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Abstract

Let R be a commutative ring with an automorphism « of finite order n. An element f of the
skew polynomial ring R[x, «] is nilpotent if and only if all coefficients of f* are nilpotent. (The
case n = 1 is the well-known description of the nilpotent elements of the ordinary polynomial
ring R[x].) A characterization of the units in R[x, a] is also given.
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Let R be a commutative ring and suppose « is an automorphism of R with finite
order n. We describe in Theorem 1 the nilpotent elements of R[x, o] in a way which
is a generalization of the well-known characterization of the nilpotent elements in
the ordinary polynomial ring R[x] (the case n = 1). In Section 2 we characterize the
units in R[x, a]. The results are all obtained by embedding R[x, «] into an nxn
matrix ring.

We write the elements of R[x, «] in the form

ro+rx+..+rp,x™ (r;€R)

and multiplication is determined by xr = r*x for reR.

These results appear in the first author’s Ph.D. thesis (Rimmer (1978)), written
under the supervision of the second author. Gilmer (1975) describes the related
results for R[x].
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1. Nilpotents

THEOREM 1. Let R be a commutative ring with an automorphism o of order n.
An element f of R[x, ol is nilpotent if and only if all coefficients of f* are nilpotent in R.

ProOF. When R is embedded in a ring with identity in the usual way, the auto-
morphism « extends to an automorphism of the same order. Thus we may assume
in what follows that R has an identity.

Denote x™ by y. Notice that y is central in R[x, «] since

yr=Xx"r=rx"=rx"=ry,

that the subring R[y] generated by R and y is just the ordinary polynomial ring
and that R[x,«] is a free (left) R[y]-module with basis # = {l,x,...,x*1}. The
regular representation (f maps to right multiplication by f) embeds R[x,«] in
End g, (R[x, ]). If we replace elements of End g, (R[x, «]) by their matrices with
respect to # we have an embedding ¢ from R[x, «] into the ring M(n, R[y]) of nxn
matrices over R[y]. It is easy to check that if A = hy+h x+...+h,_; x*1 (with
h; in R[y]) then hgp is the matrix

( ho hl h2 e hﬂ—‘l

he_y hg h¢ o R,

1) K,y KLy B kP,
h%n'ly hgu—ly hgn—ly ... hgn—-l

Let P be any prime ideal of R. The natural map R—> R/P extends to a homo-
morphism
6p: M(n, Ry])—> M(n,(R/P)[y].

If h = hy+hy x+...+h,_; x»1 (h;€ R[y)) is in the kernel of ¢0p then we see from
the first row of (1) that each k#,€P[y] and so h€P[x, a].

Suppose f€ R[x, «] is nilpotent. Since any nilpotent 7 x n matrix A over a field
(or integral domain) satisfies 4™ = 0, and since (R/P) [y] is an integral domain, we
see that (fp0p)™ = 0. Hence f* is in the kernel of 6 which means that f* € P[x, a].
Because P was arbitrary, all coefficients of /™ are in the prime radical of R and so
are nilpotent.

Conversely, consider any polynomial r = ry+r; x+... + 7, X™ (r;€R) such that
all r; are nilpotent. If r{ = 0 for all i, it follows that r™+D = 0, since a typical
term in this is a product of n#(m+ 1) terms r; x* and so has coefficient a product of
nt(m+1) terms of the form rg" (0<j<n—1), some ¢t of which must be equal. Thus
if all coefficients of f™ are nilpotent, f* is nilpotent and hence f is nilpotent.
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Notk. It follows from the second part of the above proof that fis nilpotent if all
its coefficients are nilpotent. That the converse is not true can be seen by taking
R =Z® Z with « of order 2 given by (a,b)* = (b,a). If

f=Q0x+{,-1D)x2+0,-1x%
then f2 = 0 but the coefficient of x* in fis a unit.

Nilpotent nxn matrices over a field are those with characteristic polynomial
A" and over a commutative ring are those with characteristic polynomial

Artd, A4 4d A +dy,

where each d; is nilpotent. Hence the embedding ¢ gives another description of the
nilpotents.

PROPOSITION 2. Let R be a comr'nutative ring with an automorphism o of order n.
Then f€ R[x, o] is nilpotent if and only if fp has characteristic polynomial

Ar4d, A1+ +d A+d,

where each d; is a nilpotent polynomial.

2. Units

THEOREM 3. Let R be a commutative ring with identity and let « be an auto-
morphism of R with order n. A polynomial f is a unit in R[x, «] precisely when the
matrix fo has determinant ro+ryy+...+r,y™ with ry a unit in R and r, ...,1,,
nilpotent.

ProoF. If fis a unit in R[x, «] then clearly f is a unit in M(n, R[y]). Since R[y]is
commutative, det (fp) is a unit in R[y] and hence has the appropriate form.

Conversely, if det(fp) is as described, det(f) is a unit in R[y] and so f has an
inverse (fp)~! in M(n, R[y]). Because fp satisfies its characteristic polynomial,

(o)™ = (= P (et fp) H(fp)™ 1+ e 1) 24+ ¢y)

for some ¢y, ...,c,_, ER[Y). If

g = (1" et/ " ey f* 04 6)

then go has the same first row as (f)~! and so, since (fp)~(fp) = I, gp.fp has
first row (1,0,...,0). Since gp.fo =(gf)peR[x,o]p, it follows from (1) that
g9.fp = I and hence gp = (f)~L. Thus, since @ is injective, gf =fg =1 and fis a
unit.
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