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We investigate experimentally the coalescence cascade process for a confined swarm
of deformable bubbles immersed in a bidimensional vertical cell filled with water. For
different gas volume fractions, air bubbles of size D0 larger than the cell thickness are
injected at the bottom of the cell. The bubbles swarms transformation is explored using
high-speed visualizations. The time evolution of each bubble in the swarm is determined
using a specifically developed algorithm, enabling bubble tracking and coalescence
detection. We determine the evolution of the bubble size distribution downstream from
the injection point, and show that the stages of the coalescence cascade are characterized
by the diameter, DV90, representative of the largest bubbles. The collision frequency of
pairs of bubbles of sizes Dk and Dk′ , h(Dk,Dk′), and their coalescence efficiency, λ, are
obtained from the experiments. The efficiency is nearly constant, independently of the
bubble sizes and of the gas volume fraction. Concerning collision frequency, our results
reveal the existence of two different coalescence regimes depending on the capability of
the bubbles to deform. Models describing h(Dk,Dk′) for both regimes are provided. They
take into account the specific response of the bubble pair, which depends on the reduced
diameter Dp = 2DkDk′/(Dk + Dk′), to the global swarm-induced agitation governed by
DV90 and the gas volume fraction. In the first regime, occurring for smaller Dp, bubbles
are brought together by agitation and rapidly coalesce, while for sufficiently large Dp, both
bubbles are able to deform and spend more time adapting mutually their shapes before
coalescing.
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1. Introduction

The dynamics of gas bubbles in liquids drives a wide variety of operations in the chemical
process industry, mineral processing and food industry, among many other examples. It
also leads the mass exchange between ocean and atmosphere and the generation of aerosols
(Deane & Stokes 2002). Breakup and coalescence of bubbles is commonly present in
most applications, and equipment is designed based on the understanding of the gas–liquid
interaction phenomena and on the bubble’s behaviour. Thus, a profound knowledge of
interaction between bubbles as well as between the gas and the liquid phases is crucial
to understand the processes and optimize their performance. Bubble fragmentation has
been extensively investigated under different flow configurations, and different models
have been proposed (Tsouris & Tavlarides 1994; Martínez-Bazán, Montañés & Lasheras
1999a; Wang, Wang & Jin 2003; Qi, Masuk & Ni 2020, among many others); however,
there is still a large amount of scientific effort devoted to this topic. Coalescence is also
essential to describe the dynamics and evolution of a population of bubbles. It is usually
defined as a three-step process involving three different mechanisms (Prince & Blanch
1990; Chesters 1991). The first step consists of bringing close together the bubbles involved
in the process, typically two of them. This step is controlled by the external liquid flow that
induces the bubbles motion and causes them to collide. Once the bubbles are in contact, in
order to coalesce, it is necessary to drain the thin liquid film separating them. The last stage
initiates when the film becomes thin enough so that inter-molecular forces, such as van der
Waals ones for pure fluids, become dominant, breaking the liquid film and thus making
the bubbles coalesce. Considerable effort has been also devoted to better understand the
underlying physics that characterizes the growth of the neck which forms just after a hole
appears on the drained liquid film between coalescing bubbles or drops (Eggers, Lister &
Stone 1999; Paulsen et al. 2014; Anthony et al. 2017; Moreno Soto et al. 2018). It should be
noted that the last stage of the drainage is very fast compared with the previous ones. Due
to marked contrasts of coalescence efficiency observed when physico-chemical properties
of the fluids vary, most of the coalescence studies concentrate on the drainage of the liquid
film once the bubbles are sufficiently close (Marrucci 1969; Chesters & Hofman 1982;
Oolman & Blanch 1986; Zhang & Thoroddsen 2008; Ghosh 2009; Huisman, Ern & Roig
2012). This analysis of coalescence as a three-step process has been fruitful to build several
global models combining knowledge obtained from different studies. It remains that, in a
given flow configuration, steps come one after another without real discontinuity, thus, the
ratios of their respective lifetimes may vary depending on their ambiguous definition. In
this sense, it can thus be interesting to analyse the coalescence process as a whole, using
phenomenological models that avoid the complexity of describing in detail these stages. In
the present work we focus on the global process, analysing the hydrodynamics controlling
the bubble coalescence in a high Reynolds number confined bubble swarm. In order to
explain precisely the aim of our study we first present the modelling formalism that we
adopt and the closure laws that we discuss.

The evolution of sizes of a population of bubbles is often modelled by means of a
Boltzmann-type partial integro-differential conservation equation (Williams 1985),

∂n
∂t

+ ∇ · (ūn)+ ∂ (Rn)
∂v

= Q̇r + Q̇d, (1.1)

where n(v, x, t) dv dx is the probable number of bubbles with volume in the range dv
about v in the spatial range dx about x at time t, ū is the mean velocity of bubbles
of volume v at location x at time t, Q̇r and Q̇d are the birth and death rates of change
of the number of bubbles due to breakup and coalescence, and R is the rate of change of
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the volume v of a bubble which, for flows with no thermal effects, may be due to mass
dissolution. In the present work we do not include thermal effects and dissolution can
be neglected (R = 0) since the dissolution times are much larger than the characteristics
residence time of bubbles for the bubble sizes considered. Equation (1.1) may depend
on space and time if the problem is non-homogeneous and unsteady. A dependence on
the velocities of the bubbles can also be introduced if, for a given size, possible velocities
are distributed in a large range where coalescence and breakup dominant mechanisms may
vary. For simpler presentation, we do not incorporate this effect in the following equations,
as the flow regime that we consider does not require this supplementary complexity to be
represented. When neglecting changes of volume due to a thermodynamical phase change,
taking into account breakup as well as coalescence, this equation writes as (Coulaloglou
& Tavlarides 1977; Martínez-Bazán 1999; Marchisio & Fox 2013)

∂n(v, x, t)
∂t

+ ∇ · [n(v, x, t)ū(v, x, t)] = Q̇c + Q̇b, (1.2)

where Q̇c represents the sink or source terms of n(v, x, t) due to coalescence and Q̇b due
to breakup. Thus, the equation that determines the transport and the evolution of n(v, x, t)
is the Liouville–Boltzmann’s equation. It is a generalization of Smoluchowski’s equation
established for particle coagulation (Smoluchowski 1917), usually called the population
balance equation (PBE) (Williams 1985). Moments of order 0 and 1 of n(v, x, t) are
respectively the total number of bubbles per unit volume, N∞(x, t), whatever their sizes,
and the volume fraction of the dispersed phase α(x, t) (Ramkrishna 2000; Marchisio &
Fox 2013),

N∞(x, t) =
∫ ∞

0
n(v, x, t) dv, (1.3)

α(x, t) =
∫ ∞

0
vn(v, x, t) dv. (1.4)

The coalescence and breakup rates in (1.2) read as

Q̇c(v, x, t) = 1
2

∫ v

0
λ(v−v′, v′)h(v−v′, v′)n(v − v′, x, t)n(v′, x, t) dv′ − gc(v)n(v, x, t),

(1.5)
and

Q̇b(v, x, t) =
∫ ∞

v

f (v′, v)m(v′)gb(v
′)n(v′, x, t) dv′ − gb(v)n(v, x, t), (1.6)

where h(v, v′) is the collision frequency between bubbles of volumes v and v′; λ(v, v′) is
the collision efficiency between bubbles of volumes v and v′; gc(v) is the coalescence rate
of bubbles of volume v with any other bubble; gb(v) is the breakup or fragmentation
frequency of bubbles of volume v; m(v) is the number of bubbles resulting from the
fragmentation of bubbles of volume v; and f (v′, v) is the bubble size distribution of
daughter bubbles resulting from the fragmentation of a mother bubble of volume v′.
In (1.5) the first integral term on the right-hand side is a source term and the second
one a sink term, both due to coalescence. Similarly, in (1.6) source and sink terms due
to fragmentation also contribute to the evolution of the population of bubbles. As a
complement to (1.5), the coalescence rate of bubbles of volume v with any other bubble is
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defined by

gc(v) =
∫ ∞

0
λ(v, v′)h(v, v′)n(v′, x, t) dv′. (1.7)

Several closure laws and models for each of these terms have been proposed in the
past. Their validity is most often limited to given hydrodynamical regimes of breakup
and coalescence enforced by turbulent agitation or by mean shear flow. Sometimes
they also include the influence of physico-chemical properties of the liquid or of the
interface. A large amount of information on the adopted models can be found in references
such as Coulaloglou & Tavlarides (1977), Prince & Blanch (1990), Chesters (1991) and
Martínez-Bazán et al. (2010) or in literature reviews such as Kolev (1993), Lasheras
et al. (2002), Liao & Lucas (2009, 2010). However, the present work is focused on the
coalescence processes of bubbles rising in liquid initially at rest, leaving breakage out of
its scope. Thus, without including bubble breakup, (1.2) reduces to

∂n(v, x, t)
∂t

+ ∇ · [n(v, x, t)ū(v, x, t)]

= 1
2

∫ v

0
λ(v − v′, v′)h(v − v′, v′)n(v − v′, x, t)n(v′, x, t) dv′

−
∫ ∞

0
λ(v, v′)h(v, v′)n(v, x, t)n(v′, x, t) dv′. (1.8)

In the literature there are two types of models that have been proposed for h(v, v′), or
for the coalescence time, including phenomenological and physical models. The physical
models are mainly focused on the description of the drainage process of the liquid film
separating two bubbles when they get close enough (Chesters & Hofman 1982; Oolman &
Blanch 1986; Ghosh 2009; Huisman et al. 2012). They are thus limited to coalescence in
stagnant liquids, unperturbed by the bubbles in motion. In contrast, the phenomenological
models are introduced for moving bubbles and are based on models of collision of
molecules applied in physical gas dynamics (Coulaloglou & Tavlarides 1977; Sovova 1981;
Prince & Blanch 1990; Tsouris & Tavlarides 1994). In these models, the coalescence rate
of bubbles of volume v with any other bubble, defined by (1.7), is commonly reduced to
the product between a collision frequency times a coalescence efficiency.

The objective of this work is to determine λ(v, v′) and h(v, v′) from bubble coalescence
experiments performed in a high-Reynolds-number swarm of bubbles injected at the
bottom of a planar vertical thin-gap cell filled with liquid at rest, and to analyse their
contribution to gc(v). This confined configuration favours observation of coalescence.
Starting from injection, the bubbles are greater than the gap thickness, favouring their
interaction since the bubbles cannot escape out of the plane. Thus, coalescence is
enhanced, being the coalescence rate larger than in the three-dimensional configuration
(Lundin & McCready 2009).

In the regime explored here, there is no dewetting of the liquid films between the
bubbles and the walls, and bubbles move at large Bond and Archimedes (or Reynolds)
numbers. Thus, the cascade of sizes generated by coalescence is expected to create a
complex self-induced gravity-driven agitation in the swarm. Indeed, for isolated bubbles,
it is already known that bubbles whose sizes vary in a range similar to the one that we
observe, exhibit contrasted oscillating paths and shapes (Kelley & Wu 1997; Roig et al.
2012; Filella, Ern & Roig 2015; Piedra, Ramos & Herrera 2015; Hashida, Hayashi &
Tomiyama 2019; Pavlov et al. 2021). In the present work we do not study the statistical
properties of bubble agitation, but it has to be kept in mind that the self-induced agitation

944 A13-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.492


Coalescence of bubbles in a high Re confined swarm

results from wake interactions, as already discussed in a homogeneous swarm of confined
bubbles where coalescence was inhibited (Bouche et al. 2012, 2014).

It is worth pointing out that this flow configuration finds promising applications in
chemical engineering since it is expected to be an alternative reactor of intermediate size
that takes advantage of the confinement to enhance mass transfer, as in monolith reactors,
and of the intense bubble-induced agitation to develop satisfactory in-plane mixing
(Roudet et al. 2017; Alméras et al. 2018). Some recent applications have been developed
concerning light-activated reactions or cultivation of micro-algae in photo-reactors that
need narrow geometries due to light absorption and attenuation, while keeping efficient
mixing and mass transfer requirements (Oelgemoller 2016; Pruvost et al. 2017; Thobie
et al. 2017).

The paper is organized as follows. The experimental facility and the techniques
developed to describe the evolution of the population of bubbles are presented in § 2. A
careful examination of the performances of the bubble tracking algorithm is also presented
in this section. The statistical properties of the gas flow and their evolution with the bubble
population, for different values of the void fraction at injection, are reported in § 3. In
particular, in § 3.1 we will introduce a parameter to properly characterize the evolution of
bubble sizes. Then, the results of the rate of change of the population of bubbles and the
measurements of the bubble collision frequency are summarized and discussed in § 3.2.
The model associated with the collision frequency is introduced in § 4. Finally, § 5 is
devoted to conclusions.

2. Experimental facility and techniques

The experimental facility used to characterize the evolution of the bubble size distribution
in a high Reynolds number confined bubble swarm is presented in § 2.1. This particular
flow configuration allowed a direct analysis of the whole bubble population using
the shadowgraphy technique, since the planar motion prevented bubble overlap in the
recording plane. In addition to the description of the operating conditions and of the
shadowgraphy technique used, an overview of the image processing algorithm developed
to detect, classify and track the bubbles in the swarm is given in Appendix A.

2.1. Experimental facility and operating conditions
The confined bubble swarm was generated within a quasi-bidimensional vertical cell filled
with distilled water at ambient temperature, with the top section open to atmospheric
pressure (Bouche et al. 2012, 2014). The cell consists of two parallel glass plates
(800 mm high and 400 mm wide) separated by a thin gap of width w = 1 mm (figure 1a).
Unlike in previous works related to confined bubble swarms (Bouche et al. 2012, 2013,
2014; Alméras et al. 2016, 2018), no electrolyte was added to the liquid so that bubble
coalescence was not inhibited. In addition, the distilled water was regularly renewed to
prevent interface contamination. Air bubbles of uniform size were periodically injected
from the bottom of the cell through an array of 16 capillary tubes of 0.6 mm inner diameter
and 0.8 mm outer diameter (figure 1a). The tubes were equally distributed along the bottom
of the cell and connected to a controlled pressure air feeding chamber. The pressure drop
along the air injection tubes was sufficiently large to ensure a constant air flow rate along
the tubes (Gordillo, Sevilla & Martínez-Bazán 2007). The bubble detachment frequency,
fb, was accurately selected firstly setting a certain pressure in the air feeding chamber,
pg, and, secondly, controlling the air flow rate through each tube using individual valves.
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(a)

(b)

20 mm

w = 1 mm

Backlight

8
0
0
 m
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Gas injector

Camera

g

400 mm

Uz

Figure 1. (a) Sketch of the experimental facility, showing the field of view of size 358.40 mm × 179.20 mm for
one of the camera recording positions. The zoomed area schematizes the lateral view of the cell with a bubble
flattened between the side walls. (b) Example of image taken in one of the three different vertical positions of
the camera.

This frequency was checked for each injector using a stroboscopic light before running
each experiment.

The volume of the injected bubbles ensured that their sizes were always larger than the
width of the gap, w. Therefore, the bubbles were flattened between the cell walls, forming
a thin liquid film between the bubble interface and the wall (see zoomed area in figure 1a).
In this configuration, independently of the bubble size distribution of the swarm, no
dewetting at the glass plates was observed and the bubbles degrees of freedom were
bounded. The flow above the bubbles goes around sideways, and does not enter the thin
liquid films at rest as in Pavlov et al. (2021). Therefore, these thin films are not expected
to play any role in the bubble coalescence processes described in the present work. Hence,
a two-dimensional description of the motion can be adopted as in Roig et al. (2012) and
Filella et al. (2015). In that sense, every bubble in the swarm is described by an equivalent
diameter which is defined as D = (4Ab/π)

1/2, with Ab the projected area of the bubble on
the cell plane. The injected gas volume fraction, α0 = ΣiAi

bw/(LxLzw), was determined
from the total volume occupied by all the bubbles in a measuring window a few millimetres
above the capillary tubes (W1 in figure 2), where Lz = 50.83 mm and Lx = 328.67 mm are
respectively the height and the width of the window. In the current experiments, α0 was
varied from 2.4 % to 6.7 % by adjusting the bubble generation frequency. Table 1 shows
the experimental conditions of the four experimental sets considered in the present work,
including the mean equivalent diameter of the injected bubbles, D0. The variations in the
sizes of the bubbles generated by each tube was negligible and a monodispersed bubble
swarm was initially formed, as in Bouche et al. (2012, 2014). Additionally, the total air
flow rate was estimated as Qg = 4πD0

2wfb, showing a linear increase with α0.
The bubble swarm at the bottom of the cell is characterized by α0 and by the

non-dimensional parameters governing the motion of an isolated bubble of equivalent
diameter at injection, D0. These include the Archimedes number, Ar0 = √

gD0D0/ν, the
confinement ratio, δ0 = w/D0, and the Bond number Bo0 = ρgD2

0/σ , where g is the
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514.58
W15

W14

W13

W12

W11

W10

W9

W8

W7

W6

W5
W4

W3

W2

W1

Lx

Lz

463.75

412.92

324.58

273.75

z (
m

m
)

222.92

142.58

91.75

40.92

0

Figure 2. General view of the three recording positions for α0 = 3.2 %. The 15 measuring windows used
for the spatial discretization are superimposed on the images. The height of each measuring window is Lz =
50.83 mm while its width almost comprises the whole transverse spanwise of the cell, Lx = 328.67 mm. The
vertical axis denotes the position of the middle point of some of the measuring windows.

gravity, ν and ρ the liquid kinematic viscosity and density, w the thickness of the cell
and σ the surface tension. Under the conditions reported here, these parameters lie in
the following ranges: 630 ≤ Ar0 ≤ 850, 0.24 ≤ δ0 ≤ 0.29, and 1.79 ≤ Bo0 ≤ 2.11. For
confined bubbles of equivalent diameter D ≥ D0, the mean rise velocity of an isolated
bubble can be estimated by (Filella et al. 2015)

Ub � 0.75(w/D)1/6
√

gD, (2.1)
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α0 D0 pg fb Qg
(%) (mm) (bar) (s−1) (m3 s−1) ×106

Set 1 2.4 3.65 ± 0.20 0.6 7 1.18 ± 0.13
Set 2 3.2 3.68 ± 0.22 0.7 9 1.53 ± 0.19
Set 3 4.9 3.85 ± 0.28 0.8 13.5 2.51 ± 0.38
Set 4 6.7 3.96 ± 0.23 0.9 18 3.54 ± 0.42

Table 1. Injection conditions of the four experimental sets considered in the present work: α0, gas volume
fraction at the bottom of the cell; D0, mean equivalent diameter of the bubbles injected; pg, pressure at the air
feeding chamber; fb, bubble generation frequency; Qg, air flow rate.

which in dimensionless form can be expressed as,

Re � 0.75δ1/6Ar, (2.2)

where Re = UbD/ν and Ar = √
gDD/ν are the Reynolds and Archimedes number of a

bubble of size D. The bubble Reynolds number, Re0 = UbD0/ν, can then be defined,
and ranges here from 380 to 500. The gap Reynolds number, Re0δ0

2, can then also
be introduced to assess the inertial regime, as it varies between 28 and 32. Thus, the
flow can be considered to be dominated by inertia (Bush & Eames 1998) for all bubble
sizes involved in the swarm. Bubbles at injection initially behave as isolated bubbles
exhibiting oscillatory paths coupled to their unsteady wakes that generate periodic vortex
shedding. Their in-plane projected shape is deformed and can be considered as an ellipse
of moderate eccentricity (Roig et al. 2012; Filella et al. 2015). For further discussion,
general ideas can be retained. First, the velocity disturbances induced by bubbles in the
liquid are mainly parallel to the plates, except in the close vicinity of the bubbles. Then,
the order of magnitude of the liquid velocity in the bubble’s wake is

√
gD. The wake is

nevertheless strongly attenuated by shear stress at the walls within a characteristic time
scale proportional to the viscous one, τν = w2/(4ν). Therefore, in the swarm the agitation
in the liquid results from direct interactions of localized random flow disturbances of
various sizes as in the homogeneous swarm studied by Bouche et al. (2014).

The swarm of bubbles generated was recorded using shadowgraphy in a measurement
region that spanned almost the entire horizontal width of the cell (figure 1). To that aim,
the cell was illuminated from behind with an uniform, constant and diffused white light
perpendicular to the cell plane (figure 1a). Placing the light source at one side of the
cell, a camera (Photron APX) equipped with a 85 mm lens was used to take images of
210 levels of grey and of size 1024 × 512 pixels, with an exposure time of 1/2000 s, from
the other side. In order to analyse the evolution of the population of bubbles as they rise,
while maintaining the desired resolution, the backlight and the camera were placed at three
different positions (figure 2). Transverse homogeneity of the flow was observed. Therefore,
the downstream evolution of the bubble swarm was described by a statistical analysis of
the bubble population characteristic parameters averaged over the horizontal width of the
cell. In order to avoid possible errors due to border effects, the analysis was performed in a
recording region, placed in the middle of each image, which consisted of a rectangle of size
328.67 mm × 152.49 mm with a pixel-size resolution of 350 μm (figure 1b). Moreover, to
increase the spatial resolution of the measurements, the recording region was divided into
five windows of horizontal length Lx = 328.67 mm and vertical length Lz = 50.83 mm,
with 50 % of overlapping, as indicated in figure 2. Two types of measurements were
performed, depending on the image acquisition frequency. First, a series of experiments

944 A13-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.492


Coalescence of bubbles in a high Re confined swarm

taking video images of the swarm at 250 f.p.s. were conducted. This recording rate was
high enough to track the bubbles as they rose along the field of view. Thus, bubble
collisions could be detected and tracked to determine whether the colliding bubbles
coalesced, generating new larger bubbles, or eventually separated, which allowed us to
determine the bubble collision frequency, h, as well as the efficiency, λ. Measurements also
allowed us to detect breakup events, giving birth to smaller daughter bubbles, although this
phenomenon was rare in this study. For this analysis, high-speed movies of 25 s duration
were recorded at the three positions. The total duration of the recordings included between
20 000 and 75 000 bubble records per position, depending on the injection conditions and
on the measuring location. In addition to the experiments recorded at high frequency,
at each recording position, sets of around 3000 uncorrelated images were recorded at
a frame rate of 1/2 f.p.s. to ensure that the bubbles in one image were not recorded in
the following one. Thus, the total number of bubbles detected at each position varied
between 25 000 and 250 000, depending on the injected air flow rate and on the recording
position. This ensured a statistically converged and unbiased measurement of parameters
of the bubble population that can be obtained from low frequency experiments such as the
volume probability density function. Satisfactory comparison of the information that could
be obtained from both types of measurements indicated that the statistical parameters
extracted only from the high-frequency records were indeed robust and meaningful.

Details of the digital image processing methods specifically developed in this work to
detect and classify the bubbles in the swarm are given in § A.1. In addition, the techniques
designed to track the bubbles and detect the collisions, as well as the coalescence and
breakup events are described in § A.2. Additional information can be found in Ruiz-Rus
(2019).

2.2. Performance of the bubble tracking algorithm (BTA)
The results obtained with the bubble tracking algorithm (BTA) described in Appendix A,
consist of the record of the bubbles along the field of view for each position. The
information stored for each bubble includes the projected area (bubble volume), the
centroid location, the bubble velocity components, as well as the bubble lifespan and
the types of birth and death events. In addition, family trees are established for each
newly generated bubble, including the parents in a birth from coalescence, or the mother
and the sibling in a birth from breakage. The performance of the BTA algorithm can be
estimated, first, from the fact that more than 99 % of the detected bubbles can be tracked,
the remaining ones being associated to specific events with simultaneous coalescence and
breakup in agglomerates of bubbles.

As an example, figure 3 shows a set of bubble trajectories for each injection condition
at the first recording position. In this figure, regardless of where the bubble trajectories
begin, they have been displaced to the same origin, with xo and zo being the initial
positions of the bubbles. It can be observed that the horizontal dispersion of the bubbles
increases with the injected air volume fraction and with the vertical position, showing
the effects of the liquid velocities induced by the wakes of the population of bubbles.
The bubble lifespan is typically larger for the lowest values of α0 (figure 3a,b), since the
number of coalescence events is still low at this recording position. The trajectories show
the characteristic path oscillations described by Roig et al. (2012) for isolated bubbles,
indicating the weak effect of the hydrodynamic interactions at these low void fractions.
However, the degree of coalescence substantially increases with α0, resulting in much
shorter trajectories (figure 3c,d).
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Figure 3. Superimposed trajectories of 100 bubbles detected in the field of view of the first recording position,
z < 160 mm, for the different injection conditions (a) α0 = 2.4 %; (b) α0 = 3.2 %; (c) α0 = 4.9 % and (d)
α0 = 6.7 %. Each trajectory is defined as a succession of points corresponding to the bubble centroid at each
instant. The origin (xo, zo) is defined as the position where the bubble is first detected. The positions are
normalized using the corresponding injection diameter D0.
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Figure 4. Mean collision efficiency of the populations of bubbles, defined as the fraction of collisions that end
up in coalescence, vs the downstream distance normalized by the corresponding injection diameter D0. The
figure shows that λ∞ remains constant and does not depend on α0.

The first quantitative measurement extracted from the BTA is the collision efficiency.
It represents the ratio between the number of coalescence and that of collisions. As
mentioned before, the confinement of the bubbles imposed in this configuration highly
increases the efficiency of the collisions. The mean collision efficiency, λ∞, obtained
considering all the collisions detected at each measuring window, is plotted in figure 4 for
the four values of α0 tested in this work. Our results indicate that the collision efficiency
barely depends on the size of the colliding bubbles. In fact, considering the collision
efficiency of different pairs of bubbles, differences lower than 5 % were found with respect
to λ∞. In addition to being a very high efficiency, it should be noted that λ∞ does not vary
with the concentration of bubbles, nor with z. In fact, the figure shows that its value can
be considered constant and approximately equal to 80 %.
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Coalescence of bubbles in a high Re confined swarm

Moreover, the tracking method allows a direct analysis of the coalescence events. In that
sense, any detected collision is individually tracked (see § A.2), obtaining the position at
which it initially occurs as well as the corresponding information for the colliding bubbles.
In addition, the BTA can be used to obtain the number of bubbles of volume v that die due
to coalescence, and the mean coalescence frequency of all bubbles at each position,

〈gc〉∞ =
∫ ∞

0 n(v)gc(v) dv∫ ∞
0 n(v) dv

, (2.3)

that represents the frequency at which a bubble of any size coalesces with other bubbles.
In the experiments performed in this work, most of the daughter bubbles which are born
due to coalescence come from previous binary collisions. Thus, since the total number
of collisions which end up in coalescence, γ∞, during the measuring time, T , in a
population of N∞ bubbles, is half of the bubbles dying due to coalescence, N∞〈gc〉∞/2,
the mean bubble coalescence frequency can be directly obtained from the experimental
measurements as

〈gc〉∞ = 2γ∞
N∞ T

. (2.4)

Similar to the mean coalescence frequency, 〈gc〉∞, the mean breakup frequency of
bubbles at each position, given by 〈gb〉∞ = ∫ ∞

0 n(v)gb(v) dv/
∫ ∞

0 n(v) dv, can be directly
obtained as

〈gb〉∞ = ψ∞
N∞ T

, (2.5)

where ψ∞ is the number of breakup events observed during the time T .
Thus, the accuracy and convergence of the tracking analysis of the experiments

performed at high rates of acquisition can be checked by comparing both sides of (1.2)
averaged over all bubble sizes, assuming that both coalescence and breakup are binary
processes. To that aim, the right-hand side of the averaged PBE can be achieved by
integration of (1.2) over the whole range of bubbles (Friedlander 1977). Thus, applying
the Leibnitz rule for integration and substituting (1.5) and (1.6) into (1.2), in the
one-dimensional, steady state situation of interest here, the averaged PBE simplifies to
(Kocamustafaogullari & Ishii 1995; Soligo, Roccon & Soldati 2019)

− 1
N∞

∂(N∞Ūz)

∂z
= 〈gc〉∞

2
− 〈gb〉∞, (2.6)

where Ūz is the mean rising velocity of the bubbles in the measuring window. Figure 5
shows the different terms on both sides of (2.6), evaluated at various measuring locations,
for all the experimental injection conditions. In that case, the frequency terms have
been made dimensionless making use of

√
g/D0, while the downstream locations are

normalized with the injection diameter D0, corresponding to each experimental injection
condition. As expected, a fairly good agreement is observed between both sides of the
equation (black circles and grey diamonds, respectively). This result confirms the validity
of the experimental procedure, as well as the effectiveness of the bubble tracking method
and the convergence of the results obtained. In addition, it can be noticed that some
breakup events (hollow squares) also take place in the swarm, especially for the higher
values of α0 (figure 5c,d).
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Figure 5. Downstream evolution of the different rates of change of the whole population of bubbles for
different injection conditions, (a) α0 = 2.4 %; (b) α0 = 3.2 %; (c) α0 = 4.9 % and (d) α0 = 6.7 %. All these
frequency terms have been made dimensionless with

√
g/D0. Both sides of the averaged PBE, as expressed

in (2.6), are shown with solid symbols, left-hand side (diamonds) and right-hand side (circles). In addition, the
different rate of change terms on the right-hand side of (2.6) are represented with open symbols, half of the
mean coalescence frequency (triangles) and the mean breakup frequency (squares).

3. Description and discussion of bubble coalescence in the evolving swarm

An overview of the results obtained by the BTA has shown that the evolution of the
population of bubbles is mainly governed by bubble coalescence, with a weak contribution
of bubble breakup in some cases (figure 5). These processes, that lead to variations in the
bubble size distribution, are driven by the liquid agitation in the swarm, which in turn
is induced by the interaction of the wakes of bubbles of different sizes that constitute the
swarm. Consequently, it is necessary to characterize the different stages of the evolution of
the bubble population to adequately elucidate the mechanisms that govern the coalescence
process.

3.1. Spatial evolution of the bubble population
In the present configuration there is no external liquid flow that carries the bubbles
and they rise due to buoyancy effects. The downstream evolution of the population of
bubbles can be described in terms of the flux of bubbles crossing each z position. An
estimation of the averaged flux is given by the local net number of bubbles detected in each
measuring window, N∗∞, multiplied by their corresponding mean velocity, Ūz, obtained by
the BTA. Figure 6(a) shows the downstream evolution of the bubbles flux for each injection
condition. The fact that the flux of bubbles decreases with the dimensionless downstream

944 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.492


Coalescence of bubbles in a high Re confined swarm

300(a) (b)

250

200

150

100

7

6

5

4
α (%)

3

2

50N
∞* 

Ū
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Figure 6. (a) Downstream evolution of the total flux of bubbles measured in each position (window) for
the different experimental injection conditions. (b) Downstream evolution of the local gas volume fraction,
obtained from the total volume occupied by all the bubbles present in each window. The downstream locations
have been normalized by the corresponding injection diameter D0.

location z/D0, indicates that coalescence leads the evolution of the distribution of bubbles,
even in the cases where there are some breakup events, as previously shown in figure 5. The
rate of change of the population depends on the initial number of bubbles, N∗∞(0), which
is directly related to the selected bubble generation frequency, fb, and thus, to the injected
air volume fraction, α0. For high void fractions (i.e. α0 = 4.9 and 6.7 %, respectively),
near the bottom of the cell, the amount of bubbles of injection size D0 quickly decreases
as the bubbles rise. In fact, strong bubble–bubble interactions occur in the regions close
to the injectors, giving rise to collisions and coalescence events. Once the bubbles start
coalescing, larger bubbles are generated leading to a coalescence cascade which rapidly
involve pairs of bubbles of wider ranges of sizes. As z/D0 increases, the flux decreases
less rapidly. In fact, the reduction in the total number of bubbles composing the population
causes the net amount of coalescence events to decrease too. Although the rate of change of
the bubbles flux decreases with the downstream distance, there is no evidence of reaching
a final frozen state where coalescence would become negligible. It has to be pointed out
that at higher positions of the cell, as previously noticed in figure 5(c,d), bubble breakup
occurs, competing with coalescence. The unstable nature of the largest bubbles generated
in these cases as well as the interaction with stronger bubble-induced liquid velocities,
increases the relevance of breakage far from the injection point. On the other hand, for
lower void fractions (i.e. α0 = 2.4 % and 3.2 %), figure 6(a) shows that the bubbles take
longer to begin to coalesce. In these cases, the bubble flux initially remains constant up
to a certain position where it starts to decay at a rate that decreases as α0 decreases. This
is related with the lower amount of bubbles generated under these conditions and the
larger distances between bubbles at the initial positions. However, as they rise, the injected
bubbles loose memory of the injection conditions and begin to adopt the oscillatory motion
which characterizes these ellipsoidal bubbles within the confined cell (Roig et al. 2012;
Filella et al. 2015). At a given height that depends on the generation frequency (Sanada
et al. 2005), the trajectories of the bubbles scatter under the effect of the perturbations in
the liquid, giving rise to bubble–bubble interactions and to the subsequent collisions and
coalescence events (see W4 and W5 in figure 2).

Figure 6(b) shows, for each injection condition, the downstream evolution of the
local air volume fraction α(z), defined as the volume occupied by the entire population
of bubbles present at each measuring window, divided by the volume of the window.
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At variance with homogeneous monodispersed bubble swarms where the gas volume
fraction remains constant under constant injection conditions (Martinez Mercado et al.
2010; Bouche et al. 2012; Colombet et al. 2015), in the present swarm, α(z) also varies
with z/D0, due to the evolution of the distribution of sizes and to the fact that the velocity
of the bubbles varies with their sizes. Indeed, the absence of an external liquid flow
implies that the mean rising velocity of the gas phase is mainly imposed by the buoyancy
exerted on the different bubble sizes coupled to the underlying fluid motion generated by
hydrodynamic interactions. Therefore, the local volume fraction α(z) is affected not only
by the injected air flow rate, but also by the evolution of the distribution of bubbles that
induces buoyancy-driven variations on the mean rising velocity of the gas phase.

In order to determine the distribution of bubble sizes at each measuring window, the
equivalent diameters of the bubbles were obtained from image processing (see § A.1) to
compute the bubble volume probability density function (v.p.d.f.) (Martínez-Bazán et al.
1999a),

V.p.d.f. (D) = wD2p.d.f. (D)∫ Dmax

Dmin

wD2 p.d.f. (D) dD
, (3.1)

which represents the volume occupied by bubbles of size D compared with that of the
entire distribution. In (3.1), Dmin is the smallest bubble size of the distribution and Dmax
the largest one. The downstream evolution of the v.p.d.f. resulting from coalescence, and
eventually breakup, is shown in figure 7 for the four experimental conditions reported in
table 1. For the sake of clarity, we have only plotted six measuring locations. Qualitatively,
similar downstream evolutions are observed for the four cases: the nearly monodispersed
distribution of bubbles observed close to the bottom of the cell progressively widens
further downstream due to bubble coalescence. Since bubbles of constant size, D0, are
periodically injected at the bottom of the cell, for low values of α0, the initial v.p.d.f.
is a narrow distribution around D0 (see the distribution at z = 40.92 mm in figure 7a,b).
In fact, in these cases, coalescence is not observed until z = 142.58 mm (figure 7a,b), as
previously noted from the evolution of the total flux of bubbles shown in figure 6(a).
However, for larger values of α0, at the first measuring window, a secondary peak is
already observed at D � √

2D0, indicating the existence of some coalescence events of
bubbles of size D0 (z = 40.92 mm in figure 7c,d). It is worth noting the existence of
additional peaks at

√
3D0,

√
4D0, . . ., corresponding to added volumes of the injection

bubbles resulting from successive coalescence events (Néel & Deike 2021). Nevertheless,
as the coalescence process evolves, such peaks (associated with classes of finite extension)
attenuate, generating broader and smoother distributions far from the injection point. The
v.p.d.f.s exhibit large tails as the coalescence cascade progresses. In fact, it can be observed
that the size of the largest bubbles found at a certain distance increases with α0. This fact
is clearly illustrated in the images displayed as insets in figure 7, which show characteristic
snapshots of the swarm for each experimental condition at z = 412.92 mm.

For all values of α0, despite the differences in the downstream evolution of the rate
of change of the number of bubbles, similar shapes of the distribution are found at
different positions, which can be understood as equivalent stages of the coalescence
cascade process. For example, the distribution at z = 324.58 mm in figure 7(a) is similar
to that at z = 222.92 mm in figure 7(b), the distribution at z = 324.58 mm in figure 7(b)
matches that at z = 142.58 mm in figure 7(c) and the distribution at z = 514.58 mm
in figure 7(c) resembles that at z = 412.92 mm in figure 7(d). The similarity in the
distribution evolutions reveals that the various swarms considered follow the same
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Figure 7. Downstream development of the bubble size distribution described by the volume-size bubble p.d.f.
for (a) α0 = 2.4 %, (b) α0 = 3.2 %, (c) α0 = 4.9 % and (d) α0 = 6.7 %. Only some measuring locations have
been plotted for clarity. The image inside each panel corresponds to a cell height around z = 412.92 mm. The
scale bar indicates a length of 20 mm.

coalescence cascade, independently of the value of α0. However, the rate of change of
the swarm strongly depends on the void fraction, which is directly related to the amount
of bubbles forming the population, as can be inferred from (1.5). It will take longer for
low values of α0 (figure 7a,b) than for larger ones (figure 7c,d) to reach a given stage of
the distribution of sizes (i.e. a given shape), although each size will undergo the same
coalescence cascade independently of α0. Taking this into account, the evolution of the
bubble size distribution is characterized by a diameter representative of the population of
bubbles. For this purpose, we used the statistically robust parameter, DV90 (Hinze 1955;
Martínez-Bazán, Montañés & Lasheras 1999b), defined as the diameter of a bubble such
that 90 % of the total volume of the population of bubbles is contained within bubbles
smaller than DV90. This characteristic diameter represents the size of the largest bubbles
in the distribution which, as they rise, will induce the largest velocity fluctuations in the
liquid.

Figure 8(a) shows the downstream evolution of DV90 for the four injection conditions,
reflecting the increase of its rate of change with α0. Note that, for α0 = 2.4 % and
3.2 %, DV90 barely changes for z < 150 mm, indicating that coalescence does not start
in those cases until z > 150 mm. However, for α0 = 4.9 % and 6.7 %, coalescence is
already observed near the injection position. In addition, figure 8(b) shows the evolution
of the flux of bubbles normalized by that of the first measuring window, N∗∞Ūz(0), as a
function of the characteristic diameter DV90 normalized by the diameter of the injected
bubbles, D0. It can be observed that the four plots collapse on the same curve,
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Figure 8. (a) Evolution of DV90 with the downstream location, both normalized with the corresponding bubble
injection diameter D0, for the different injection conditions. Note that DV90/D0 remains unchanged until the
coalescence process starts, leading to larger bubbles. (b) Evolution of the flux of bubbles normalized with that
at the first measuring window, N∗∞Ūz(0), as a function of DV90/D0.

corroborating that the population of bubbles follow similar coalescence cascade processes
and that DV90 is the proper variable to describe the evolution of the population of bubbles
of the different swarms. In that sense, DV90/D0 can be seen as a variable similar to
the dimensionless time, t/τ , proposed by Smoluchowski (1917) to describe the Brownian
coagulation of particles within nearly monodispersed systems (see Chandrasekhar 1943;
Friedlander 1977, for reports of this work in English), being τ the characteristic
coagulation or decay time, usually called half-life of the population. So, in the following,
DV90 will be considered as the characteristic parameter to determine the evolution of the
swarm. This will allow us to consider the coalescence frequency as an unknown that varies
with the self-induced evolution of the population, which includes the influence of the a
priori unknown velocities of each size, as well as the α0 dependence.

As already indicated above, the aim of the present work is to experimentally determine
the coalescence frequency of a pair of bubbles of sizes D and D′, respectively, in the bubble
swarm. To be able to do this, large enough size ranges have to be defined to ensure that the
number of bubbles included in each range is sufficiently high to have an adequate number
of colliding bubbles and, thus, obtain statistically converged results. For this purpose,
we discretized the population of bubbles obtained from the experiments in different size
classes, denoted as class 0, 1, 2 and so on. Every class is represented by a diameter Dk
and includes bubble sizes in the range Dk −Δk/2 ≤ D ≤ Dk +Δk/2, within a size bin of
widthΔk. The diameter Dk represents the middle size of the bin and corresponds to integer
values of the injection bubble volume, accounting for volume-conservative coalescence
events. Thus, the initial class corresponds to the injection bubbles, D0. The following
class is associated to the coalescence of two bubbles of size D0, being D2

1 = 2D2
0. The rest

of the classes, Dk, are defined as the diameter of the bubble formed from the coalescence
of two bubbles belonging to the two preceding classes, D2

k = D2
k−1 + D2

k−2. Therefore,
the different classes represent added volumes of the injection bubbles resulting in the
following diameters: D1 = √

2D0, D2 = √
3D0, D3 = √

5D0, D4 = √
8D0, D5 = √

13D0,
D6 = √

21D0, D7 = √
34D0 and D8 = √

55D0. The different sizes of the bins, Δk, were
chosen looking for substantial but smooth variations of the bubble characteristics. Such
definition of bubble classes and their corresponding limits allowed us to have an amount of
bubbles sufficiently large in each class to observe enough collision events among bubbles
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Set 1 Set 2 Set 3 Set 4
α0 (%) 2.4 3.2 4.9 6.7

k Dk ±Δk/2 (mm)

0 (�) 3.65 ± 0.27 3.68 ± 0.27 3.85 ± 0.32 3.96 ± 0.32
1 (�) 5.16 ± 0.37 5.20 ± 0.38 5.45 ± 0.43 5.60 ± 0.44
2 (�) 6.32 ± 0.78 6.37 ± 0.78 6.67 ± 0.78 6.86 ± 0.81
3 (�) 8.16 ± 1.06 8.23 ± 1.08 8.62 ± 1.10 8.85 ± 1.18
4 (�) — 10.40 ± 1.10 10.90 ± 1.20 11.20 ± 1.20
5 (�) — 13.26 ± 1.77 13.90 ± 1.80 14.27 ± 1.87
6 (♦) — — 17.67 ± 2.00 18.14 ± 2.10
7 (�) — — 22.48 ± 2.81 23.08 ± 2.85
8 (�) — — — 29.36 ± 3.43

Table 2. Description of the bubble size classes defined for each experimental set. Here, k denotes the bubble
class indicating the symbols used to represent them, Dk is the mean diameter describing the class and Δk the
width of the size bin containing the class.

of different classes, ensuring a good statistical convergence of the data. Details of the
bubble classes defined for the different injection conditions are listed in table 2.

Considering the bubble classes defined in table 2, the number of bubbles of a certain
class per unit volume, Nk, is obtained by integrating (1.3) between the size limits of the
corresponding bin, Dk −Δk/2 and Dk +Δk/2. The evolution of the fraction of bubbles
of each class, Nk/N∞, is represented in figure 9, as a function of DV90/D0 for α0 = 6.7 %,
showing the contribution of the amount of bubbles of each class to the whole population
in every stage of the coalescence process. Note that, as shown in the inset of figure 9, the
fraction of injection bubbles (class k = 0) is always larger than those of the other classes,
indicating that there is still a considerable amount of bubbles of size D0 remaining even far
from the injection point. This fact reveals the appreciable presence of these small bubbles
even at stages in which the coalescence cascade has accounted nearly 82 events. After a
rapid decrease during the early stages of the evolution, the fraction of injection bubbles
almost stabilizes around half of the total number of bubbles. However, the evolution of the
fraction of all the other classes remarkably differs from that of the initial bubbles. In fact,
a certain class of bubbles does not begin to form until a pair of smaller bubbles, whose
sum of volumes is equal to the volume of the forming bubble, coalesce. First, the number
of bubbles of classes k > 0 increases due to coalescence of smaller bubbles. Afterwards,
when the number of bubbles of a given class becomes sufficiently large, they start to
coalesce forming larger bubbles. Eventually, when the number of coalescing bubbles of
a class k is larger than the number of bubbles that are generated from the coalescence of
smaller ones, Nk/N∞ decreases. Indeed, the evolution of the concentration of a certain
bubble class within the swarm is driven by the balance between the coalescence rate
of smaller bubbles that form bubbles of this class, and their rate of coalescence with
all the others, as is clearly established by (1.5). The coalescence rate in the balance
equation (1.8) is determined from the collision frequencies of pairs of bubbles, h(Dk,Dk′),
whose experimental values will be obtained in § 3.2 and modelled in § 4.

3.2. Determination and analysis of the bubble pair collision frequency, h(Dk,Dk′)
Considering the discretization in bubble classes given in table 2, the number of bubbles
per unit volume of a given class k that die per unit time due to coalescence represents the
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Figure 9. Evolution of the fraction of bubbles of each class with DV90/D0 for α0 = 6.7 %. Similar values are
obtained for the other injection conditions. The fraction of bubbles belonging to the injection class is displayed
in the inset for clarity. The symbols represent the different bubble classes according to table 2.

coalescence death rate, commonly expressed as

Ḋec(Dk) = −
∫ ∞

0
λ(Dk,Dk′)h(Dk,Dk′)n(Dk)n(Dk′) dDk′ = −gc(Dk)n(Dk). (3.2)

In (3.2), h(Dk,Dk′) is the collision frequency of bubbles of class Dk with bubbles of size
Dk′ and has units of m3 s−1, and n(Dk) is the number density of bubbles with units of
m−3, thus, Ḋec(Dk) has units of m−3 s−1. Note that, since λ(Dk,Dk′) = λ∞ is constant in
the present case, h(Dk,Dk′) can be treated indistinctly as the collision or the coalescence
frequency of the pair of bubbles. Having this in mind, h(Dk,Dk′) was obtained from
the experiments performed at high acquisition rates, applying the bubble tracking and
coalescence detection algorithm described in Appendix A, as

h(Dk,Dk′) = Γkk′

NkNk′
. (3.3)

In (3.3), Γkk′ is the number of bubbles of class k colliding with bubbles of class k′ in the
measuring window, of volume Lz × Lx × w (see figure 2), per unit time, and Nk and Nk′
are respectively the number of bubbles of class k and k′ accounted in the volume of the
measuring window. Thus, the rate of loss of bubbles of class k, Ḋec(Dk), corresponds to the
frequency at which effective collisions of bubbles of size Dk with the rest of the bubbles
take place, which, assuming that λ(Dk,Dk′) = λ∞ is constant (see figure 4), reduces to
Ḋec(Dk) = λ∞Σ∞

k′=0Γkk′ . Note that, considering all the bubbles of the distribution which
collide per unit time, Γ∞ = Σ∞

k=0Σ
∞
k′=0Γkk′ , the total number of coalescence events in

expression (2.4), can also be obtained as γ∞/T = λ∞Γ∞/2. It is worth indicating that the
models for h have been commonly derived by making an analogy with the kinetic theory
of gases (Vincenti & Kruger 1965). These models (see, e.g. the review in Liao & Lucas
2010) generally consider h as the volume swept per unit time by the colliding bubbles. It
is usually referred to as the collision kernel, or the coalescence kernel if the efficiency is
also included (Marchisio & Fox 2013). However, taking into account that h is symmetric,
resulting in h(Dk,Dk′) = h(Dk′,Dk), in the present work it will be referred to as the bubble
pair collision frequency.
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Figure 10. Experimental measurements of the bubble pair collision frequency, h(Dk,Dk′ ), obtained for the
injection condition α0 = 4.9 % at a stage of the evolution of the swarm where DV90 = 18.25 mm (DV90/D0 =
4.74). The symbols represent the different bubble classes according to table 2. Solid symbols represent pairs of
bubbles colliding in the first regime, while hollow ones denote collisions within the second regime. The series
corresponding to Dk = 6.67 mm and Dk = 10.90 mm are not plotted for clarity. The points indicated by arrows
correspond to the cases shown in figure 13.

The evolution of h(Dk,Dk′) is described hereafter for the experimental case
corresponding to α0 = 4.9 %, as a representative example. Figure 10 shows the results of
the bubble pair collision frequency for various bubble pairs at a stage of the evolution of the
swarm where DV90 = 18.25 mm (DV90/D0 = 4.74). The adopted representation displays
the evolution of h(Dk,Dk′) with Dk′ for the different classes of bubbles (constant values of
Dk). We should remember that, according to figure 8, since the bubble size distributions
evolve in a similar way for all values of α0, DV90/D0 can be used as a parameter to describe
the coalescence cascade process. Considering the results corresponding to the smallest
bubble size present in the distribution, Dk = 3.85 mm (�), a monotonous increment of
the collision frequency is observed when the size of the other colliding bubble, Dk′ ,
increases. This behaviour is also initially observed for larger bubbles, i.e. larger values
of Dk, up to a certain value of Dk′ beyond which the frequency begins to decrease.
Taking into account the interchangeability of Dk and Dk′ , it can be stated that the slope
of the curve h(Dk,Dk′)− Dk′ increases with Dk. This monotonically increasing behaviour
of the bubble pair collision frequency, characterized by the fact that at least one of the
bubbles involved in the collision is relatively small, will be referred to as the first regime
(represented by solid symbols in figure 10). In this regime, as soon as the bubbles collide,
they coalesce or (in a very few cases) bounce back, but their surfaces do not deform during
a certain time until they coalesce. On the other hand, as observed for Dk ≥ 8.62 mm
(�,�,�), the evolution of the bubble pair collision frequency shows a local maximum
at certain values of Dk′ , which decreases as Dk increases. After this maximum a different
behaviour appears, which defines a second collision/coalescence regime (represented by
hollow symbols in figure 10), where the two involved bubbles are large enough to be able to
deform during the coalescence process. In this regime, once the bubbles get in touch, their
interfaces deform and flatten forming a thin liquid film between the two bubbles, which
mainly drains sideways (Huisman et al. 2012; Pavlov et al. 2021). The time spent on the
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Figure 11. Contour plots of: (a–d) h(Dk,Dk′ ) and (e–h) the product h(Dk,Dk′ )Nk′ for α0 = 4.9 % at four
different instants of the bubble coalescence cascade process, characterized by DV90 (indicated by dashed
lines in each plot). Results are shown for (a,e) DV90 = 10.93 mm (DV90/D0 = 2.84); (b, f ) DV90 = 13.96 mm
(DV90/D0 = 3.62); (c,g) DV90 = 18.25 mm (DV90/D0 = 4.74) and (d,h) DV90 = 20.79 mm (DV90/D0 =
5.40). The solid black lines in (a–d) indicate constant values of the reduced diameter Dp.

bubbles surface deformation and on the liquid film drainage, before coalescence, increases
the time during which the bubbles interact, leading to a reduction of the corresponding
collision/coalescence frequency.

Figure 11(a–d) shows the contours of h(Dk,Dk′) at four different instants of the
coalescence cascade process corresponding to α0 = 4.9 %. In this case, bubbles of
diameter D0 = 3.85 mm are initially injected and, as they coalesce while they rise, a
population of bubbles of increasing diameters is generated. The values of DV90 of the
bubble size distributions corresponding to panels (a–d), indicated with horizontal and
vertical dashed lines, are 10.93 mm, 13.96 mm, 18.25 mm and 20.79 mm, respectively
(DV90/D0 = 2.84; 3.62; 4.74 and 5.40). The plots clearly show that h(Dk,Dk′) is a
symmetric function that increases with DV90. In fact, it can be observed that the
coalescence frequencies between two small or two large bubbles are small compared with
the collision frequency between bubbles of intermediate sizes. Note, for instance, that
the maximum coalescence frequency in figure 11(d) falls in a fringe corresponding to
the coalescence of bubbles of Dk = 8 mm (Dk = 20 mm) with bubbles of Dk′ = 20 mm
(Dk′ = 8 mm), or to the coalescence between two bubbles of diameter Dk = Dk′ ≈ 12 mm.
Interestingly, a close inspection of the contour plots indicates that the colour levels nearly
follow lines of constant values of

Dp =
[

1
2

(
1

Dk
+ 1

Dk′

)]−1

= 2DkDk′

Dk + Dk′
, (3.4)

drawn with solid lines in figure 11(a–d). The diameter Dp represents the diameter of a
bubble whose radius of curvature is equal to the mean radius of curvature of the pair of
interacting bubbles, and will be further called the reduced diameter. This diameter has
been commonly used to describe the deformation of interacting bubbles and in models
of drops/bubbles coalescence (Chesters & Hofman 1982; Kamp et al. 2001; Neitzel &
Dell’Aversana 2002). In addition to h(Dk,Dk′) shown in figure 11(a–d), figure 11(e–h)
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displays the bubble pair collision frequency weighted by the number of bubbles of size
Dk′ . This quantity represents the frequency of collision of a bubble of size Dk with bubbles
of size Dk′ and obviously depends on the number of bubbles of size Dk′ in the distribution,
n(Dk′). It represents the contribution of bubbles of class k′ to the coalescence frequency
of bubbles of class k, gc(Dk), as established in (1.7). It can be seen that h(Dk,Dk′)Nk′ ,
obtained experimentally as Γkk′/Nk is no longer symmetric and it depends on the bubbles
size distribution, having the maximum values for Dk′ = D0 in our particular case, since
the number of bubbles of size D0 is larger than the number of bubbles of other sizes, as
shown in figure 9.

A description of the bubble pair collision frequency, h(Dk,Dk′), is therefore sought after
in terms of the reduced diameter, Dp. The experimental values of h(Dk,Dk′) displayed in
figure 10 are represented as a function of the corresponding Dp in figure 12(a). They fall
on a single curve, represented by the thick solid line, which corresponds to the averaged
bubble pair collision frequency along lines of constant Dp in figure 11(c). This curve
clearly indicates the existence of the two different collision regimes commented above,
properly distinguished now as a function of Dp. Initially, in the first regime (solid symbols),
h(Dp) increases with Dp until it reaches a maximum value beyond which it begins to
decrease with Dp (hollow symbols). In this figure, as in figure 10, the cases indicated
by arrows correspond to the time series of experimental images shown in figure 13.
Equivalent results are found for different values of DV90, as shown in figure 12(a) (different
lines) for the instants of the coalescence cascade presented in figure 11(a–d). This result
corroborates that Dp properly captures the dependence of the collision frequency on the
bubble sizes. The values of the reduced diameter at which the maximum of h(Dp) occurs,
i.e. the change from the first to the second collision regime, denoted as D̃p, are displayed
in figure 12(b) for the different experimental cases tested. For the smallest value of the
injected volume fraction, α0 = 2.4 %, the entire coalescence cascade took place in the
first regime, without transitioning to the second one, and no data are represented in this
case. It can be observed that D̃p increases with the concentration of bubbles and with DV90,
following a power law given by D̃p/w ∝ (αDV90/w)1/2 as it will be commented later on
in § 4.

In order to better illustrate the main characteristics of the two regimes mentioned
above, different coalescence events are shown in the time series of snapshots displayed
in figure 13. The time intervals between images are the same for the four series. The
black dots inside the bubbles denote the instantaneous position of their centroids, while
the coloured ones indicate their previous positions, describing the bubbles trajectories.
The cases shown are representative of the collisions taking place during the evolution of
the swarm. The first three series (figure 13a–c) have been selected for the same injection
condition and stage of the swarm (α0 = 4.9 % and DV90/D0 = 4.74), and correspond
to the points indicated with arrows in figures 10 and 12. The processes involve pairs
of bubbles where the diameter of one of them is Dk = 13.90 mm (�), whose trajectory
is represented with red dots in figure 13. The other bubbles that form the pairs have
different diameters Dk′ , as indicated in figure 10, and their trajectories are represented
by blue dots in the corresponding panels of figure 13. On the other hand, figure 13(d)
represents a coalescence event in a swarm also at DV90/D0 ≈ 4.74, where the pair of
bubbles are similar to those in figure 13(c), but at a higher void fraction, α0 = 6.7 %.
As specifically indicated in the figure, coalescence events belonging to both regimes have
been represented. The processes shown in figure 13(a,b) represent typical collisions taking
place in the first regime. It can be seen that in both cases the coalescence happens as
soon as the two bubbles collide, around t = −20 ms in both series. In these cases, the
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Figure 12. (a) Bubble pair collision frequency, h(Dk,Dk′ ), as a function of the reduced diameter, Dp. The
symbols represent the experimental results shown in figure 10. Collisions taking place in the first regime are
depicted with solid symbols, while hollow ones are used to represent collisions in the second regime. As in
figure 10, the cases labelled as (i), (ii) and (iii), respectively, correspond to the series (a–c) in figure 13. Lines
represent the averaged value of h(Dk,Dk′ ) along isolines of Dp in figure 11 for DV90/D0 = 5.40 (thick dashed
line); 4.74 (thick solid line); 3.62 (thick dashed-dotted line) and 2.84 (thick dotted line). (b) Dependence of
D̃p/w with (αDV90/w) for the experimental cases tested. The solid line indicates that D̃p/w ∝ (αDV90/w)1/2,
according to (4.10). Here α is the local gas volume fraction.

bubbles do not significantly change their shape when they interact and rapidly contact at
a point before coalescing. It could be said that they meet and kiss each other. This type of
coalescence was reported for unconfined configurations by Howarth (1964) and later on
modelled as the ratio between the interfacial energy and the energy of collision (Sovova
1981; Tsouris & Tavlarides 1994). However, the collision shown in figure 13(c) is markedly
different and belongs to the second regime. In this case, when the bubbles get close enough
(after t = −100 ms) they deform and flatten, with the upper bubble surrounding the lower
one. They move together for a while before being able to open a hole in the liquid film
that separates them, and coalesce. During this period, the lower bubble, Dk (red dots),
decelerates before contacting the upper one, Dk′ (blue dots), using its kinetic energy to
deform the interface (Chesters 1991; Kamp et al. 2001) and to increase the pressure in
the liquid film that forms between the two bubbles (Duineveld 1998). Thus, unlike in
figure 13(a,b), the bubbles meet and dance for a while before kissing in figure 13(c). The
dancing time increases with the size of the bubbles since large bubbles are able to deform
more easily, what makes h(Dk,Dk′) decrease in the second regime. It is worth noting
that in the earlier stages of the cascade process, i.e. for low values of DV90, the swarm
is formed by relatively small bubbles which collide exclusively in the first regime. The
time the bubbles take to deform and adapt their shapes before coalescing not only depends
on their sizes but also on the liquid velocity fluctuations, induced by the motion of the
bubbles in the swarm. Larger velocity fluctuations favour the destabilization of the liquid
film separating the contacting bubbles and, thus, their coalescence. To illustrate this effect,
figure 13(d) shows a pair of bubbles similar to those in figure 13(c) in a bubble swarm also
characterized by DV90 ≈ 18.25 mm (DV90/D0 ≈ 4.74), but with a higher concentration
of bubbles, α0 = 6.7 %. In this case, although the interacting bubbles are similar to
those displayed in panel (c), the coalescing time is shorter because the liquid fluctuation
velocities are larger for α0 = 6.7 % than for α0 = 4.9 %. In fact, it can be observed in
figure 13 that at t = −160 ms the distance between the centroids of the two bubbles is
larger in (d) than in (c). Therefore, it can be asserted that the global motion of the swarm
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Figure 13. Images showing the time evolution of representative cases of the collision process at a stage of
the evolution of the swarm where DV90 = 18.25 mm (DV90/D0 = 4.74) for α0 = 4.9 %. They correspond to
the cases denoted by (i), (ii) and (iii) in figures 10 and 12(a), with (a) Dp = 7.86 mm, (b) Dp = 9.64 mm,
(c) Dp = 15.55 mm. In (d) the bubbles belong to classes k = 5 and k′ = 6 (table 2) with Dp = 15.87 mm
and for α0 = 6.7 %. The instantaneous location of the centroids of the bubbles are indicated with black dots.
The position of the centroids in previous frames describing the trajectories of the bubbles are represented by
sequences of coloured dots (only one out of three instants are plotted for clarity). The time to coalescence in
each snapshot is indicated at the bottom of the figure.
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Figure 14. Effect of bubble deformation in the first collision regime, illustrated by different characteristic
interaction events of a small bubble of size Dk′ with a larger one of size Dk, placed at the origin of coordinates,
for (a) Dp = 8.33 mm, (b) Dp = 9.68 mm, (c) Dp = 11.59 mm and (d) Dp = 12.11 mm. The bubble swarm
corresponds to DV90 = 23.17 mm (DV90/D0 = 6.02) and α0 = 4.9 %. Both coordinates have been normalized
by the corresponding bubble injection diameter D0. The arrows indicate the direction of the relative motion of
Dk′ .

is driven by buoyancy and, thus, governed mainly by the evolving bubble size distribution,
characterized by DV90, and the concentration of bubbles, α0 (see discussion of figure 6b
in § 3.1). Furthermore, the bubble collision rate increases with the liquid perturbation
velocity which increases as the bubbles coalesce and get larger, i.e. as DV90 increases.

The role played by hydrodynamic interactions on the coalescence process is also
illustrated in figure 14, now considering different events where the smallest bubble is above
the largest one. In the figure, typical situations of bubbles interacting in the first regime
are presented for different values of Dp, in a bubble swarm corresponding to α0 = 4.9 %
and DV90 = 23.17 mm (DV90/D0 = 6.02). The relative location of the smallest bubble of
the pair, Dk′ , is plotted as it interacts with a larger bubble, Dk. The origin of the system of
coordinates (xo, zo) corresponds to the centroid of bubble Dk at each instant. The temporal
evolution of the relative position of the centroid of bubble Dk′ , between the represented
stages, is indicated by dots. Bubble pairs for increasing values of Dp (and of h(Dk,Dk′))
are presented in figure 14(a–c). For a nearly constant value of Dk (largest bubble), the
size Dk′ (smallest bubble) is progressively increased from left to right. In figure 14(a),
illustrating the interaction of a small bubble with a big one, the small bubble barely
deforms, and is ejected away from the larger one due to the overpressure established around
its stagnation point. Consequently, this case is not considered as a collision in our analysis
(see § A.1) and the collision frequency of this type of bubble is low. As Dk′ increases
(figure 14b,c), in addition to increasing the possible length of interaction with bubble Dk,
the capability of Dk′ to be deformed also increases, favouring the collision between both
bubbles. Besides the hydrodynamic mechanisms governing the response of bubble Dk′ to
the flow around the top of bubble Dk, additional bubble deformation effects have been also
observed when the two bubbles are sufficiently large (figure 14d). In this kind of collision,
the liquid velocity field brings the bubbles sufficiently close so that bubble Dk′ deforms
towards the low pressure area of the wake of bubble Dk. Indeed, these final instants of the
interaction process, based on the wake entrainment mechanism, lead to bubble collision
when the interacting bubbles are large enough to deform (Miyahara, Tsuchiya & Fan 1991).
In contrast, smaller bubbles that barely deform and respond faster to the liquid velocity
fluctuations can eventually avoid the collision (Filella, Ern & Roig 2020).

For figure 13(a,b), the discussion was focused primarily on the short time interaction,
as well as on the wake effects of the bubbles once they were carried out close enough
by the liquid motion. In contrast, the configurations shown in figure 14(a–d) focuses on

944 A13-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.492


Coalescence of bubbles in a high Re confined swarm

the response of Dk′ to the hydrodynamic effects caused by its interaction with bubble Dk.
They illustrate the influence of the bubble sizes, and of their capability to be deformed,
on the increase of h with Dp in the first regime. The cases shown in figures 13 and 14
are representative of the collision phenomenology observed in the coalescence cascade
process and contribute equally to the bubble pair collision frequency obtained from the
experiments.

4. Formulation of the coalescence model

To model the rate of change of the population of bubbles due to coalescence, Q̇c, in (1.2),
it is necessary to implement models for the integral kernels involved in the coalescence
rate in (1.5), which consider the interaction between bubbles of different sizes, namely
Dk and Dk′ , respectively. In this sense, it has to be taken into account that bubble
coalescence includes a first approaching step, starting at distances typically larger than
the bubble sizes, driven by the local transport mechanisms. Subsequently, a second step,
characterized by the short-distance bubble-bubble interaction, takes place (Marchisio &
Fox 2013). The whole process is commonly modelled considering both stages separately,
the first accounting for the bubble collision frequency h(Dk,Dk′) and the second for the
coalescence efficiency term λ(Dk,Dk′). The efficiency is usually expressed comparing the
time required to drain and disrupt the liquid film formed between the two bubbles when
they collide, td, with the time the bubbles remain in contact under the influence of the
external flow, i.e. the residence time t̄c.

As mentioned above, in the two-dimensional confined configuration of interest here,
the coalescence efficiency λ has been defined as the fraction of pairs of colliding bubbles
which end up coalescing. In this case, once the bubbles collide, they cannot move away
in the direction perpendicular to the walls and, in most of the cases, eventually coalesce.
Thus, the coalescence efficiency is high and nearly constant, being thus independent of
the size of the colliding bubbles and of the external flow conditions, such as DV90 or α0
(figure 4). Consequently, the bubble collision frequency h(Dk,Dk′) will be considered as
the bubble coalescence frequency since both functions behave in the same way and, in the
following, we will focus on developing a model for h(Dk,Dk′), which jointly accounts for
the local transport phenomena and for the effects derived from the bubbles deformations
and their hydrodynamics interaction when they approach.

In general, h(Dk,Dk′) has been modelled as a characteristic relative velocity between the
two colliding bubbles, ūr(Dk,Dk′), multiplied by a characteristic cross-sectional collision
area Sc(Dk,Dk′), which usually depends on the size of the colliding bubbles,

h(Dk,Dk′) ∼ Sc ūr. (4.1)

In particular, Coulaloglou & Tavlarides (1977) proposed an expression for h(Dk,Dk′)
based on the collision of molecules in kinetic theory of gases, given by

h(Dk,Dk′) ∼ π

4
(Dk + Dk′)2

[
u2(Dk)+ u2(Dk′)

]1/2
, (4.2)

where u(Dk) and u(Dk′) are the root mean square of the velocity fluctuations of bubbles
of sizes Dk and Dk′ , respectively. The relative velocity between the two bubbles can be
established by different mechanisms, depending on the liquid field where the bubbles
are immersed, i.e. turbulent fluctuations of the carrier fluid, size-dependent differences in
the bubble rising velocities, wake entrainment or shear-layer induced velocity differences,
among others. However, in the present flow where the liquid velocity is not externally
imposed, the mean motion of the swarm and its agitation are driven by a gravity effect
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Dk ′

Dk

�c
1

1

2

2

Figure 15. Sketch illustrating a typical collision event between two bubbles of sizes Dk and Dk′ , corresponding
to a reduced diameter falling within the first regime. The initial positions of both bubbles of the pair are
represented with dashed lines and labelled with number 1. The actual positions of the swarm is depicted with
solid lines bubbles, being the colliding bubbles labelled with number 2. The white flow structures represent the
swarm-induced agitation in the liquid. The dashed circle indicates the effective interaction length between the
two bubbles, �c ∼ DV90/α.

and, thus, the mechanisms controlling the relative approaching velocity must be related
to the distribution of sizes in the population of bubbles. Under the present conditions,
the liquid fluctuating velocities are generated by the interaction of all the bubbles, whose
sizes range from D0 to the largest ones, represented by the characteristic diameter DV90.
Experimental observations suggest that the swarm-induced agitation (represented by the
white eddies in the sketch shown in figure 15) is the mechanism that controls the approach
of a pair of bubbles. This mechanism is dominant compared with any other mechanism,
such as wake entrainment or buoyancy-induced velocity difference between bubbles of
different sizes. The relative bubble approaching velocity, ūr, will be thus assumed to be
the standard deviation of the bubbles velocities, which in the present case is proportional
to the liquid velocity fluctuations induced by the largest bubbles in the swarm,

ūr(Dk,Dk′) ∼ α0.46
√

gDV90. (4.3)

The effect of the concentration of bubbles, α, has been included in (4.3), according
to Bouche et al. (2012) for a monodispersed confined swarm of bubbles. Such relative
velocity can be understood as the fluctuating velocity associated with the integral scale of
the self-induced agitation, as it is produced by the largest and more intense bubbles.

Concerning the cross-sectional collision area, experimental observations of the collision
phenomena indicate that, for a couple of bubbles to collide, they must be within a certain
maximum distance. This characteristic length, �c, defines a region of the cell plane where
the liquid velocity fluctuations generated by the bubble swarm are correlated and are able
to bring the bubbles together (represented by a dashed circle in the sketch of figure 15).
Under these considerations, Sc(Dk,Dk′, �c) can be expressed as

Sc(Dk,Dk′, �c) ∼ �cwF̂
(

Dp
w

)
, (4.4)

where w is included for dimensional consistency. Here, F̂ is a dimensionless function that
depends on the reduced diameter of the pair of bubbles, and accounts for the capability of
the bubbles to be deformed. In (4.4) the characteristic length of influence of the external
mechanisms transporting the bubbles, �c, is proportional to the integral scale of the liquid
flow, DV90. Therefore, this influence length varies as the distribution of sizes evolves with
the vertical position. The local concentration of bubbles, however, is expected to affect this
correlation length, for instance, by inducing a screening effect due to successive passages
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of bubbles. In fact, Alméras et al. (2018) reported that, for void fractions α ≥ 5–6 %
within monodispersed swarms of bubbles of size d ∼ D0, the correlation length for dye
transport scaled with the mean distance between two bubbles, which is given by d/α. It
can therefore be presumed that, for polydispersed swarms, the wide distribution of sizes
may, in fact, decrease the values of the gas volume fraction from which the correlation
length shortening occurs. Therefore, it can be considered that a pair of bubbles can be
transported close to each other if they are initially separated by a distance shorter than

�c(z) ∼ DV90(z)
α(z)

, (4.5)

being its variation with the position determined in turn by the changes of the population
of bubbles. Substituting (4.5) into (4.4), one gets

Sc(Dk,Dk′) ∼ DV90

α
wF̂

(
Dp
w

)
. (4.6)

In order to determine F̂, the values of h(Dk,Dk′) divided by α−0.54√gDV90DV90w have
been represented in figure 16 as a function of the normalized reduced diameter, Dp/w. It is
shown that, for the collision events falling in the first regime (solid symbols), the values of
the normalized frequency collapse on a single curve, following a linear dependence with
Dp/w. Therefore, it can be concluded that F̂ is a linear function of Dp/w for the pairs of
bubbles colliding in the first regime, leading to the following scaling law for the collision
frequency:

h ∼ α−0.54
√

gDV90 DV90w
Dp

w
. (4.7)

Only some moderate data scattering can be noticed for the first regime around this linear
curve (solid line in figure 16), revealing that the main physics controlling the process
is captured by (4.7). In this sense, (4.3) and (4.5) properly scale the magnitude of the
self-induced liquid velocity fluctuations and the interaction region for a pair of bubbles,
driving the transport of the bubbles during their approach. In addition, the function
F̂ ∝ Dp/w includes the bubble size dependence and accounts for the bubbles deformation
process as they interact (see figures 13 and 14).

On the other hand, as expected from the experimental results described in § 3.2, a
clear deviation is observed for the collision events taking place in the second regime
(hollow symbols in figure 16). These events happen for values of Dp/w larger than the
corresponding D̃p/w, established at each stage of the evolution of the swarm for the
different α0 (figure 12b) and, thus, when both bubbles are relatively large, i.e. close
to DV90. In this second regime, most of the coalescence time is spent on the bubbles
deformation process, with the approaching time of the bubbles being a small fraction of
the total time. We further assume that the bubbles deform and adapt their shapes due to
the mean local strain (see figure 13c),

s ∼ ūr

2

(
1

Dk
+ 1

Dk′

)
= α0.46√gDV90

Dp
, (4.8)

acting in a volume enclosing the pair of bubbles Vc ∼ D2
V90w. Thus, the bubble pair

collision frequency can be estimated by h(Dk,Dk′) ∼ s × Vc, providing

h(Dk,Dk′) ∼ α0.46
√

gDV90DV90w
DV90

Dp
. (4.9)
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Figure 16. Dimensionless bubble pair coalescence frequency vs Dp/w, according to (4.7). Coloured symbols
represent the different stages of the coalescence cascade process, i.e. different values of DV90/D0. The
coalescence events falling within the second regime have been represented with hollow symbols. The series
of points highlighted with dashed lines indicate stages of the size distribution with similar values of DV90/D0
but for two different values of α0. The cases denoted by (i), (ii), (iii) and (iv) corresponds to the respective
panels (a–d) of figure 13. The solid line indicates a linear fit of the data within the first regime, given by
0.031Dp/w − 0.109.

Equation (4.9) indicates that, in the second regime, h(Dk,Dk′) decreases as Dp/w increases
as shown in figure 16. Figure 17(a) shows the experimental values of the bubble pair
coalescence frequency that fall in the second regime vs the model given by (4.9), exhibiting
an excellent agreement. In fact, matching equations (4.7) and (4.9), it can be inferred that

D̃p

w
∝

(
αDV90

w

)1/2

, (4.10)

as shown in figure 12(b). Furthermore, since the bubble pair Weber number,
We = ρū2

r Dp/σ , has been typically used to describe the drainage and rupture of the liquid
film in drops/bubbles coalescence models (Chesters & Hofman 1982), (4.9) can also be
expressed in dimensionless form in terms of the Weber number as

ĥ = h(Dk,Dk′)
ρα0.46√gDV90

wσ

D2
p

D2
V90

∼ We, (4.11)

where We = ρα0.92(gDV90)Dp/σ . The experimental values of ĥ(We) are shown in
figure 17(b) vs the Weber number for α0 = 3.2 %, 4.9 % and 6.7 %, respectively. Again,
the agreement between the experimental measurements and the model proposed by (4.11)
is excellent, following a linear dependence of ĥ with We. In addition to the different
mechanisms driving the coalescence of bubbles in both regimes, resulting in the models
proposed in (4.7) and (4.9), it is worth noting that the contribution of both types of
collisions to the global evolution of the swarm is also quite different. In fact, given
that the number of large bubbles in the swarm is considerably low, the contribution to
bubble coalescence within the second regime is less significant than that in the first one
(figure 11e–h). However, the coalescence events in the second regime lead the evolution of
the tails of the distribution of sizes. This type of coalescence generates even larger bubbles,
which in turn eventually establish the velocity and length scales governing the coalescence
cascade process.
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Figure 17. (a) Experimental values of h(Dk,Dk′ ) in the second regime for α0 = 3.2 %, 4.9 % and 6.7 %,
respectively, vs the model given by expression (4.9). Here h(Dk,Dk′ ) = 3.41(α0.46√gDV90DV90wDV90/Dp −
3.2 × 10−7). (b) Dimensionless bubble pair coalescence frequency in the second regime vs the Weber number,
We = ρα0.92(gDV90)Dp/σ .

Finally, the effect of the bubble pair collision frequency on the evolution of the
coalescence cascade process can be generally assessed examining the results of the global
evolution of the swarm displayed in figure 5. Indeed, the mean collision frequency 〈h〉∞
in the swarm can be obtained considering the mean coalescence frequency 〈gc〉∞ and the
total number of bubbles in the population N∞, which assuming a constant efficiency λ∞,
reduces to 〈h〉∞ = 〈gc〉∞/(N∞λ∞). This mean bubble pair collision frequency represents
the averaged frequency at which a bubble collides with other bubbles of any size, that
according to the PBE can be determined as

〈h〉∞ = 1
N2∞λ∞

∫ ∞

0

[∫ ∞

0
λ(D,D′)h(D,D′)n(D′) dD′

]
n(D) dD, (4.12)

where D and D′ represent the diameters of bubbles whose corresponding volumes are v
and v′, respectively. Figure 18 shows that 〈h〉∞ follows a 3/2 power law with DV90, as
inferred from (4.7), for the collisions of bubbles in the first regime. This result suggests
that most of the collisions controlling the evolution of the number of bubbles in the swarm
take place in the first regime, according to the large amount of small bubbles in the
distribution (figure 9). However, it has been observed that 〈h〉∞ slightly increases with
α0, most likely due to a combined, integral effect of the volume fraction of bubbles on the
bubble size distribution in (4.12), n(D), and of the increased relevance of the coalescence
events occurring in the second regime with α0. Thus, in figure 18, 〈h〉∞ has been divided
by a constant, C∞(α0), that slightly increases with α0.

5. Conclusion

The bubble coalescence cascade has been analysed for a high Reynolds number confined
swarm. Bubble-induced agitation is the main mechanism driving the process, which in
turn is highly dependent on the bubble size distribution. In this configuration, a significant
evolution of the bubble population is observed, with sizes that grow from the injected
bubble size up to 10 times larger, even for the moderate gas volume fractions tested (up to
6.7 %).

A detailed characterization of the coalescence process has been performed by direct
observation of the coalescence events taking place in the swarm. In particular, the bubble
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Figure 18. Mean collision frequency 〈h〉∞, averaged over all the bubble sizes present in the swarm at each
stage of its evolution, as a function of the corresponding DV90. The values of 〈h〉∞ are divided by a constant
C∞(α0), where C∞ = 0.163; 0.225; 0.362 and 0.381 for α0 = 2.4 %; 3.2 %; 4.9 % and 6.7 %, respectively.
The thick solid line represents the expression

√
gDV90DV90w, showing the slope 3/2 as a function of DV90,

characteristic of the collisions taking place in the first regime.

pair collision frequency and the coalescence efficiency have been measured. Due to the
confinement, the coalescence efficiency is considerably high and nearly constant in the
present configuration. Thus, the bubble pair coalescence frequency is proportional to the
collision frequency and we can talk indistinctly of any of them. This result motivated
us to focus our attention on the collision frequency in order to elucidate the underlying
physics of coalescence as a global process. Such a process includes a first agitation-driven
approach of a pair of bubbles and a subsequent drainage and rupture of the liquid film
separating the two bubbles before they coalesce.

Comparing the downstream evolution of initially monodispersed bubble populations,
obtained for various injected gas volume fractions, it has been shown that the distributions
of sizes evolve following a similar cascade of coalesce events which can be characterized,
independently of the concentration of bubbles, by DV90 representing a typical size of the
largest bubbles in the distribution. However, the rate of change of the size distribution
depends on the bubble concentration.

We provide experimental evidence that three parameters control the bubble pair
collision/coalescence frequency, h(Dk,Dk′). These are the bubble pair reduced diameter,
Dp, which accounts for the bubble pair deformation, the diameter DV90 and the local
gas volume fraction α, both characterizing the population of bubbles and the resulting
agitation. The interplay of these parameters is however complex and two different regimes
of coalescence have been identified. For low values of Dp, the bubbles are first transported
close to each other by the agitation induced in the swarm and as soon as they get close,
they collide and eventually coalesce. In this first regime, h(Dk,Dk′) increases linearly with
Dp. In contrast, for larger values of Dp, pairs of relatively large bubbles interact in a regime
mainly controlled by the bubble deformation dynamics. In this case, once the bubbles are
close, they elongate and deform adapting their shape as they move together before being
able to break the liquid film that separates them, and coalesce. In this second regime,
h(Dk,Dk′) decreases with Dp. The characteristic velocity governing the coalescence
process is considered to be associated with the integral scale of the liquid motion induced
by the largest bubbles in the swarm. This velocity has been estimated as α0.46√gDV90,
which includes the effect of the local concentration of bubbles according to Bouche
et al. (2012). We conjectured that the coalescence interaction surface is associated with
a correlation length of the swarm-induced agitation defined by the successive passages
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of bubbles across otherwise correlated motions as �c ∼ DV90/α. Thus, the bubble pair
collision frequency in the first regime scales as h(Dk,Dk′) ∼ α−0.54√gDV90DV90Dp for
Dp/w ≥ 3.52 ≈ D0/w. However, in the second regime, observed for bubble pairs of
reduced diameter greater than D̃p provided in relation (4.10), most of the coalescence
time is dedicated to deform the bubbles and adapt their surface to each other due to
the strain induced by the liquid field, given by α0.46√gDV90/Dp. Consequently, in the
second regime, h(Dk,Dk′) ∼ α0.46√gDV90D2

V90w/Dp, characterized by the product of the
strain rate and the characteristic interaction volume, Vc ∼ D2

V90w. The dependence of the
collision frequency in both regimes on the diameter of the largest bubbles, DV90, and on the
gas volume fraction, α, strongly supports the idea that the overall excitation of collisions
is a consequence of swarm-induced agitation and not of the relative terminal velocities of
the bubbles. The velocity fluctuations of the liquid agitate the bubbles, and depending
on their respective sizes, and consequently, on Dp, they collide in one or the other
regime.

Our results indicate that DV90 is essential to understand the bubble cascade process in
the present study. In fact, it characterizes the evolution of the population of sizes, but it
also mainly drives the self-induced agitation in the swarm that controls the evolution of
the bubble population. Regardless, as these confined flows are characterized by lightly
interacting wakes of bubbles, it would be interesting to explore if DV90 also plays such a
relevant role in a swarm of bubbles free to move in an unconfined volume of liquid when
the Reynolds number of their relative motion is moderate. In that sense, it is expected that
the behaviour of confined swarms differ from that of unconfined ones, not only because
of the reduced mobility of the bubbles one around the other in a pair, but also because
their hydrodynamics are quite different. However, considering that the characteristic
fluctuating velocity is that induced by the largest bubbles in the swarm, as proposed
in expression (4.3), we believe that the proposed models may remain partially valid for
three-dimensional inertial swarms of bubbles. Also the role played by Dp will be relevant
in three-dimensional flows, although the dependency may be different due to the additional
degree of freedom of the bubble motion. In this regard, the cross-sectional collision area
given in (4.6) or the enclosing volume defined for the collisions in the second regime,
included in (4.9), should be redefined in the three-dimensional configuration. Nonetheless,
the two-dimensional configuration analysed here has very promising applications, such
those concerning light-activated reactions or cultivation of micro-algae, among others. In
a future work we plan to investigate the agitation in the swarm, which plays a crucial role in
the coalescence cascade. We also plan to apply the models developed here to describe the
evolution of the bubble size distribution in confined swarms with different distributions of
sizes at the injection point.
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Appendix A

A.1. Image processing methods for bubble detection and classification
Since even the smallest bubbles in the swarm are already larger than the thickness of
the cell, the surface of each bubble is mainly perpendicular to the direction of the light,
showing up in the images as a region of connected pixels with a grey level similar to that of
the liquid background, enclosed by a thin dark stripe representing the air–water interface
not aligned with the cell plane (figure 19a). The thickness of the dark line that delimits the
perimeter of the bubble is almost constant, regardless of its size, because the curvature
of the bubble in a plane perpendicular to the field of view is constant (Bongiovanni,
Dominguez & Chevaillier 2000). Detailed images of isolated bubbles within the same
experimental facility and for the same range of sizes reached in this work can be found in
Roig et al. (2012). Using this property, each image is analysed making use of a specifically
developed image processing algorithm, followed by a bubble detection and classification
method. The processing algorithm involves a first pre-processing step, followed by a
second one where the image is binarized. Once the bubbles present in each image are
detected, their centroid positions as well as their projected areas are measured. Figure 19
shows an example of the processing steps in one of the measuring windows.

The first step of the process implies the improvement of the contrast of the original
grey scale image (figure 19a). It involves the subtraction of a background reference image
without bubbles and the normalization of the image brightness by correcting each value of
the pixel intensity matrix. More detailed information regarding the brightness correction
method can be found in Fu & Liu (2016). This brightness normalization reduces the
uncertainties due to the variation of the illumination conditions and facilitates the next
binarization step. Figure 19(b) shows an inversion of the resulting corrected image, where
any physical noise (e.g. glass wall scratches and background noise) has been removed
while the grey-level gradient between the bubbles edges and the background has been
enhanced. Afterwards, the well-known Otsu’s method (Otsu 1979) is used in the second
step as an automatic, robust, global binarization-threshold selection technique.

After binarization, single bubbles can be detected as blobs of connected low-level pixels
enclosed by unique edges of high-level pixels which are totally surrounded by background.
Bubbles involved in a collision share the same edge of connected high-level pixels,
however, there exists an independent blob of low-level pixels for each bubble. Unlike in
other works which deal with bubble collisions or formation of clusters through a separation
distance criteria (see Figueroa-Espinoza & Zenit 2005; Figueroa-Espinoza et al. 2018, for
example), the contact of at least one edge pixel of each bubble is required in the present
work to define a collision. This definition is crucial, since it determines the measurement
of the collision rate and the efficiency of coalescence. Figure 19(c) shows detected single
bubbles as filled objects and colliding bubbles as hollow ones. This procedure to detect
the bubble collisions allows us to clearly distinguish between two independent bubbles
involved in a collision (see the example highlighted by an arrow in figure 19) and the
newborn ones, just formed due to the coalescence of two colliding bubbles (boxed by
dashed lines in figure 19).

Once the bubbles have been detected and classified as single or in-collision bubbles,
their instantaneous characteristics are determined. The bubble position is obtained as the
centroid position of the in-side blob of low-level pixels. The projected area is defined as
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(a)

(b)

(c)

Figure 19. Example of the image analysis algorithm showing the two-step binarization process. (a) Original
grey scale image. (b) Inversion of the pre-processed image showing the brightness normalization and the
improved grey-level gradient between the bubbles edges and the background. (c) Binarized image where the
bubbles have been classified as single bubbles (filled objects) or as in-collision bubbles (hollow objects). A
typical bubble collision is pointed by an arrow and a recently coalesced bubble is highlighted by the box with
dashed frame.

the area occupied by the pixels belonging to the in-side blob plus those belonging to the
edge. A difficulty arises obtaining the area of the bubbles involved in collisions, since the
pixels composing the edge of the agglomerate are shared among the colliding bubbles. To
deal with this issue, the total area of the agglomerate edge is distributed among the bubbles
according to the ratio between the number of pixels enclosing the inner perimeter of each
bubble and those composing the outer perimeter of the agglomerate. Since the edge width
remains constant independently of the size of the colliding bubbles, this simple procedure
allows us to avoid any further computation devoted to the separation of the bubbles, as
occurs in more complicated three-dimensional bubbly flows (see, e.g. Rueda Villegas et al.
2019).

A.2. Bubble tracking and coalescence/breakage detection algorithm (BTA)
The time evolution of each bubble in the swarm was obtained using a BTA specifically
designed and developed for this work, which includes a coalescence/breakage detection
algorithm. It consists of the detection of the bubbles in a frame, j, followed by the search
and identification of the same bubbles in the previous one, j − 1. For new bubbles, born
in frame j either due to coalescence or breakup, family trees are established between the
daughter (in frame j) and the parents (in frame j − 1).

More precisely, the algorithm involves a first step where an image (frame j) is processed
using the digital analysis described in § A.1. As a result, the bubbles in the frame
are detected, obtaining the positions of their centroids as well as their projected areas.
Afterwards, each bubble is classified as single or in-collision bubble. In addition to
the bubbles, the detected collisions, defined as agglomerates of two or more bubbles in
direct contact (see § A.1), are treated as independent entities and, thus, their characteristic
parameters are also calculated, including the total number of bubbles in collision. In order
to facilitate the search of corresponding objects in two consecutive frames, a bounding box
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10 mm

−108 ms −76 ms −48 ms −20 ms

−8 ms −4 ms 0 ms 16 ms

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 20. Characteristic sequence of the BTA performance showing the tracking process, superimposed on
a region of the original grey scale images at different instants. The trajectories of the properly tracked bubbles
are represented by a sequence of dots corresponding to the bubble centroid locations in the previous frames.
(a–d) Examples of the correlation method applied to two different bubbles (red and blue, respectively), showing
the positions of their centroids in the previous frame, j − 1, (circle) lying inside the corresponding bounding
box in frame j (dashed box). The black arrow in (b) indicates a new bubble entering the field of view. (e–f )
Typical collision detected and tracked in two consecutive frames. The bounding box of the bubble agglomerate
is shown with a dashed dark green rectangle in each frame and the bubbles involved are marked with coloured
stars. ( f –g) Sequence of the end of a collision event due to bubble coalescence. The parent bubbles (coloured
stars) give rise to a new bubble (green diamond). (h) The coalesced bubble is hereafter tracked as a single
bubble (green circle).

containing the target object is defined for each bubble or agglomerate of bubbles (colliding
bubbles). Figure 20 shows the BTA performance superimposed on the original grey scale
image at various instants, being the reference time, t = 0, the frame where a coalescence
event takes place (figure 20g). The trajectories of the bubbles are represented as a sequence
of dots, which correspond to the locations of their centroids in the previous frames. The
solid circles on each bubble denote the position of the centroid in the previous frame,
j − 1. The above mentioned bounding boxes are plotted in figure 20(a–d) for two different
bubbles in red and blue, respectively, while those corresponding to a collision event are
shown in figure 20(e, f ) in green. Notice that the bounding box enclosing the collision
becomes that of the newborn coalesced bubble in figure 20(g) since the collision event
ends up with the coalescence of the two bubbles, as described in detail below.

Once the bubbles in the images (frame j) have been detected, the key point of the
tracking algorithm is to search for the corresponding ones in frame j − 1. In that sense,
every single and in-collision bubble must be related, at least, to one object in the previous
frame. Moreover, every detected collision must be related to a previous collision or, at
least, to two previous bubbles. The procedure works sequentially identifying objects,
taking into account the continuity of the bubbles trajectories and the conservation of
volume (projected areas) of the objects. Initially, only single bubbles in both frames are
considered. Therefore, a single bubble in frame j is related to the single one in frame
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j − 1 whose centroid falls inside the bounding box of the bubble in frame j. Given the
experimental acquisition rate, this bounding-box criteria is highly effective, even for the
smallest bubbles that are accelerated when they are trapped in the wake of larger ones
(figure 20c,d). However, when bubbles of very different sizes get closer (without being in
contact), more than a centroid detected in frame j − 1 can be inside the bounding box of
the larger bubble in frame j. To avoid possible errors, an additional criterion based on the
conservation of volume is imposed (Rodríguez-Rodríguez, Martínez-Bazán & Montañés
2003). Therefore, the volume of the corresponding bubbles in both frames must be equal.
Bubbles located near the bottom edge of the field of view in frame j, which cannot be
associated with any object in frame j − 1 (see, e.g. the bubble highlighted by an arrow
in figure 20b), are directly classified as new bubbles just entering the analysis region.
Any other single bubble that cannot be related to a previous one is taken out for further
analysis. The single bubbles properly tracked are stored in the data base and removed from
both frames to facilitate the analysis of the colliding ones.

The following step is devoted to the analysis of the agglomerates, which define collision
events, detected in frame j. When several bubbles collide, the process can end with the
bubbles coalescing or bouncing off each other. Thus, every collision detected in frame j,
considered as a unique object, is analysed searching for the corresponding collision object
in frame j − 1, applying the algorithm described above to track individual bubbles. In
addition to the volume of the agglomerate, the number of bubbles involved in the collision
must also be conserved in both frames. If the corresponding collision is found in the
previous frame, the bubbles that form the agglomerate (bubbles marked with coloured
stars in figure 20e, f ) are identified as well using the criteria used for single bubbles. On
the other hand, if no corresponding collision is found in frame j − 1, it is assumed that
the collision detected in frame j is a new one occurring because several bubbles (usually
two) have been brought together (figure 20e). In that case, the bubbles involved in the
collision are analysed searching for the corresponding previous single bubbles leading to
the collision. Once they have been processed, the agglomerates, as well as all the involved
bubbles, are stored and no further action is performed with them in the current frame.

At this point, the remaining bubbles in frame j are those emerging either from the
breakup of a mother bubble in frame j − 1 or from the death of a previous agglomerate.
The latter gives rise to two different situations: (i) death by coalescence of the bubbles
which form the agglomerate, creating a new larger bubble, or (ii) death by the separation of
the involved bubbles, leading to different single bubbles in frame j. These two possibilities
represent the basis of the collision efficiency concept. Situation (i) results in a efficient
collision, giving rise to a coalescence event. On the other hand, (ii) indicates an inefficient
collision, where the involved bubbles continue living without changes in the population.
To determine this efficiency, it has to be pointed out that both situations respectively arise
from a collision detected in frame j − 1 which does not have a corresponding agglomerate
in frame j. Therefore, a forward analysis, from frame j − 1 to frame j, is applied to the
remaining agglomerates in frame j − 1. In this case, the correlation method used to track
a single bubble is applied here for each bubble involved in the collision detected in frame
j − 1, searching for the corresponding bubble in frame j. Only the remaining bubbles in
frame j whose centroid falls inside the bounding box of the analysed agglomerate in frame
j − 1 are considered. If the death of the collision is due to separation, any bubble forming
the agglomerate in frame j − 1 will be related to a corresponding single bubble in frame
j, satisfying both the bubble bounding box as well as the bubble volume conservation
criteria. However, if the collision event ends up in a coalescence, the bubble emerging
from the coalescence is determined as the single bubble in frame j whose centroid falls
inside the bounding box of the analysed agglomerate in frame j − 1, being its projected
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area equal to the sum of those of the parent bubbles. A typical coalescence event is shown
in figure 20( f,g). The parent bubbles involved in the collision can be seen in frame j − 1
(figure 20f ), being their centroids indicated by coloured stars, while the newborn bubble
is shown in frame j (figure 20g), with its centroid marked with a green diamond. From this
point, the new bubble generated by coalescence is tracked as a single bubble (figure 20h).

Finally, the daughter bubbles remaining in frame j, which are generated due
to the breakup of a mother bubble in frame j − 1, are identified through a
backward–forward implementation of the correlation method, following the ideas
proposed by Rodríguez-Rodríguez et al. (2003). For a potential daughter bubble in frame
j, the corresponding mother bubble is searched in frame j − 1 as the larger bubble whose
bounding box includes the centroid of the analysed daughter one. Then, the second
daughter bubble is additionally searched in frame j as that whose centroid falls inside
the bounding box of the mother one and whose volume corresponds to the volume of
the mother minus that of the sibling one. Therefore, both daughter bubbles in frame j
are identified as new single bubbles appearing due to breakup, while the corresponding
mother bubble in frame j − 1 is defined as death due to breakup.
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