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Abstract

We present and investigate a general model for inhomogeneous random digraphs with
labeled vertices, where the arcs are generated independently, and the probability of
inserting an arc depends on the labels of its endpoints and on its orientation. For this
model, the critical point for the emergence of a giant component is determined via a
branching process approach.
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1. Introduction

Random directed graphs (digraphs) are widely used for modeling networks arising, e.g. in
physics, biology, social studies, and, more recently, bioinformatics, linguistics, and the analysis
of networks in the Internet.

It has been observed that the well-studied classical homogeneous random digraph model
D(n, p), where arcs are inserted independently and with the same probability p, may not fit
real-life networks, because the latter often exhibit statistical properties, such as, e.g. power-law
indegree/outdegree distribution, which are inconsistent with the model D(n, p). Generally,
real-life networks are inhomogeneous (see, e.g. [1], [4], [5], and [12]).

In this paper we study a very general model of sparse inhomogeneous random digraphs with
independent arcs. By ‘sparse’we mean that the number of arcs does not grow faster than linearly
in n, where n is the number of particles (called vertices of the digraph). By inhomogeneity
we mean that different arcs are inserted with different probabilities. In particular, our random
digraph model is able to produce a wide class of asymptotic indegree and outdegree distributions,
including power-law distributions.

The main problem considered in the paper is the description of the phase transition in
the (strongly connected) cluster size, that is, the emergence of a giant strongly connected
component. To address this problem, we establish a first-order asymptotic for the number N1
of vertices in the largest strongly connected component, by showing that N1 = ρn + oP(n).
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The fraction ρ ≥ 0 is expressed in terms of survival probabilities of related branching processes
that reflect the statistical properties of a certain neighborhood of a randomly chosen vertex.

Let us mention that mathematically rigorous results on the phase transition in D(n, p)

were established in [8] and [9]; see also [11]. More general three-parameter models were
studied in [10]. The phase transition in a random digraph with given (nonrandom) indegree and
outdegree sequences was shown in [3]. The phase transition behavior of general inhomogeneous
random graphs is well understood due to the analysis in the seminal paper by Bollobás et
al. [2]. This paper has inspired our work on inhomogeneous digraphs. In particular, we adopt
the approach developed in [2].

The paper is organized as follows. In Section 2 we define a finite-dimensional model of a
random inhomogeneous digraph and for this model determine the critical point of the phase
transition. Section 3 extends finite-dimensional results to inhomogeneous digraphs defined by
very general (possibly infinite-dimensional) kernels. The proofs are postponed to Section 4.

2. The finite-dimensional model

Before presenting our results we briefly recall some relevant facts and notation related to
digraphs.

A digraph D on the vertex set V = {v1, v2, . . . , vn} is a subset of the set [V ]2 = {(u, v),

u, v ∈ V } of all ordered pairs of elements of V . Elements of D are called directed edges or
arcs. The fact that (u, v) is an element of D is denoted by {u → v} ∈ D or just u → v. More
generally, if, for some distinct vertices w1, . . . , wk ∈ V , the collection of arcs

P = {(w1, w2), (w2, w3), . . . , (wk−1, wk)}
is a subset of D then P is called a directed path starting at w1 and ending at wk . The fact that
such a path is present in D is denoted by {w1 � wk} ∈ D or just w1 � wk . If v � w and
w � v, then the vertices v and w are said to communicate. In this case we write v � w. In
addition, we define v� v for every v ∈ V , even in the case where the loop v � v is not present
in D. A digraph is called strongly connected if every pair of its vertices communicates. Since
‘�’ is an equivalence relation, it splits the vertex set V into a union of disjoint subsets. The
subgraph of D induced by such a subset of vertices is called a strongly connected component
(SC component).

We are interested in the fast growth of the largest SC component when the density of random
arcs gradually increases in the range �(n−1). Here the important characteristic is the size
N1 = N1(D) of the largest SC component (the number of vertices of the SC component, which
has the largest number of vertices). Another interesting characteristic is the size N2 = N2(D)

of the second largest SC component.
We assume that vertices belong to different types and that the probability of an arc depends on

the types of its endpoints and the scale parameter n only. In addition, we assume throughout this
section that the set of different types is finite as the number of vertices increases. A similar model
of random graphs (but not digraphs) has been introduced by Söderberg [13]. Let us introduce
some more notation. Let S = {s1, s2, . . . , sk} denote the set of types, and let s(v) denote the
type of vertex v ∈ V . We write n = n1 +n2 + · · ·+nk , where each ni = #{v ∈ V : s(v) = si}
denotes the number of vertices of type si ∈ S.

Given a integer vector n = (n1, . . . , nk) and a k × k matrix P = ‖pij‖ with nonnegative
entries, define the inhomogeneous random digraph D on the vertex set V as follows. The set
of arcs of D is drawn at random from [V ]2 so that the events {u → v} ∈ D are independent
and have probabilities P(u → v) = 1 ∧ (pij n

−1) for each (u, v) ∈ [V ]2. Here i and j refer
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to the types si = s(u) and sj = s(v) of the endpoints u and v. We use the notation a ∧ b and
a ∨ b for min{a, b} and max{a, b}, respectively. In order to stress the dependence of the model
on the parameters P and n, we sometimes write D = DP,n.

We will assume that the fraction of vertices of a given type is asymptotically constant. That
is, there is a probability distribution Q on the type space S such that, for each qi = Q(si), we
have

qi > 0 and ni − qin = o(n) as n → ∞. (1)

We describe the phase transition in terms of Q and P using the language of branching
processes. Let us consider multitype Galton–Watson processes where particles are of types
from S. Given s ∈ S, let X(s) and Y(s) denote the Galton–Watson processes starting at a
particle of type s such that the number of children of type sj ∈ S of a particle of type si ∈ S

has Poisson distribution with means pij qj and pjiqj , respectively, 1 ≤ i, j ≤ k. We write
X = {X(s), s ∈ S} and Y = {Y(s), s ∈ S}. Let ρX(s) and ρY(s) denote the nonextinction
probabilities of X(s) and Y(s), respectively. Write

ρ = ρXY =
∑

1≤i≤k

ρX(si)ρY(si)qi . (2)

We show in Theorem 1 below that a giant SC component of range n emerges in D whenever ρ

is positive.

Theorem 1. Assume that (1) holds and that the matrix P = ‖pij‖ is irreducible. As n → ∞,
we have

N1(DP,n) = ρXYn + oP(n) (3)

and N2 = oP(n).

Here, for a sequence of random variables {Zn}, we write Zn = oP(n) if limn P(|Zn| > δn) =
0 for each δ > 0.

Recall that the matrix ‖pij‖ is called irreducible if its associated digraph DP is SC. Here
DP is the digraph on the vertex set S such that {si → sj } ∈ DP whenever pij > 0.

We note that the sum in (2) is positive if and only if at least one of X(s) or Y(s) survives
with a positive probability for some s ∈ S. This fact follows from the next result, which we
prove in Section 4.

Result 1. In the case where qi > 0, 1 ≤ i ≤ k, and the matrix P is irreducible, the following
statements are equivalent:

(i) for all s ∈ S, we have ρX(s) > 0;

(ii) there exists s ∈ S with ρX(s) > 0;

(iii) there exists s ∈ S with ρY(s) > 0;

(iv) for all s ∈ S, we have ρY(s) > 0.

That is, we have the equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv).

Remark 1. In the case where DP is not SC, Theorem 1 can be applied to its SC components.
Let D1, . . . , Dr denote the SC components of DP. Given 1 ≤ m ≤ r , let Sm ⊂ S denote
the vertex set of Dm and let Dm denote the subgraph of the random digraph D induced by
the vertex set Vm = {v ∈ V : s(v) ∈ Sm}. Note that, for i �= j , any two vertices v ∈ Vi

and u ∈ Vj do not communicate in D . Therefore, each SC component of D is a subgraph
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of some Dm. The asymptotic size of the largest SC component of Dm is, by Theorem 1,
N1(Dm) = ρmn + oP(n). Here we define ρm = ∑

s∈Sm
ρX(s)ρY(s)Q(s). It follows now that

N1(D) = max1≤m≤r ρmn + oP(n). In this way we obtain an extension of (3) to general (not
necessarily SC) digraphs DP.

3. The general model

The result of Theorem 1 extends to a much more general situation where the type space S is
a separable metric space, and Q is a probability measure defined on Borel sets of S. Here the
matrix ‖pij‖ is replaced by a nonnegative S × S measurable kernel κ(s, t), s, t ∈ S.

Let x1, x2, . . . be a sequence of random variables with values in S such that the empirical
distribution of the first n observations x1, . . . , xn approximates the measure Q in probability
as n → ∞. That is, we assume that, for each Q-continuous Borel set A ⊂ S, we have
#{i ∈ [1, n] : xi ∈ A}n−1 = Q(A) + oP(1) as n → ∞. Recall that a Borel set A is called
Q-continuous whenever its boundary ∂A has zero probability Q(∂A) = 0.

Given n, let Dn be the random digraph on the vertex set {x}n1 = {x1, . . . , xn} with
independent arcs having probabilities P({xi → xj } ∈ Dn) = 1 ∧ (n−1κ(xi, xj )), 1 ≤ i, j ≤ n.
Combining S, Q, and κ we obtain a very large class of inhomogeneous digraphs with indepen-
dent arcs. Obviously, the model will include digraphs with indegree and outdegree distributions
which have power laws.

Such a general model, for random graphs (not digraphs), was introduced in [2]. Note that in
the case of random graphs it is necessary to assume, in addition, that the kernel κ is symmetric.
In the definition of digraphs Dn, n ≥ 2, we do not require the symmetry of the kernel.

For large n, the phase transition in the digraph Dn can be described in terms of the survival
probabilities of the related multitype Galton–Watson branching processes with type space S.
Given s ∈ S, let X(s) and Y(s) denote the Galton–Watson processes starting at a particle
of type s such that the number of children of types in a subset A ⊂ S of a particle of type
t ∈ S has Poisson distribution with means

∫
A

κ(t, u)Q(du) and
∫
A

κ(u, t)Q(du), respectively.
These numbers are independent for disjoint subsets A and for different particles. The critical
point of the emergence of the giant SC component is determined by the averaged joint survival
probability

ρXY =
∫

S

ρX(s)ρY(s)Q(ds)

being positive. Here ρX(s) and ρY(s) denote the nonextinction probabilities of X(s) and Y(s),
respectively. In particular, for the general model of an inhomogeneous digraph, (3) reads as

N1(Dn) = ρXYn + oP(n) as n → ∞. (4)

In order to establish (4), we need to impose further conditions on the kernel κ , like those
in [2]. Namely, we need to assume that the kernel κ is irreducible (Q × Q)-almost every-
where. That is, for any measurable A ⊂ S with Q(A) �= 1 or Q(A) �= 0, the identity
Q × Q({(s, t) ∈ A × (S \ A) : κ(s, t) �= 0}) = 0 implies that Q(A) = 0 or Q(S \ A) = 0;
see [2]. In addition, we assume that κ is continuous almost everywhere on (S × S, Q × Q),
and the number of arcs in Dn, denoted by |Dn|, satisfies

n−1 E |Dn| →
∫∫

S×S

κ(s, t)Q(ds)Q(dt) < ∞

as n → ∞. Note that here we implicitly assume that κ is integrable, i.e. κ ∈ L1(S×S, Q×Q).
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We will not give the proof of (4). It can be obtained from Theorem 1 via a finite-dimensional
approximation argument similar to that used in the proof of Theorem 3.1 of [2].

4. Proofs

In the proof we will use ideas and techniques developed in [2] and [8].

4.1. Proof of Theorem 1

Given a vertex v ∈ V , let X(v) denote the set of vertices that can be reached from v via
directed paths, and let Y (v) denote the set of starting points of directed paths ending at v:

X(v) = {u ∈ V : v � u}, Y (v) = {u ∈ V : u� v}.
Given a function ω(n) such that ω(n) → ∞ and ω(n) = o(n) as n → ∞, we say that
v ∈ V is x-big if |X(v)| ≥ ω(n) and that v ∈ V is y-big if |Y (v)| ≥ ω(n). The sets of
x-big and y-big vertices are respectively denoted by Bx = Bx(ω) and By = By(ω). We write
B = B(ω) = Bx(ω) ∩ By(ω) for the set of vertices which are x-big and y-big simultaneously.
We show that, for any such function ω,

n−1|B(ω)| − ρXY = oP(1) as n → ∞. (5)

For this purpose, it suffices to show that, for each ω, we have

n−1 E |B(ω)| = ρXY + o(1), (6)

and to establish (5) for at least one such function, say ω0(n) = ln n. Indeed, assume that (6)
holds. Let ω and ω′ be two such functions, and let B and B ′ denote the corresponding sets of
large vertices. As the size of the symmetric difference B � B ′ = (B ∪ B ′) \ (B ∩ B ′) equals
|B(ω ∧ ω′)| − |B(ω ∨ ω′)| ≥ 0, we obtain, from (6), E |B � B ′| = o(n). It follows that
||B| − |B ′|| ≤ |B � B ′| = oP(n). In particular, (5) holds for every ω whenever it is satisfied
by at least one such function ω.

Proof of (6). Forward exploration. Given v ∈ V , we explore the set X(v) as follows. Color
all vertices blue. Color v white and put it in the list, which now contains a single white vertex v.
Then proceed recursively: choose a white vertex from the list, color it black, reveal all outgoing
arcs emerging from this vertex to blue vertices, color these vertices white and add them to the
list. We stop when we have collected at least ω(n) vertices in the list (hence, v ∈ Bx(ω)), or
when there are no white vertices left in the list (hence, we have explored the entire set X(v)

and v /∈ Bx(ω)). Let Xω(v) denote the set of vertices collected in the list. Given u, w ∈ X(v),
we say that u is an f -child (forward child) of w if {w → u} ∈ D and u was blue when w

discovered it during the exploration process. Since the last black vertex adds to the list all its
blue neighbors (endpoints of outgoing arcs), the size |Xω(v)| cannot exceed ω(n) by more than
the outdegree �x of the last black vertex.

Backward exploration. We perform the same exploration process starting at v as above, but
in the transposed digraph D∗, which is obtained from D by reversing the direction of arcs
({v → u} ∈ D ⇔ {u → v} ∈ D∗). That is, now the search for neighbors propagates in the
reverse direction of the arcs of D . Let Yω(v) be the subset of Y (v) obtained in at most ω(n) steps
of the exploration. Given u, w ∈ Yω(v), the vertex u is called a b-child (backward child) of w

if {u → w} ∈ D and u was blue when w discovered it. Again, we have |Yω(v)| ≤ ω(n) + �y ,
where now �y is the outdegree in D∗ (indegree in D) of the vertex last explored.
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By a coupling of an exploration process with the approximating Galton–Watson process,
Bollobás et al. [2] showed that the fraction of large vertices (the number |B(ω)|/n) converges
in probability to the survival probability of the Galton–Watson process; see Lemma 9.6 of [2].
Their results are stated for (undirected) random graphs, but several steps of their proof extend
to random digraphs as well. In particular, by a coupling of the forward exploration process
with X (backward exploration process with Y) we obtain, as n → ∞ uniformly in v ∈ V ,

P(v ∈ Bx(ω)) = ρX(s(v)) + o(1), P(v ∈ By(ω)) = ρY(s(v)) + o(1), (7)

P(�x > ln n) = O(n−1), P(�y > ln n) = O(n−1). (8)

Let us show (6) for ω(n) satisfying ω(n) ≤ ln n. Introduce the events Ax(v) = {|Xω(v)| ≥
ω(n)} and Ay(v) = {|Yω(v)| ≥ ω(n)}. Since |Xω(v)| ≥ ω(n) ⇔ v ∈ Bx(ω) and |Yω(v)| ≥
ω(n) ⇔ v ∈ By(ω), we have P(v ∈ B(ω)) = P(Ax(v) ∩ Ay(v)). In view of (8), with a high
probability, each of the events Ax(v) and Ay(v) refer to at most ω(n) + ln n ≤ 2 ln n vertices.
Therefore, we may expect that, for large n, these events are almost independent and we have
(see (7))

P(v ∈ B(ω)) = P(Ax(v) ∩ Ay(v)) = ρY(s(v))ρX(s(v)) + o(1). (9)

We show that (9) holds uniformly in v ∈ V . Then (6) follows from (1), (2), and (9) via the
identities

E |B(ω)| = E
∑
v∈V

1{v∈B(ω)} =
∑
v∈V

P(v ∈ B(ω)). (10)

Let us prove (9). Let A = {Xω(v)∩Yω(v) = v} denote the event that two exploration processes
after starting at v do not meet each other in the first ω(n) steps of the exploration. Observe
that, uniformly in v ∈ V ,

P(A) = 1 − o(1) as n → ∞. (11)

Indeed, assume that the set Xω(v) is already constructed, and construct the set Yω(v). Note that,
conditionally, given Xω(v) is of size at most ω(n) + ln n, each black vertex of Yω(v) discovers
at least one b-child in Xω(v) with probability at most |Xω(v)|p∗n−1 ≤ (ω(n) + ln n)p∗n−1,
where p∗ = max1≤i,j≤k pij . Since there are at most ω(n) black vertices in Yω(v), we conclude
that, on the event Dx = {|Xω(v)| ≤ ω(n) + ln n}, the conditional probability

P(A | Xω(v)) ≤ ω(n)(ω(n) + ln n)p∗n−1. (12)

Here A denotes the complementary event to A. It follows from (12) that P(A ∩ Dx) = o(1).
The latter bound combined with (8) shows (11).

Now we are ready to show (9). Assume again that Xω(v) has already been constructed. Now
we have to construct the set Yω(v). The vertices of V ′ = V \ Xω(v) remain blue. In particular,
for every i, the set V ′ contains at least ni − (ω(n) + ln n) = ni(1 − o(1)) blue vertices of
type si . Conditionally on the event A ∩ Dx , the exploration of Y (v) (until we stop it after at
most ω(n) steps) stays within the set V ′ of size n(1 − o(1)). The second identity of (7) applies
to the conditional probability P(Ay(v) | Xω(v), A) and yields

P(Ay(v) | Xω(v), A) = ρY(s(v)) + o(1)

uniformly in Xω(v), satisfying the event Dx . Therefore, we have

P(Ay(v) ∩ Ax(v) ∩ A ∩ Dx) = P(Ay(v) | Ax(v) ∩ A ∩ Dx) P(Ax(v) ∩ A ∩ Dx)

= ρY(s(v)) P(Ax(v) ∩ A ∩ Dx) + o(1).
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In view of (8) and (11) we can replace P(Ay(v) ∩ Ax(v) ∩ A ∩ Dx) by P(Ay(v) ∩ Ax(v))

and P(Ax(v)∩A∩Dx) by P(Ax(v)). Therefore, we obtain P(Ax(v)∩Ay(v)) = ρY(s(v))×
P(Ax(v)) + o(1). Finally, invoking (7) we obtain (9). Thus, we have proved (6) for ω(n)

satisfying the extra condition ω(n) ≤ ln n.
Let us now prove (6) for arbitraryω (satisfyingω(n) → ∞ andω(n) = o(n) asn → ∞). Fix

such an ω. We apply (6) to ω′(n) = ω(n)∧ln(n), and invoking the inequality |B(ω)| ≤ |B(ω′)|,
we obtain the upper bound E |B(ω)| ≤ nρXY + o(n). The corresponding lower bound,

E |B(ω)| ≥ nρXY + o(n), (13)

follows from (10) and the inequality

P(v ∈ B(ω)) ≥ ρX(s(v))ρY(s(v)) − o(1), (14)

which holds uniformly in v ∈ V .
To show that (14) holds, we first perform a forward exploration starting at the vertex v and ob-

tain the set Xω(v). Afterwards, in the digraph induced by the vertex set V 0 := (V \Xω(v))∪{v}
we perform a backward exploration starting at v. The set of the thus discovered vertices is
denoted by Y 0

ω(v). For a set V 0 containing at least ni − (ω(n) + ln n) = ni(1 − o(1)) vertices
of every type si ∈ S, the approximation of the distribution of the backward exploration process
by the distribution of the Galton–Watson process Y(v) remains valid. That is, the second
identity of (7) applies to the conditional probability P(|Y 0

ω(v)| ≥ ω(n) | Xω(v)). We have

P(|Y 0
ω(v)| ≥ ω(n) | Xω(v)) = ρY(s(v)) + o(1) (15)

uniformly in v and in Xω(v) satisfying |Xω(v)| ≤ ω(n) + ln n. Since Y (v) contains Y 0
ω(v) as

a subset, we obtain

P(|Y (v)| ≥ ω(n) | Xω(v)) ≥ ρY(s(v)) + o(1).

The latter inequality in combination with the first identity of (7) and the first bound of (8)
shows (14). We have now arrived at (13), thus completing the proof of (6).

Proof of (5). We prove (5) for a particular function ω0(n) = ln n. Note that (5) follows from
(6) and the bound

var |B(ω0)| = o(n2) (16)

via Chebyshev’s inequality. In addition, (16) follows from the identities

var |B(ω0)| = E |B(ω0)|2 − (E |B(ω0)|)2,

E |B(ω0)|(|B(ω0)| − 1) = 2 E
∑

{u,v}⊂V

1{v∈B(ω0)} 1{u∈B(ω0)},

combined with the identity, which holds uniformly in {u, v} ⊂ V ,

E 1{v∈B(ω0)} 1{u∈B(ω0)} = ρX(s(v))ρY(s(v))ρX(s(u))ρY(s(u)) + o(1).

The latter asymptotic identity is shown in much the same way as (9) above.
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Proof of (3). Write N1 = N1(DP,n). Note that, for every ω(n), N1 ≤ ω(n) ∨ |B(ω)|. In
combination with (5) this inequality implies the upper bound

N1n
−1 ≤ ρXY + oP(1). (17)

Here and below, for a sequence of random variables {Zn}, we write Zn ≤ oP(1) and Zn ≥ oP(1)

if, for every δ > 0, we respectively have limn P(Zn ≤ δ) = 1 and limn P(Zn ≥ −δ) = 1.
For ρXY = 0, result (3) follows from (17). For ρXY > 0, result (3) follows from (17) and

the lower bound
N1n

−1 ≥ ρXY + oP(1). (18)

In order to show this lower bound, we generate the digraph D in two steps. First, we generate a
digraph D ′ = D‖p′

ij ‖,n and then, on the top of it, we generate another digraph D ′′ = D‖p′′
ij ‖,n

independently of D ′. Here the numbers p′
ij and p′′

ij are defined by

p′
ij = pij (1 − ε), (1 − p′′

ij n
−1)(1 − p′

ij n
−1) = 1 − pijn

−1, 1 ≤ i, j ≤ k, (19)

where 0 < ε < 1 is fixed and we assume thatn is so large that allpijn
−1 < 1. The unionD ′∪D ′′

is the digraph on the vertex set V such that, for each (u, v) ∈ [V ]2, we have {v → u} ∈ D ′∪D ′′
whenever {v → u} is present in at least one of the digraphs D ′ and D ′′. Note that, by the second
equation of (19), the random digraphs D ′ ∪ D ′′ and D have the same probability distribution.

Let X′ = {X′(s), s ∈ S} and Y′ = {Y′(s), s ∈ S} be the multitype Galton–Watson
processes with Poisson offspring distributions that approximate the forward and backward
explorations of neighborhoods of vertices in D ′. They are defined in the same way as X and
Y above, but with respect to the matrix ‖p′

ij‖. Let ρ[ε] = ρX′Y′ be defined by (2). We can
show (e.g. by coupling of X(s) with X′(s) and Y(s) with Y′(s)) that ρX′(s) → ρX(s) and
ρY′(s) → ρY(s) as ε ↓ 0. In particular, we have

lim
ε→0

ρ[ε] = ρXY. (20)

We are now ready to prove (18). Fix the function ω1(n) = n/ ln n. Given v ∈ V , let X′
ω1

(v)

and Y ′
ω1

(v) denote the neighborhoods of v discovered by the forward and backward explorations
performed in D ′. Let B ′(ω1) denote the set of large vertices of D ′. From (5) we obtain

n−1|B ′(ω1)| − ρ[ε] = oP(1). (21)

We will show that, with high probability, every pair of vertices from B ′(ω1) communicate in D .
This will imply that N1 is at least as large as |B ′(ω1)|, and, as a consequence, we then obtain
the lower bound (25) below.

We generate the digraph D ′′ in k steps so that D ′′ = D1 ∪ · · · ∪ Dk . Here
Di , 1 ≤ i ≤ k, are independent copies of D‖p∗

ij ‖,n, where the matrix ‖p∗
ij‖ is defined by

the equations (1 − p∗
ij n

−1)k = 1 − p′′
ij n

−1, 1 ≤ i, j ≤ k. Note that, for {si → sj } ∈ DP,
identities (19) imply that

p∗
ij ≥ k−1εpij ≥ p0, p0 := k−1ε min{pij : pij > 0} > 0. (22)

For i = 1, . . . , k, define Xi(v) = {u ∈ V : {v � u} ∈ D ′ ∪ D1 ∪ · · · ∪ Di} and write
V (si) = {v ∈ V : s(v) = si}. We will show that, with high probability, every set Xk−1(v),

v ∈ B ′(ω1), contains at least �(n(ln n)−1) vertices of each type. More precisely, the event

H =
⋂

v∈B ′(ω1)

⋂
1≤i≤k

{|Xk−1(v) ∩ V (si)| ≥ n(ln n)−1	},
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where 	 := k−1(p0/4)k−1q1 × · · · × qk , has probability

P(H) = 1 − o(1) as n → ∞. (23)

Observe, that the event H depends on the random graph D
 = D ′ ∪ D1 · · · ∪ Dk−1 and is
independent of Dk . We show that, on the event H , the conditional probability, which now
refers to Dk , satisfies

P(N1 ≥ |B ′(ω1)| | D
) = 1 − o(1). (24)

This bound in combination with (21) and (23) implies the lower bound

N1n
−1 ≥ ρ[ε] + oP(1). (25)

Letting ε ↓ 0 from (20) we obtain (18). We complete the proof of (3) by first showing (24) and
then (23).

Proof of (24). Given D
, define the events

Auv = {there exists x ∈ Xk−1(u) and y ∈ Y ′
ω1

(v) such that {x → y} ∈ Dk}

for u, v ∈ B ′(ω1). Let Auv denote the event complement to Auv . Introduce the sum

S =
∑

{u,v}⊂B ′(ω1)

(1Auv
+ 1Avu

)

which (given D
) is at least as large as the number of pairs {u, v} ∈ B ′(ω1) that do not
communicate in D . We claim that, on the event H , we have S = 0 with high (conditional
given D
) probability. Indeed, the largest of the sets Y ′

ω1
(v)∩V (si), 1 ≤ i ≤ k, is of size at least

ω1(n)/k. Assume that it is the rth set Yr := Y ′
ω1

(v) ∩ V (sr). Since DP is SC, {sj → sr} ∈ DP

for some sj . Given the event H , the set Xj := Xk−1(v)∩V (sj ) is of size at least �(n(ln n)−1).
Therefore, we have

P(Auv | D
) ≤ (1 − p∗
jrn

−1)|Xj |×|Yr | ≤ (1 − p0n
−1)|Xj |×|Yr | ≤ c′n−4. (26)

Here c′ > 0 denotes a constant depending only on ‖pij‖ and ε. It follows from (26), by
Chebyshev’s inequality, that, given the event H , we have

1 − P(S = 0 | D
) = P(S ≥ 1 | D
) ≤ E(S | D
) ≤ c′n−2.

Since N1 ≥ |B ′(ω1)| − S, the latter bound implies (24).

Proof of (23). Let P′(·) = P(· | D ′) denote the conditional probability given D ′. In order
to prove (23), we show that, for each v ∈ B ′(ω1) and 1 ≤ i ≤ k,

P′(|Xk−1(v) ∩ V (si)| < n(ln n)−1	) = O(n−4). (27)

Fix v ∈ B ′(ω1) and i. The largest of the sets X′
ω1

(v) ∩ V (sj ), 1 ≤ j ≤ k, is of size at
least ω1(n)/k. Assume that it is the rth set X0 := X′

ω1
(v) ∩ V (sr). Since DP is SC, we find a

shortest path
sr = t0 → t1 → · · · → tj = si (28)
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in DP. Define 	m = k−1(p0/4)mQ(t1) · · · Q(tm). We claim that, for 1 ≤ m ≤ j ,

P′(|Xm(v) ∩ V (tm)| < n(ln n)−1	m) = O(n−4). (29)

Note that, in view of the inclusions X′
ω1

(v) = X0(v) ⊂ X1(v) ⊂ · · · ⊂ Xk−1(v) and the
inequalities 	 ≤ 	i , bound (29) (for m = j ) implies (27). We show (29) for m = 1, 2, . . . . Let
m = 1. Let X1 denote the set of endpoints in V (t1) of arcs in D1 that start at vertices in X0.
We have

|X1(v) ∩ V (t1)| ≥ |X1| =
∑

w∈V (t1)

1{w∈X1} .

The right-hand sum has binomial distribution Bi(|V (t1)|, p1) with |V (t1)| = nQ(t1) + o(n)

trials and success probability

p1 ≥ 1 − (1 − p0n
−1)|X0| ≥ 1 − (1 − p0n

−1)ω1(n)/k.

Indeed, p0n
−1 is the smallest probability of arcs in D1, and there are at least |X0| ≥ ω1(n)/k

vertices in X0(v) that ‘try’ to send an arc to a given vertex w ∈ V (t1). A simple analysis shows
that p1 = �(ln−1(n)). In particular, for large n, we have p1 ≥ p0/(2k ln n). Therefore, we
obtain E |X1| ≥ 2	1n(ln n)−1(1 + o(1)). Now, an application of the Chernoff bound (see,
e.g. [7]) to the binomial random variable |X1| shows (29) for m = 1. Next, given the event
{|X1(v) ∩ V (t1)| ≥ n(ln n)−1	1}, which is independent of D2, we show that

P(|X2(v) ∩ V (t2)| < n(ln n)−1	2 | D ′, D1) = O(n−4)

in much the same way. That is, we show that the number of different endpoints in V (t2) of arcs
in D2 that start in X1(v) ∩ V (t1) is strongly concentrated around 2	2n(ln n)−1. In this way,
proceeding along the path (28) until the last endpoint sj and using arcs from D1, D2, etc. for
the successive steps, respectively, we arrive at (29).

In the very last step of the proof of Theorem 1 we show that N2 = oP(n). Indeed, this bound
follows immediately from (5) and (18) via the simple inequality N1 + N2 ≤ 2ω(n) + |B(ω)|.
4.2. Proof of Result 1

The implications (i) ⇒ (ii) and (iv) ⇒ (iii) are obvious. Here we show that (ii) ⇒ (i) and
(ii) ⇒ (iii). The remaining implications (iii) ⇒ (iv) and (iii) ⇒ (ii) are shown in the same
way.

Assume that s ∈ S and ρX(s) > 0. We first show that ρX(s) > 0 for each s ∈ S \ {s}. Since
DP is SC, there exists a sequence s = s0 → s1 · · · → sr = s of types such that pi−1 i > 0 for
i = 1, . . . , r . Therefore, with a positive probability, particles of type s are among descendants
of X(s). But, each such particle has a positive survival probability ρX(s) > 0. Hence,
ρX(s) > 0.

Now we show (iii). We replace q1, . . . , qk by rationals q∗
1 = h1/h, …, q∗

k = hk/h such that
0 < q∗

i ≤ qi, 1 ≤ i ≤ k. Here hi and h are integers. Let X∗ and Y∗ be the Galton–Watson
processes defined in the same way as X and Y, but with q1, . . . , qk replaced by q∗

1 , . . . , q∗
k . We

choose q∗
i sufficiently close to qi, 1 ≤ i ≤ k, so that ρX∗(s) > 0. Let X̃ and Ỹ be multitype

Galton–Watson processes with type spaces S̃ = {s11, . . . , s1h1 , . . . , sk1, . . . , skhk
}, where the

number X̃sjr
(sit ) of children of type sjr of a particle of type sit has Poisson distribution with

means pijh
−1 and pjih

−1, respectively. We assume that numbers of children of different types
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are independent random variables. Note that an observer, who can read only the first index of
the type of a particle (e.g. the index i of sij ), does not distinguish between the processes X∗
and X̃ (respectively between Y∗ and Ỹ). Hence, the observer will tell us that ρX̃(sit ) > 0 for
each 1 ≤ t ≤ hi . Here si = s. Now we are going to apply the well-known fact from the theory
of multitype Galton–Watson processes (see, e.g. Theorem 7.1 of [6]) that the maximal positive
eigenvalue λX̃ of the matrix M

X̃
= ‖ E X̃s̃ (ũ)‖

s̃,ũ∈S̃
is larger than 1 if and only if ρ

X̃
(s̃) > 0

for some s̃ ∈ S̃. Hence, ρX̃(sit ) > 0 ⇒ λX̃ > 1. Furthermore, since the matrix M
Ỹ

is the
transpose of M

X̃
, both matrices have the same spectrum. In particular, λỸ = λX̃ > 1. Finally,

the abovementioned result implies that ρỸ(ũ) > 0 for some ũ ∈ S̃, and the observer will tell
us that ρY∗(u) > 0 for some u ∈ S.
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