J. Austral. Math. Soc. (Series A) 28 (1979), 423-426

NILPOTENTS AND UNITS IN SKEW POLYNOMIAL RINGS OVER COMMUTATIVE RINGS

M. RIMMER and K. R. PEARSON

(Received 3 April 1979)

Communicated by D. E. Taylor

Abstract

Let R be a commutative ring with an automorphism α of finite order n. An element f of the skew polynomial ring $R[x, \alpha]$ is nilpotent if and only if all coefficients of f^n are nilpotent. (The case n = 1 is the well-known description of the nilpotent elements of the ordinary polynomial ring R[x].) A characterization of the units in $R[x, \alpha]$ is also given.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 05.

Keywords: Skew polynomial, nilpotent, unit.

Let R be a commutative ring and suppose α is an automorphism of R with finite order n. We describe in Theorem 1 the nilpotent elements of $R[x, \alpha]$ in a way which is a generalization of the well-known characterization of the nilpotent elements in the ordinary polynomial ring R[x] (the case n = 1). In Section 2 we characterize the units in $R[x, \alpha]$. The results are all obtained by embedding $R[x, \alpha]$ into an $n \times n$ matrix ring.

We write the elements of $R[x, \alpha]$ in the form

$$r_0+r_1x+\ldots+r_mx^m$$
 $(r_i\in R)$

and multiplication is determined by $xr = r^{\alpha}x$ for $r \in R$.

These results appear in the first author's Ph.D. thesis (Rimmer (1978)), written under the supervision of the second author. Gilmer (1975) describes the related results for R[x].

1. Nilpotents

THEOREM 1. Let R be a commutative ring with an automorphism α of order n. An element f of $R[x, \alpha]$ is nilpotent if and only if all coefficients of f^n are nilpotent in R.

PROOF. When R is embedded in a ring with identity in the usual way, the automorphism α extends to an automorphism of the same order. Thus we may assume in what follows that R has an identity.

Denote x^n by y. Notice that y is central in $R[x, \alpha]$ since

$$yr = x^n r = r^{\alpha^n} x^n = rx^n = ry,$$

that the subring R[y] generated by R and y is just the ordinary polynomial ring and that $R[x, \alpha]$ is a free (left) R[y]-module with basis $\mathscr{B} = \{1, x, ..., x^{n-1}\}$. The regular representation (f maps to right multiplication by f) embeds $R[x, \alpha]$ in $\operatorname{End}_{R[y]}(R[x, \alpha])$. If we replace elements of $\operatorname{End}_{R[y]}(R[x, \alpha])$ by their matrices with respect to \mathscr{B} we have an embedding φ from $R[x, \alpha]$ into the ring M(n, R[y]) of $n \times n$ matrices over R[y]. It is easy to check that if $h = h_0 + h_1 x + ... + h_{n-1} x^{n-1}$ (with h_i in R[y]) then $h\varphi$ is the matrix

(1)
$$\begin{pmatrix} h_0 & h_1 & h_2 & \dots & h_{n-1} \\ h_{n-1}^{\alpha} y & h_0^{\alpha} & h_1^{\alpha} & \dots & h_{n-2}^{\alpha} \\ h_{n-2}^{\alpha^3} y & h_{n-1}^{\alpha^3} y & h_0^{\alpha^3} & \dots & h_{n-3}^{\alpha^3} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ h_1^{\alpha^{n-1}} y & h_2^{\alpha^{n-1}} y & h_3^{\alpha^{n-1}} y & \dots & h_0^{\alpha^{n-1}} \end{pmatrix}$$

Let P be any prime ideal of R. The natural map $R \rightarrow R/P$ extends to a homomorphism

$$\theta_P: M(n, R[y]) \rightarrow M(n, (R/P)[y])$$

If $h = h_0 + h_1 x + ... + h_{n-1} x^{n-1}$ $(h_i \in R[y])$ is in the kernel of $\varphi \theta_P$ then we see from the first row of (1) that each $h_i \in P[y]$ and so $h \in P[x, \alpha]$.

Suppose $f \in R[x, \alpha]$ is nilpotent. Since any nilpotent $n \times n$ matrix A over a field (or integral domain) satisfies $A^n = 0$, and since (R/P)[y] is an integral domain, we see that $(f\varphi \theta_P)^n = 0$. Hence f^n is in the kernel of $\varphi \theta_P$ which means that $f^n \in P[x, \alpha]$. Because P was arbitrary, all coefficients of f^n are in the prime radical of R and so are nilpotent.

Conversely, consider any polynomial $r = r_0 + r_1 x + ... + r_m x^m$ $(r_i \in R)$ such that all r_i are nilpotent. If $r_i^t = 0$ for all *i*, it follows that $r^{nt(m+1)} = 0$, since a typical term in this is a product of nt(m+1) terms $r_i x^i$ and so has coefficient a product of nt(m+1) terms of the form $r_i^{\alpha j}$ $(0 \le j \le n-1)$, some *t* of which must be equal. Thus if all coefficients of f^n are nilpotent, f^n is nilpotent and hence *f* is nilpotent.

425

Note. It follows from the second part of the above proof that f is nilpotent if all its coefficients are nilpotent. That the converse is not true can be seen by taking $R = \mathbb{Z} \oplus \mathbb{Z}$ with α of order 2 given by $(a, b)^{\alpha} = (b, a)$. If

$$f = (1,0)x + (1,-1)x^{2} + (0,-1)x^{3}$$

then $f^2 = 0$ but the coefficient of x^2 in f is a unit.

Nilpotent $n \times n$ matrices over a field are those with characteristic polynomial λ^n and over a commutative ring are those with characteristic polynomial

$$\lambda^n + d_{n-1} \lambda^{n-1} + \ldots + d_1 \lambda + d_0,$$

where each d_i is nilpotent. Hence the embedding φ gives another description of the nilpotents.

PROPOSITION 2. Let R be a commutative ring with an automorphism α of order n. Then $f \in R[x, \alpha]$ is nilpotent if and only if $f\varphi$ has characteristic polynomial

$$\lambda^n + d_{n-1} \lambda^{n-1} + \ldots + d_1 \lambda + d_0,$$

where each d_i is a nilpotent polynomial.

2. Units

THEOREM 3. Let R be a commutative ring with identity and let α be an automorphism of R with order n. A polynomial f is a unit in $R[x, \alpha]$ precisely when the matrix $f\varphi$ has determinant $r_0+r_1y+\ldots+r_my^m$ with r_0 a unit in R and r_1,\ldots,r_m nilpotent.

PROOF. If f is a unit in $R[x, \alpha]$ then clearly $f\varphi$ is a unit in M(n, R[y]). Since R[y] is commutative, det $(f\varphi)$ is a unit in R[y] and hence has the appropriate form.

Conversely, if det $(f\varphi)$ is as described, det $(f\varphi)$ is a unit in R[y] and so $f\varphi$ has an inverse $(f\varphi)^{-1}$ in M(n, R[y]). Because $f\varphi$ satisfies its characteristic polynomial,

$$(f\varphi)^{-1} = (-1)^{n-1} (\det f\varphi)^{-1} ((f\varphi)^{n-1} + c_{n-1}(f\varphi)^{n-2} + \dots + c_1)$$

for some $c_1, \ldots, c_{n-1} \in R[y]$. If

$$g = (-1)^{n-1} (\det f\varphi)^{-1} (f^{n-1} + c_{n-1} f^{n-2} + \dots + c_1)$$

then $g\varphi$ has the same first row as $(f\varphi)^{-1}$ and so, since $(f\varphi)^{-1}(f\varphi) = I$, $g\varphi f\varphi$ has first row (1, 0, ..., 0). Since $g\varphi f\varphi = (gf)\varphi \in R[x, \alpha]\varphi$, it follows from (1) that $g\varphi f\varphi = I$ and hence $g\varphi = (f\varphi)^{-1}$. Thus, since φ is injective, gf = fg = 1 and f is a unit.

References

R. Gilmer (1975), 'On polynomial and power series rings over a commutative ring', Rocky Mount. J. Math. 5, 157-175.

M. Rimmer (1978), Skew polynomial rings and skew power series rings (Ph.D. Thesis, La Trobe University).

La Trobe University Bundoora, Victoria 3083 Australia

426