assumed distinct) roots of the Lundberg’s equation. However
the result is not proved to hold when multiple negative roots are found. Moreover,
when the order of the claim sizes phase-type distribution is greater than the one
modelling the waiting times, k > r, formula (14) is clearly more efficient because
the number of roots to find is smaller.

The multivariate ultimate ruin probability can be given by a phase-type dis-
tribution without inversions 

e eIcC j 1, , , ,u y u y
u yQ B

0 0
0= = -3

* _ i

(see Asmussen and Rolski (1992) and Avram and Usábel (2001) for the clas-
sical case). Most standard Laplace transform inversion techniques can given
by the general formula

,M i ( )W t e eIC j 1, , ( )t u y m t
u

i

M
yQ B

0

( )
i

m i t- -
=

,M
,M

! _ i (15)

so that the multivariate finite time ruin probability can be expressed very con-
veniently as a sum of phase-type distributions of order k.

Remark 2. In Asmussen (1992), jm was also obtained by an iterative solution.
When inverting Laplace transforms, the precision digits of the Laplace transform
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to invert is crucial in many methods due to the magnitude of the weights (WM,i (t)),
see for instance Usábel (1999) for details in the Gaver-Stehfest method. For the
reason just mentioned, relying on an iterative procedure to obtain jmM,i (t) may
endanger the accuracy.

4. NUMERICAL ILLUSTRATION

As a numerical illustration table IIB in Wikstad (1971) is reproduced below.
The claim size distribution is PH(b,B,3)

b = ( 0.0039793 0.1078392 0.8881815 )
B = diag{ – 0.014631 – 0.190206 – 5.514588 }

and the waiting times PH(�,A,2)

� = ( 0.25 0.75 ) A = diag { – 0.4 – 2 } (16)

Tables I-IV were obtained using (15) and the Gaver-Stehfest method of invert-
ing the Laplace transform with order M = 8 (see Usábel (1999)) where
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Original results by Wikstad (1971) in brackets. The reader can see the match
of 4 significant digits in many figures. Later, calculations were performed using
M = 12 with a perfect match of 4 significant digits in all cases. q is the rela-
tive safety loading considered.
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TABLE I

C1,u,∞ TABLE IIB WIKSTAD (1971)

t = 1
u

0 1 10 100

0.05 0.3301(0.3300) 0.1187(0.1186) 0.0276(0.0276) 0.0013(0.0013)
0.10 0.3221(0.3221) 0.1180(0.1180) 0.0275(0.0275) 0.0013(0.0013)

q 0.15 0.3147(0.3146) 0.1174(0.1173) 0.0274(0.0274) 0.0013(0.0013) 
0.20 0.3077(0.3076) 0.1168(0.1167) 0.0273(0.0273) 0.0013(0.0013)
0.25 0.3011(0.3010) 0.1161(0.1161) 0.0272(0.0272) 0.0013(0.0013) 
0.30 0.2949(0.2948) 0.1156(0.1155) 0.0271(0.0271) 0.0013(0.0013)
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Let us now use a different method of inversion of the Laplace transform and
obtain Table 8 in Thorin & Wikstad (1973), where the waiting times distribu-
tion follows (16) and the claim size distribution is PH(b, B, 5)
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TABLE II

C10,u,∞ TABLE IIB WIKSTAD (1971)

t = 10
u

0 1 10 100

0.05 0.5960(0.5962) 0.4344(0.4345) 0.1686(0.1686) 0.0103(0.0103)
0.10 0.5843(0.5845) 0.4259(0.4260) 0.1647(0.1647) 0.0103(0.0103)

q 0.15 0.5730(0.5731) 0.4176(0.4178) 0.1610(0.1610) 0.0103(0.0103)
0.20 0.5621(0.5622) 0.4097(0.4098) 0.1574(0.1574) 0.0102(0.0102)
0.25 0.5515(0.5517) 0.4019(0.4021) 0.1540(0.1539) 0.0102(0.0102)
0.30 0.5413(0.5415) 0.3945(0.3946) 0.1506(0.1506) 0.0101(0.0101)

TABLE III

C100,u,∞ TABLE IIB WIKSTAD (1971)

t = 100
u

0 1 10 100

0.05 0.7978(0.7978) 0.7099(0.7098) 0.4898(0.4898) 0.0932(0.0932)
0.10 0.7790(0.7789) 0.6878(0.6878) 0.4661(0.4662) 0.0899(0.0898)

q 0.15 0.7606(0.7605) 0.6668(0.6667) 0.4444(0.4444) 0.0867(0.0867)
0.20 0.7427(0.7426) 0.6467(0.6466) 0.4244(0.4244) 0.0837(0.0837)
0.25 0.7254(0.7253) 0.6276(0.6275) 0.4060(0.4059) 0.0809(0.0809)
0.30 0.7086(0.7086) 0.6094(0.6094) 0.3890(0.3889) 0.0783(0.0782)

TABLE IV

C1000,u,∞ TABLE IIB WIKSTAD (1971)

t = 1000
u

0 1 10 100

0.05 0.9113(0.9113) 0.8724(0.8724) 0.7690(0.7691) 0.4207(0.4209)
0.10 0.8890(0.8890) 0.8429(0.8429) 0.7247(0.7247) 0.3708(0.3710)

q 0.15 0.8659(0.8659) 0.8130(0.8130) 0.6815(0.6815) 0.3273(0.3274)
0.20 0.8425(0.8425) 0.7833(0.7833) 0.6403(0.6403) 0.2896(0.2897)
0.25 0.8191(0.8191) 0.7543(0.7543) 0.6015(0.6015) 0.2571(0.2572)
0.30 0.7961(0.7961) 0.7263(0.7263) 0.5655(0.5655) 0.2292(0.2293)
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b = ( 0.6635948 0.3114878 0.02405664 0.0008425574 0.00001823254 )
B = diag { 3.675472 0.7116063 0.09447445 0.00932298 0.000496562 }

This distribution is considered a rough approximation to the Pareto distribu-
tion B(x) = 1 – (1 + 2x) –3/2.

Now the approximations for the finite time multivariate ruin probability
can be then given by Ct,u,y - S 0

M(t) obtained from (15) where

, ,M M0

( ) , , ( ), , , ...

( ) ; ( ) ( ) , , , ...

lnm t t
A

t
i I I A i

W t t
e W t t

e i

p
2

1 15 10 0 1

2
1 1 2

,

/ /

M i

A

i
i

A2 2

= + = - = =

= = - =

where A is a parameter controlling the maximum significant digits of the
approximation. Later the error can be reduced and tight interval approxima-
tions found, as shown in Usábel (2001) using the acceleration technique 

( )
( ) ( )

, ..., , ...,S t
S t S t

n M j M n
2

1 0n
j n

j
n
j1

1

1

=
+

= = -
-

+

-

The interval estimations in tables V-VII were obtained using S 20
9 (t), S 20

10 (t) and
S20

11 (t) so that the maximum M considered was M = 31, see Usábel (2001) for details
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TABLE V

C100,u,∞ TABLE 8 THORIN & WIKSTAD (1971)

t = 100
u

0 100 1000

– 0.10 (9.10914698,9.10914699)10–1 (4.45651275,4.45651276)10–2 (1.141111286,1.141111288)10–3

– 0.05 (8.92746514,8.92746515)10–1 (4.24507550,4.24507551)10–2 (1.138840749,1.138840750)10–3

q 0.00 (8.73894475,8.73894477)10–1 (4.06047828,4.06047829)10–2 (1.136641913,1.136641915)10–3

0.05 (8.54651224,8.54651225)10–1 (3.897856107,3.897856112)10–2 (1.134508219,1.134508221)10–3

0.10 (8.35266374,8.35266375)10–1 (3.753304129,3.753304134)10–2 (1.132433562,1.132433563)10–3

TABLE VI

C1000,u,∞ TABLE 8 THORIN & WIKSTAD (1971)

t = 1000
u

0 100 1000

–0.10 (9.77349281,9.77349283)10–1 4.55579375,4.55579376)10–1 (1.251313553,1.251313554)10–2

– 0.05 (9.60855502,9.60855504)10–1 (3.65024541,3.65024542)10–1 (1.209846323,1.209846325)10–2

q 0.00 (9.40788891,9.40788892)10–1 (2.971960518,2.971960525)10–1 (1.175856267,1.175856269)10–2

0.05 (9.18570432,9.18570433)10–1 (2.46971941,2.46971942)10–1 (1.147302851,1.147302852)10–2

0.10 (8.95361315,8.95361316)10–1 (2.092929693,2.092929698)10–1 (1.122718227,1.122718229)10–2
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Finally, in table VIII, the deficit at ruin is also considered, y = 6, and the interval
estimations were obtained with S 14

4 (t), S 14
5 (t) and S 14

6 (t) so that the maximum
M = 20.
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TABLE VII

C10000,u,∞ TABLE 8 THORIN & WIKSTAD (1971)

t = 10000
u

0 100 1000

– 0.10 (9.98727017,9.98727019)10–1 (9.60410501,9.60410503)10–1 (3.796909843,3.796909845)10–1

– 0.05 (9.90970781,9.90970783)10–1 (8.27146149,8.27146152)10–1 (2.034914408,2.034914409)10–1

q 0.00 (9.72646350,9.72646352)10–1 (6.39845712,6.39845714)10–1 (1.300731765,1.300731767)10–1

0.05 (9.47510200,9.47510201)10–1 (4.82302929,4.82302930)10–1 (1.004642716,1.004642720)10–1

0.10 (9.20595761,9.20595762)10–1 (3.75206902,3.75206903)10–1 (8.54070281,8.54070285)10–2

TABLE VIII

C100,u,6 TABLE 8 THORIN & WIKSTAD (1971)

t = 100
u

0 100 1000

– 0.10 (8.0586,8.0595)10–1 (7.272,7.273)10–3 (8.923,8.924)10–6

– 0.05 (7.848,7.849)10–1 (6.3738,6.3744)10–3 (8.472,8.473)10–6

q 0.00 (7.638,7.639)10–1 (5.6405,5.6411)10–3 (8.072,8.073)10–6

0.05 (7.431,7.432)10–1 (5.038,5.039)10–3 (7.718,7.719)10–6

0.10 (7.228,7.229)10–1 (4.540,4.541)10–3 (7.404,7.405)10–6

The reader can easily see that the incorporation of the deficit to the calculations
is trivial using (15). All calculations were performed in Maple V with 22 sig-
nificant digits.

5. CONCLUDING COMMENTS

From the theoretical point of view, this paper offers

1. Theorem 1. A generalization of formula 3.4 in Thorin (1971) to phase-type
waiting times, instead of just hyperexponential, and considering an arbitrary
claim size distribution. The deficit at ruin is also introduced. The phase-type
environment is clearly much more powerful that the hyperexponential case
considered in the works by Cramer and Thorin (see the introduction for
details).

2. Theorem 2. An alternative representation of the crucial row vector jm, the
initial phase structure of the ladder heights of the risk process in a phase-type
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environment (which yields then immediately the killed multivariate ruin
probabilities by a mere matrix exponentiation). The new result uses the
complex roots with non-negative real part of the CL’s equation instead of
the negative (assumed distinct) ones in Asmussen (1992).

From the practical point of view, the purpose of this work is showing how finite
time multivariate ruin probabilities, in a phase-type environment, can be approxi-
mated efficiently with only one Laplace transform inversion. Moreover, the
mentioned ruin probability can be given by a sum of phase-type distributions
of the same order as the one modelling the claim size, k (see (15)).

In actuarial practice, clearly, only empirical distributions will be available
for the claim size and waiting times of the risk process. The phase-type, as
mentioned earlier, is a dense family and can approximate any distribution. The
problem of fitting phase-type distribution to empirical data is a most interesting
issue in applied probability, unfortunately beyond the scope of this work. The
reader is referred, for instance, to the works by Bux & Herzog (1977), John-
son & Taaffe (1985), Lang & Arthur (1994) or Mitchell & van de Liefvoort
(2000) for methods, illustrations and software available. For an actuarial appli-
cation see also Tseggai (2000).

When approximating empirical distributions using phase-type families, the
claim size distribution is more likely to be complicated due to possible long tail
behaviours. This translates into a higher order phase-type representation for
the claim size and hence in a larger number of negative roots (k & r). Therefore,
we find the representation of jm using the r non-negative roots of the Lundberg’s
equation instead of the k non-positive ones quite useful for computations.

The phase-type environment, besides of practical interest due to the simplic-
ity of the results, can offer many valuable generalizations to the risk theory mod-
elling such as the embedding of the distribution in a semi-markovian environment,
see chapter 8 in Asmussen (2000) or Avram, Pistorius and Usábel (2003)
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6. APPENDIX A

Lemma 4. When the waiting times of the risk process (1) follows a PH(�,A,r)
distribution with d.f. a (t) = �eAta and Laplace transform a*(n) = �a*[n] where

a*[m – cn] = ((m – cn) I – A)–1 a
a = – A1

then
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Proof. a) Using the definition of the double-Laplace transform 
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we find after the change of variables t – s = w, u + cs – z = v, s = s, z = z
that it equals:
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substituting into (18) we obtain the result.
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APPENDIX B: PHASE-TYPE DISTRIBUTIONS

Definition 1. A phase-type distribution B(x), PH(b, B, k) henceforth, is the dis-
tribution of the absorbtion time z of a finite (transient) Markov process Jt on a
state space {C,1,…, k} with k + 1 states to an absorbing state C called cemetery.
Here, B denotes the restriction of the intensity matrix of J to the transient states
{1,…,k}, b denotes the initial distribution (written as a row vector) of J0 on {1,
…,k}, and z = inf{t > 0 : Jt = C}

It follows that

B (x) = �b [z ≤ x] = 1 – beBx 1
b (x) = beBx b

where 1 = (1 … 1)�, b = – B1, and the Laplace transform of the density is:

b*(s) = b (sI – B)–1 b
= bb*[s]  (see item 2 below)

Notes:
1) The vector b yields the rates of absorbtion from the various phases.
2) The column vector of Laplace transforms b* [s] = (b*

i (s), i = 1,…,k), where
b*

i (s) = �i e –sz denotes the Laplace transform of the absorbtion time start-
ing in phase i, given by 

b* [s] = (sI – B)–1 b

3) The phase-type family is dense (in the sense that any probability distribu-
tion can be approximated using a phase-type distribution) and hence of
considerable practical interest.

4) The phase-type distributions have been used frequently in the recent actuar-
ial and queueing literature. The reader is referred to the works by Neuts (1975,
1977), Asmussen (1987, 92), Asmussen and Rolski (1991) and Asmussen and
Bladt (1996) for further properties and applications.

F. AVRAM

Dept. of Mathematics
Université de Pau
France
Floris.Avram@univ-pau.fr

M. USÁBEL

Dept. of Business Adm.
Universidad Carlos III de Madrid
Spain
usabel@emp.uc3m.es

332 F. AVRAM AND M. USABEL

https://doi.org/10.2143/AST.34.2.505146 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505146

