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MAXIMAL ARCS AND GROUP DIVISIBLE DESIGNS

ALAN RAHILLY

The existence of maximal arcs of a certain type in symmetric designs is shown to
yield semiregular group divisible designs whose duals are also semiregular group
divisible. Two infinite families of such group divisible designs are constructed. The
group divisible designs in these families are, in general, not symmetric.

1. INTRODUCTION

Group divisible designs whose duals are also group divisible have received some
attention (see [1, 4]). Under the assumption that repeated points and repeated blocks
are not permitted, Mitchell [4] has shown that, if Q and its dual Qd are both group
divisible, then Q and Qd are each semiregular or Q is symmetric and Q and Qd are each
regular. A range of examples of symmetric, regular group divisible designs whose duals
are also group divisible is known. As examples we cite the substructures complementary
to Baer subdesigns of symmetric designs [1, pp.95-96] and also finite proper uniform
projective Hjelmslev planes [3, p.294]. On the other hand, non-symmetric, semiregular,
group divisible designs whose duals are also group divisible seem to be rare. In this paper
we use maximal arcs of a certain type in symmetric designs to construct two infinite
families of semiregular, group divisible designs whose duals are also group divisible.
In general, the semiregular group divisible designs we obtain are not symmetric. We
also investigate briefly working our construction method for semiregular group divisible
designs in reverse to obtain symmetric designs.

Before proceeding, some remarks on the terminology and notation we shall use are
in order. First, we treat designs and group divisible designs as incidence structures in
the manner of [3]. Our usage of the term "design", without "group divisible" attached,
is that of [3], Chapter 2. Our basic terminology and notation concerning group divisible
designs is that of [2].
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2. MAXIMAL ARCS

Let T> - (P,B,J) be a («, k, A)-design, V\ C V and V ^ V\ ^ 0. Pi is said to
be a maximal u-arc of 2? if any block of B is incident with precisely u points of V\ or
with no points of Vi. If Bi is the set of blocks of V incident with u points of V\ and
7*2 and B2 are the complements of V\ and B\ respectively, then V\, V2, S i , and B2

form a tactical decomposition [3, pp.7 and 17] with incidence matrices
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and |B2| =
Au

and the substructure Vi - (Pi,Bi,2ii) of X> defined by V\ and B! ([3, p.2]) is an
(]7^11, |Bi|, k,u, A)-design, provided u > 1. Furthermore, B2 is a maximal (fc — A)/u-
arc in the dual T)d of T> which we call the dual maximal arc of V\. In this sit-
uation the substructure T>2 = {Bii'Pit^ii) °f ^ defined by B2 and V2 is an
(|B2|, \V2\,k,(k - \)/u, A)-design, provided that k - A > u. We refer to £>! and V2 as
the (sub)designs "associated with" T>\ and B2 respectively. These results concerning
maximal u-arcs are straightforward to establish. For some of the details see [5, pp.8-9].

Note that for a (v,k, A)-design to possess a maximal u-arc V\ we must have

(1)

(2)

u | f c - A and

A I fc(« - 1).

Next, let V\ be a maximal u-arc of a (iu,A:,A)-design T> = (V,B,T). Suppose
the design T)\ associated with V\ is an n-multiple of an ( IPJ I JU, Ai)-design. Since
\B\\ = {k/u)\Vi\ we have k = un. Equally clearly we have A = Ain. Using (1) we can
infer that u | A, whence A = ut for some positive integer t. Then, from (2), we infer
that t I n(u - 1). But v = (nu(nu - l))/(tu) + 1 = (n2(u - l))/t + (n(n - l))/< + 1
and so we also have t \ n(n — 1).

Clearly t — ac, where a | n , c\n — 1, o ^ l and c ^ 1. Obviously a and c are
relatively prime. But t | n(u — 1) and so we have c | u — 1. Let n = aa = (3c + 1 and
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•u = 70 + 1. At this stage we have that V is an

(a7(/3c + 1) + a/3 + 1,00(70 + 1), 00(70 + l))-design

and T>i is an (aa)-multiple of a (7a •+• 1,70+ 1,0(70 + l)/a)-design. Readily we also
have that the subdesign X>2 associated with the dual maximal are B2 of V\ is an

((a - c)@, a@(yc + 1), 0:0(70 + 1), a(a - c), 00(70 + l))-design.

Now suppose that T>2 is also a multiple of a symmetric design. Immediately we
have that T>2 is an (01(70 + l)/(ot — c))-multiple of an ((a — c)/3, a(a — c), ac(a — c)/a)-
design. At this point we conclude that a | 0(70 + 1), a \ ac(a — c) and a—c | 0(70 + 1) •
But aa = /?c + 1 , whence a and c are relatively prime, and so we have a \ fc + 1, a\a
and a — c I 70 + 1 = 7(0 — a ) + 7 a + 1. It follows that a — c\ -ya + 1 also. Let a = ra,
•yet + 1 = p(a — c) and 7c -f 1 = ira(a — c). Clearly we have p — 7 = net. Using this
and fa + 1 = p(a — c) we can solve for 7 and p to obtain

7 r a 2 - l

na(a — c) — 1
and 7 = — .

c

Since j3c + 1 = aa — TO2 we also have

Expressing the parameters of 2?, T)\ and T>% in terms of TT, T, a and c we obtain that

(i) T> is a Sym(7rra2,a,c) ,

(ii) "D\ is a (Ta2)-multiple of a Sym(7r,a,c), and

(iii) ©2 is a (7ra2)-multiple of a Sym(T, a,c),

where, for any positive integers x, y and z such that z \ xy2 — 1, we call an

(((xy2 - l)/z)(y - z),xy(y - z),xz(y - z))-design a Sym(x,y,z).

3. CONSTRUCTION OF GROUP DIVISIBLE DESIGNS WITH

GROUP DIVISIBLE DUALS

In this and the next section we shall refer to a group divisible design with the
parameters

A2 = Vz((y2 - l)(» - z),

m — (y - z) and n = (y2,
z
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where z divides each of £y2 — 1 and rjy2 - 1 , as a GDD(£, r\, y, z). Clearly v, b et cetera
as just given in terms of {, r\, y and z, satisfy the basic group divisible design equations
vr = bk and v = mn. Straightforward verification shows that (n — l)Ai +n(m — 1)X2 =
r(k — 1) is also satisfied. We note that a GDD(^,Tf,y, z) is a semiregular group divisible
design.

THEOREM 1. Suppose D is a Sym(7rTa2,a,c) possessing a maximal arc Vi
whose associated design *D\ is a (ra2) -multiple of a Sym(7r, a, c). Suppose further that
the associated design "D2 °f ^ae dual maximal arc B2 of V\ is a (n a2)-multiple of a
Sym(r,a,c). Then the substructure QofV defined by V\ and B\ is a GBD(n,r,a,c)
whose dual Qd is a GDD(r,7r,a,c).

PROOF: It is sufficient to show that Qd is a GDD(r,7r,a,c) for then the fact that
Q is a GDD(7r,T,a,c) follows by duality.

Consider a block B\ of Bi=B%. There are TO? — 1 other blocks of B\ which meet
V\ in precisely the same points as B1. The group of Qd containing Bx consists of
these TO2 — 1 blocks along with B\. The verification that Qd is a GDD(r, n, a, c) is
straightforward. We offer the following specimen of this verification and leave the rest to
the reader: Every pair of points of Qd in the same group are on 7rra2c(a — c)—ira(a — c)
(= index of V— blocksize of Vx ) = ira{Tac - l)(a - c) blocks of Qd. D

For a GDD(£,77,i/, z) we must have y > z > 0. Thus the smallest values for y and
z we can have are y = 2 and z = 1. We note that a Sym(z, 2,1) is the complement of
a Hadamard design of order x .

In the following discussion the row and column consisting entirely of ones of a
normalised Hadamard matrix are the first row and the first column. Suppose Hi is
a normalised Hadamard matrix of order 4nj, for i = 1,2. Let H be the Kronecker
product of H2 and Hi, obtained by replacing each 1 in Hi by H\ and each—1 in Hi
by—Hi. Deleting the first row and column of H and converting the 1 (respectively,
-1) entries of the matrix so obtained to 0 (respectively, 1) we obtain the incidence
matrix A of a design Hc which is the complement of a Hadamard design 7i of order
4niTi2. The points corresponding to the first 4ni — 1 rows of A are easily shown to
be a maximal (2ni )-arc Vi of Hc whose associated design is a (4«2 )-multiple of Til >
where 7<i is the Hadamard design obtainable from Hi. The exterior blocks of Vi are
those corresponding to columns 4ini + 1, for t = 1,... ,4n2 — 1. Careful scrutiny of A
reveals that the subdesign of "Hc associated with the dual maximal arc of Vi is a (4nj)-
multiple of the dual of "H\, where 7i2 is the Hadamard design obtainable from H2 •
We thus have a maximal arc (namely V\) in the Sym(4niTi2,2,1) 7ic whose associated
subdesign is a (4n.2)-multiple of a Sym(n1,2,1). Further, the associated subdesign of
the dual maximal arc is a (4ni)-multiple of a Sym(n2,2,1). Applying Theorem 1 we
obtain
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THEOREM 2 . If there are Hadamard designs of order n j and ri2, then there is

a G D D ( n i , n 2 ) 2 , l ) whose dual is a GDD(n2 ,n i , 2 , l ) . This group divisible design is

symmetric if and only if n\ = T»2 .

We now turn to a second construction of semiregular group divisible designs with
semiregular group divisible duals.

Let d and e be integers such that 1 < e < d — 2. Consider the symmetric
design T> = PGd-i(d,q) formed by the points and hyperplanes of the <f-dimensional
projective geometry PG(d,q) over GF(q). Let U be an e-dimensional subspace of
PG(d,q). Hyperplanes of PG(d,q) meet U in an (e — l)-dimensional subspace or

contain U. It follows that U is a maximal arc of the ( £) q%,qd,qd — qd~1 I-design
\i=o /

Vc. Furthermore, the subdesign of X>c associated with V is a (gd~e)-inultiple of a

I 5Z 9*>9*>9e ~ i'~1 )-design. Now the hyperplanes of PG(d,q) containing U form a
\»=o /
(d— e — l)-dimensional subspace in the dual space. So the design associated with the

/d-e-l \

dual maximal arc of U is a (ge+1)-multiple of a f £ 9*,«d~e"1,9d"<!~1 - qd~'~2 )-

design. Since a ( j ^ q*,q',q' — q'~l )-design is a Sym^*"1,?,q — l) we obtain the
\t=o /

following result, upon applying Theorem 1.

THEOREM 3 . For all prime powers q and integers e and d such that 1 < e ^ d —
2, tAereisa GDD(ge-1,g'J-<!-2,g,9 - l) whose dual is a GT>B(qd-e-2,qe-1,q, q - l) .
These designs are symmetric if and only if d — 2e + 1.

To complete this section we note that the complement of a semiregular group
divisible design whose dual is semiregular group divisible is also semiregular group
divisible with semiregular group divisible dual.

4 . A CONSTRUCTION FOR SYMMETRIC DESIGNS

In Theorem 1 we showed that, if there is a Sym(nTa2,a,cj with a maximal arc
V\ whose associated design is a (ra2)-multiple of a Sym(7T,a,c) and for which the
associated design of the dual maximal arc of V\ is a (?ra2)-multiple of a Sym(T, a, c),
then there exists a GDD(7T,T, a,c) whose dual is a GDD(T,TT, a,c). We also have the
following converse result.

THEOREM 4 . If there is a Sym(7T,a, c), a Sym(T,a,c) and a GDD(ir,T,a,c)
whose dual is a GDD(T, ir, a,c), then there is a Sym(7rTa2,a,c) , 23, such that

(a) D possesses a maximal arc V\ whose associated subdesign is a ('''o2)-
multiple of a Sym(7r, a,c) and
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(b) the dual maximal arc of V\ has associated subdesign which is a (ira2)-
multiple ol a Sym(-r, a, c).

PROOF: Let Q = (V',B',T) be a GDD(ir, T, a, c) such that Qd is a GDD(T,7r,a,c).
Let the groups of Q be {Pij \ j = 1,.. . ,7ra2}, i = 1 , . . . , ((ra2 — l)/c)(a — c), and
the groups of Qd be {J5,-,- | j = l , . . . , r a 2 } , for i = 1, . . . , ((ira2 - l)/c)(a - c).
Choose disjoint sets V* and BT such that \VT\ = ((na2 — l)/c)(a — c) and \BT\ —
( (TO2 — l)/c)(a — c) and which are each disjoint from V' and B'. Construct a (ra2)-
multiple V* — (V-*,B',Ir) of a Sym(7r,a,c) such that, for each fixed i, (-B.j)* = (Bih)*
for all j , h, where (X)v denotes the set of points incident in D* with block X. Simi-
larly, construct a (wa2)-multiple T>T = (BT,V',1T) of a Sym(T, a,c) such that, for each
fixed i, (Pij)T = {Pih)T for all 7, h. Then let V = (V* U V,BT U B',I* U1$ Ul ' ) ,
where if is defined by (P, £) G J r if and only if {B,P) G X^.

I? is easily shown to be symmetric. We show that Z> is a Sym(7rTa2,a,c) by
showing that V has blocksize nra3c(a — c) and each pair of blocks of T> meet in
•KTa2c(a — c) points.

From the construction of T> a block of B' has 7ra(ra2 — l)(a — c) -f ira(a — c)
points on it in P . Also the set of points on a block of BT is the union of ra(a — c)
groups of Q. Thus such a block of T> has blocksize ira2 x ra(a — c).

Two blocks in the same group of Qd have 7ra(rac — l)(a — c) + ira(a — c) points
of T> in common and blocks from different groups of Qd have irc{ra2 — l)(a — c) +
7rc(a — c) points of X> in common. The set of points common to two blocks of T> in BT

is the union of rc(a — c) groups of Q. Since Q has TTO2 points in each group the set of
points common to two such blocks of V contains ira2 x TC(Q — c) points of 23. Finally,
consider two blocks of D, one from B' and one from BT. Since Q is semiregular each
of the ((TO2 — l)/c)(a — c) groups of Q meets each block of Q in the same number of
points ([2, p.373]), namely irac, since the blocksize of Q is ira[ra2 — l)(a — c). But
the set of points incident with a block of V in BT is the union of ra(a — c) groups of Q.
So the block intersection number for a block of B' and a block of BT is TOt(a — c) X irac.

From the construction of T> it follows that V\ = VT is a maximal arc of T> with
BT as its dual maximal arc, and that the associated subdesigns of these maximal arcs
are 2?w and 2?T, respectively. D

Effectively, in the construction of the Sym(7TTa2, a, o)T> in the proof of Theorem 4
we utilised a one-to-one correspondence between the set of blocks of a Sym(7r,a,c) and
the set of groups of a GDD(T, TT, a,c). A one-to-one correspondence between the sets
of blocks of a Sym(r, a, c) and the set of groups of a GDD(TT, T, a, c) was also utilised.
Since these one-to-one correspondences can be arbitrarily selected there are
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Sym(7rTa2,a,c) 's obtainable using the construction, upon choosing a Sym(7r, a, c), a

Sym(T,a,c) and a GDD(7T,T,a ,c ) whose dual is a G D D ( T , I T , a , c ) . We can obtain

further Sym(7TTa2,a,c)'s by choosing a different (possibly isomorphic) Sym(7r,a,c)

and also by choosing a different Sym(T, a,c) or a different GDD(TT, T, a,c). Clearly

there are large numbers of symmetric designs we can construct using the group divisible

designs whose existence can be inferred from Theorems 2 and 3.
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