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Abstract

A class of mixed control-state constrained optimal control problems for elliptic partial
differential equations arising, for example, in Lavrentiev-type regularized state constrained
optimal control is considered. Its numerical solution is obtained via a primal-dual active-
set method, which is equivalent to a class of semi-smooth Newton methods. The locally
superlinear convergence of the active-set method in function space is established, and its
mesh independence is proved. The paper contains a report on numerical test runs including
a comparison with a short-step path-following interior-point method and a coarse-to-fine
mesh sweep, that is, a nested iteration technique, for accelerating the overall solution
process. Finally, convergence and regularity properties of the regularized problems with
respect to a vanishing Lavrentiev parameter are considered.
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1. Introduction

Recently, there has been significant interest in studying the optimal control (model)
problem

minimize J(y, u) : = -\\y - yd\\
2

Li + - I M I ^

over (y,u)eH>(£l)xL2(n),

subject to Ay = u + f in ft,

a <cu -\- y <b almost everywhere (a.e.) in ft,

(1.1)
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2 M. Hintermuller [2]

where ft c K" is a bounded domain with sufficiently smooth boundary F = 3ft,
and yd e L2(ft), / € H~l(Q), a,b e L?(ft), for some q > 2 and with a < b,
c e L°°(ft), with c > ec > 0 a.e.in ft, and a > 0 are given data. Further, A denotes a
second-order linear elliptic differential operator. Throughout we use || • ||t2 = || • U^n,
and similarly for other function space norms. In what follows, we call y the state
and u the control (variable), respectively.

The recent focus on the model problem (1.1) is mainly due to its importance in the
context of (purely) state-constrained optimal control problems, which is c = 0 in (1.1)
with / e L2(ft),thatis,

minimize J(y, u) := -\\y - yd\\
2

Lz + -\

over (y, u) e H^(£i) x Z.2(«),

subject to Ay = u + f in ft,

a < y <b almost everywhere (a.e.) in Q.

(1.2)

For this problem, it is well known that the Lagrange multiplier associated with the
pointwise almost everywhere state constraints is a Borel measure only; see [7,9].
Consequently, numerical algorithms such as projected Newton or semismooth Newton
techniques suffer from a mesh-dependent behaviour and typically admit no function
space analysis. As a remedy, in [17] a Lavrentiev-type regularization of pointwise
state constraints is proposed. The resulting regularized problem is of the type (1.1)
for some small, but fixed, c(x) = e > 0. For its numerical solution a short-step
primal-dual path-following interior-point method is applied.

An alternative path-following concept for the solution of (1.2) can be found in [13].
It is based on a generalized Moreau-Yosida-type regularization, that is, it replaces (1.2)
by the approximate problem

1 / | | / - > "2

minimize J(y, u) + — max 0, Xb + y(y - b)
2y \ll \ )

0,K-
(1.3)

over

subject to Ay = u + f in ft,

where y > 0 represents a regularization parameter, and Xa, kb > 0 are fixed shift-
parameters in L2(ft). The regularized problem (1.3) is solved efficiently by a semi-
smooth Newton method (SSN). Note that the objective function of (1.3) is related
to an augmented Lagrangian penalization technique (of the pointwise inequality con-
straints) with y representing the corresponding penalty parameter and with ka,kb

being approximations of the Lagrange multipliers associated with the pointwise in-
equality constraints. In our function space context, in addition to the penalization
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[3] PDAS for mixed control-state constraints 3

aspect, replacing (1.2) by (1.3) induces a regular approximation of the Lagrange mul-
tipliers of the inequality constraints in (1.2). In fact, let 0 < Xa 6 J£(£l), with Jt(Sl)
representing the set of regular Borel measures on SI, denote the Lagrange multiplier
associated with a < y at the solution y e HQ(SI) D H2(Q.) of (1.2). Then, in the
context of (1.3), the quantity

XY
a = max (o, la + y(a - / ) ) € L2(Q)

is a regular approximation of Xa. Here yY denotes the optimal solution of (1.3). It
can be shown that XY -*• Xa as y -» oo in (//o'(£2) n H2(Q.j)*. For details on this
approach we refer the reader to [13].

We point out that replacing (1.2) by the Lavrentiev-regularized problem (1.1) also
induces a regularization of the Lagrange multipliers associated with the pointwise
inequality constraints. In the next section we shall see that the multipliers for the
inequality constraints in (1.1), like the ones for (1.3), exist as L2(fi)-functions, re-
spectively.

The present research is motivated by our numerical experience which shows that the
SSN, or equivalently the primal-dual active-set method (pdAS), is typically superior
to path-following interior point algorithms [6,13]. This claim relies on the fact
that the convergence of the SSN can be proved in function space. In this case, the
convergence rate of the SSN, respectively the pdAS, is typically locally g-superlinear.
Accordingly, one goal of this paper is to show that the SSN can be used as a solver for
(1.1) (instead of the short-step path-following method in [17]) and that it converges
locally superlinearly in the appropriate function spaces.

For Newton's method applied to smooth operator equations it is known that it
exhibits a mesh-independent behaviour [2]. In the presence of pointwise inequal-
ity constraints, in [3] the mesh independence of Newton's method for generalized
equations is shown. In fact, based on Robinson's generalized equations technique
[21-23], for the numerical solution of constrained nonlinear optimal control problems
by a sequential quadratic programming (SQP) method, the analysis in [3] establishes
the mesh independence of the SQP-iteration (outer iteration). This, however, does
not include the corresponding mesh-independence result for the inner iteration for
solving the quadratic programming (QP) sub-problem of every SQP-iteration. In
the context of optimization problems with partial differential equation (PDE) con-
straints and pointwise control constraints, in the recent paper [14] this gap is closed
by proving a mesh-independence result when using semismooth Newton methods as
QP-solvers. As the method we are proposing for solving (1.1) is of SSN-type and in
view of the above results, a second focus of the present paper is on proving the mesh
independence of our semismooth Newton iteration, or equivalently of the primal-dual
active-set method for solving (1.1).
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In the case where (1.1) comes from a Lavrentiev-type regularization of (1.2) with
c = en and en > 0, in [17] it is shown that for f„ J. 0 the sequence {(y, u)} =
l(y(en), «(€„))} converges strongly in L2(ft) x L2(ft) to (y*, u*) e //<}(«) x L2(ft),
the optimal solution of (1.2). In the present paper we improve this result and establish a
rate of convergence for en | 0. Moreover, the Holder continuity of \\y(el) — )Ke2)llz.2

and ||u(e") — w(e2)||z,2 with respect to e' > 0, / = 1,2, is argued. These latter
findings are of interest in connection with path-following or homotopy approaches to
the solution of (1.2) based on the Lavrentiev regularization concept.

The rest of the paper is organized as follows: In Section 2 we study the first-order
optimality system associated with (1.1). The following Section 3 concentrates on
the primal-dual active-set method, or equivalently the SSN, as a solution technique
for (1.1). Section 4 is devoted to the mesh-independence analysis of the primal-dual
active-set method. Section 5 contains a report on numerical results. Finally, for
c = e > 0 and e 4, 0 in Section 6 the convergence behaviour of the regularized
solution to the solution of the state constrained problem is studied and a Holder
continuity result is established.

2. First-order optimality system

In [17] it was observed that, by a simple transformation, the problem (1.1) can be
cast as a control constrained optimal control problem. For this purpose let i0 denote the
compact embedding operator of //J (ft) into L2 (ft), and define i_i : L2(ft) -*• / / " ' ( f t )
by J_I = IQ. Strictly speaking, we have Ay = f + i-\U as the state equation in (1.1)
with A : //o'(ft) -> / / " ' ( f t ) . Now let A"1 : H~\Q) -> H£(Q) denote the solution
operator of Ay = f + /_i« in / / " ' ( f t ) , that is, y = t)(u) = A~\i_{u + / ) . Define
T — i0A~h_\, then T : L2(ft) -> L2(ft) is a compact operator. Further observe
that by Riesz-Schauder theory we infer that the Fredholm-operator F := (c id +T)

admits a continuous inverse F" 1 : L2(ft) -> L2(Q).

As a consequence, by defining the transformed control variable

v = Fu,

Problem (1.1) becomes

( 2 1 )

minimize

over

subject to

j(v)

v € L

a < v

1 .

~ 2 '

<b

- r z r - 1 " II2

TF v-yd\\L2

a.e. in ft,

a
+ 5 I"-'»II.

where

yd = yd - A"1/, 5 = a —A"1/ and b — b-A~xf
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neglecting embedding operators. Note that the objective function in (2.1) is uniformly
convex and continuously Frechet-differentiable in L2(Q). Further, the feasible set is
closed and convex. Thus, standard arguments guarantee the existence of a unique
solution v e L2(Q) of (2.1). Given v we can reconstruct the unique solution (y, u)
of (1.1) by

u = F~lv and y = A~ '0_ ,M + / ) .

Our algorithmic considerations in the subsequent sections will be based on the
transformed problem (2.1), more specifically, on its first-order optimality system,
which we state next. Its proof follows from standard arguments; see, for example,
[17,24]. For the formulation, for w, z e L2(f2), we use

0<w±z>0 <=> w>0, z>0, wz = O a.e. infl,

and F~* for (F*)"1, which is the inverse of the adjoint operator of F.

THEOREM 2.1. The optimal solution v 6 L2(£2) of (2.1) is characterized by the
existence of{Xa, Xb) € L2(ft) x L2(Q) satisfying

F-(T*T + a id)F-]v + Xb-la = F~*Tyd, (2.2)

0 < Xa J_ (0 - 5) > 0, (2.3)

0 < kb 1 (b - v) > 0. (2.4)

Applying F* to (2.2) and inserting M = F~lv yields

(TtT + aid)u + Ft(ib-ka) = ryd. (2.5)
Expanding F' gives

r(TQ -yd + ib-Xa) + au + c(kb- ka) = 0. (2.6)

Next we define

p:=A-*i*o(yd-ioy-Xb + Xa) (2.7)

then we have

ilxP = T*(yd - ioy -Xb + ka)

where we used ioy = Tu + i$A~x f. Equation (2.7) implies

A'p + y - Xa + Xb = y d , (2.8)

which is the adjoint equation, and p e H^(Q.) n H2{0.) denotes the adjoint state

associated with (y, v). Note that we have neglected the embedding operators in (2.8)

as we shall do in general from now on. From (2.6) it follows

a u - p + c (kb - Xa) = 0. (2.9)
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Now we study the complementarity system (2.3)-(2.4). First we condense the
Lagrange multipliers Xa and Xb into one multiplier

X = Xb-Xa. (2.10)

Then we utilize nonlinear complementarity problem (NCP) functions to reformulate
(2.3)-(2.4) as a single equality. For this purpose, based on numerical experience [12]
we use

X - min (0, X + a (v - a)) - max (o, X + a (v - b)\ = 0 (2.11)

for some a e L°°(Q), a > 0. Here the max (respectively min) operations are
performed pointwise. It is straightforward to prove that (2.11) and (2.3)-(2.4) are
equivalent.

We define the a-active, ^-active and inactive sets by

4/a(v, X):={xe£l: X(x) + a(v(x) - a(x)) < 0},

srfb(v, X) := ( x e f i : X(x) + a(v(x) - b(x)) > 0},

J (v, X):=Q\ (£/„ (v, X) U sfb(v, X)).

Further we shall frequently use the active set <s/(v, X) = ^ ( u , X) U jrfb{v, X) and
srfa = ffa(v, A.), and similarly for the active, ^-active and inactive sets. Observe that
by definition we have

Next we replace v by Fu in (2.11) and, considering the composition of F, we get

A, - min (0, X + a (cu + y - a)) - max (0, X + o (cu + y - b)) = 0. (2.12)

Collecting (2.8)—(2.10) and (2.12) we obtain the following characterization.

THEOREM 2.2. The optimal solution (y,u) e HQ(Q) X L2(Q) is characterized
by the adjoint state p e HQ(Q) D H2{Sl) and the Lagrange multiplier X € L2(Q)
satisfying

A*p + k + y = yd, (2.13)

au- p + cX = 0, (2.14)

A.-min(0, X + a(cu + y - a)) - max(0,k + a (cu + y - b)) = 0 (2.15)

for arbitrarily fixed a e L°°(Q) with a > 0 a.e. in Q. The multipliers Xa and Xb in
(2.3)-(2.4) can be reconstructed by

K = -Xj}- and Xb = x ^

where xs denotes the characteristic function of a set S c f i .

Our algorithmic development in the subsequent section is based on the system
(2.13)-(2.15) together with the state equation Ay = it + f.
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3. Primal-dual active-set method

Now we focus on a numerical technique for computing the solution of (1.1). Due
to the complementarity system and its reformulation (2.12) it has to cope with the
non-differentiable max- and min-terms. Since our goal is to apply a fast solution
technique based on appropriate linearization of the first-order optimality system, we
hence have to work with generalized derivatives when linearizing (2.15). This is done
by employing the differentiability concept developed in [10] and [12]. We first recall
the general notion, and then we apply it to our specific context.

DEFINITION 1. Let S£ and W be Banach spaces, and let & c 2£ be an open set.
A mapping & : ® ->• <& is called generalized differentiate in the open set ^ C &
if there exists a family of mappings <3 : °tt ->• _S?( JT, <&) such that

lim \\&(x + s) -&(x)-&(x + s)s\\& = 0 for every x e 9/. (3.1)
* - ° IUII.se-

Notice that the generalized derivative need not be unique. In [15] a notion similar
to the one in Definition 1 is introduced and the name Newton map is coined for an
element of the generalized derivative. Here we adopt this notion for operators <$
satisfying (3.1).

REMARK 1. In an / / -set t ing it was shown in [12] that max(0, •) : Lr(Q) -> Ls(£l)
is generalized differentiable if and only if r > s > 1. The mapping

[0 if w(x) < 0,

that is, ̂ M(w) = X(i«>o). is a particular Newton map. A more general class of Newton
maps for the max-operation is given by

{1} ifio(x)>O,

{0} ifio(x)<0,

[m,,mu]

with arbitrary fixed mh mu e R, mt < mu. The choice (m,, mu) = (0, 1) yields the
subgradient of convex analysis. The analogous result holds true for the min-operator
with &^n(w) = X[w<o) being a particular Newton map, and with

{1} if iu(x) < 0,

{0} ifiu(x)>0,

[mh mu] if io(x) = 0

representing a more general class.
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L e t u s a s s u m e w e a r e i n t e r e s t e d i n finding i e f s u c h t h a t

= 0 . ( 3 . 2 )

This can be achieved by employing a Newton iteration, that is, given xk e $T, a
sufficiently good approximation of x, one linearizes (3.2) in the generalized sense and
computes the next iterate xk+l such that

&(xk) + <$(xk)(xk+l - xk) = 0.

Note that xk+l is uniquely defined whenever <3{xk) is invertible. In fact, we have the
following result; see [10,12].

THEOREM 3.1. Suppose x is a solution of (3.2) and that & is generalized differen-
tiable in an open neighbourhood $/ containing x with a Newton map <£. If&(x} is
non-singular for all x e W and[W&(x)~l\\ : x 6 °tt\ is bounded, then the generalized
Newton iteration

xk+\ = xk _ #(**)-!,£•(**), with xo 6 <% given> (33)

is well defined and converges locally at a superlinear rate to x provided that x° is
sufficiently close to x.

In finite dimensional space, in [20] the concept of semismoothness of a scalar-
valued function (see [18] for its definition) is extended to the vector-valued case. It is
shown that semismoothness of a mapping & : K" ->• W is equivalent to (3.1) with <3
replaced by an element of the generalized Jacobian in Clarke's sense at x + s. Hence, \
whenever Sf satisfies (3.1) we call (3.3) a semismooth Newton method.

Now we turn to the solution of (1.1). From (2.14) we infer

k = c"1 p — ac~l u.

Inserting this identity in (2.13) yields

(A* + c"1 id) p + (A'1 - a c~x id) u = yd. (3.4)

Here we used y = rj(«) := A~l(u + f). Since A is a second-order linear elliptic partial
differential operator and c > ec > 0 a.e. in Q, we conclude that, given u € L2(Q),
(3.4) admits a unique solution^ e //„' (Q), that is, (A*+c~l id) : //o'(fi) -^ H~{(Q)i&
a continuously invertible linear operator. In addition, under a regularity assumption on
the coefficients of the operator A*+c~' id, elliptic regularity theory yields p e H2(Q);
see [11]. Hence we have

p = p(u) = (A* + c~l \dy\yd + a c~xu - A~xu).
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[9] PDAS for mixed control-state constraints

As a consequence, we obtain

X = [(M) = c~'p(w) - a C~'M.

The last identity is now used in studying X + a (c u + y). In fact, we find

X + a (c u + y) = c~'p(u) - a c~xu + a (c u + A~x {u + / ) )

= C~'P(M) + (a c - a c~])u + a A~\u + f).

Choosing a = a c~2 > (a/||c||^oo) > 0 a.e., we can further simplify (3.5):

X + a (c u + y) = c-'p(M) + a c~2 A~l (u + / ) .

(3.5)

(3.6)

We adopt this choice for a from now on. The Sobolev embedding theorem [1] yields

with s
= oo

e [ l , oo )

ifn = 1,

ifn = 2 ,

ifn > 3.

(3.7)

Hence, from p(w) e W0'(fi), A"1 : / / -
a.e. in Q, (3.6) and (3.7) we conclude

, C e L°°(Q), with c > ec > 0

t{u) : = X + a(cQ + y)

= c"'p(M) + a c~2 A~] (« + / ) € L2+*(fi), with K > 0.

We have shown the first part of the following result.

PROPOSITION 3.2. The mapping

t{u) = c-'p(M) + a c~2 A~] (II + / )

is continuous from L2(Q) to L2+"(£l) with

= oo if/i = 1,

6 [0, co) if n = 2,

6[0,^] iffl>3.

Moreover, I : L2(£l) -> L2+(t(fi) is continuously Frechet differentiable.

PROOF. The proof of the continuity result lies in the discussion before the propo-
sition. The continuous Frechet differentiability is then immediate due to the affine
linear nature of the operators involved in the definition of i. D

https://doi.org/10.1017/S1446181100012657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012657


10 M. Hintermiiller [10]

Next we use the results obtained so far to reformulate the first-order system in
Theorem 2.2. In fact, since y = rj(w) and p = p(w), we can condense (2.13)—(2.15)
into

- a c~xu - min (0, i(u) - a c~2a) - max (0, t{u) - a c~2b) = 0. (3.8)

Setting x := u and & : L2(ft) - • L2(Q), with

:= c " ' p ( i ) - a c~lx - min (0, £(*) - a c~2a) - max (0, i(x) - a c~2b),
(3.9)

(3.8) is equivalent to the non-differentiable equation J?(x) = 0. Thus, we are back at
(3.2) with 5£ = L2(Q), that is, finding a solution of (1.1) is equivalent to finding the
root of &. In what follows, we prefer to keep u (or u) instead of x (or x).

Given some guess u° of u, our goal is to find u using a semismooth Newton method
(SSN). For a successful application of a SSN in function space we have to verify
property (3.1). Remark 1 yields generalized differentiability of max : Lr(Q) -»
Z/(ft) (and also min : Lr(Q) -> Ls(£l)) ifr>s. Note that in (3.9) we consider &
from L2(£2) to L2(Q), only. A generalized differentiability result, however, still holds
true.

PROPOSITION 3.3. The mapping & : L2(Q) -+ L2(Q) defined in (3.9) is gener-
alized differentiate in the sense of Definition 1. A particular Newton map is given
by

(M) - a c~2a) i'(u), <p)
2 (3.10)

PROOF. We argue only for the max-operator. The proof for the min-operator follows
from analogous arguments.

First notice that £(•) is a continuous affine linear operator from L2(Q) to L2+K(Q).
Hence, there exist a continuous linear operator L : L2(Q) ->• L2+K(Q) and g e

2 such that

e(u) = Lu + g. (3.11)

Next we study the relevant difference quotient

lmax (0, t(u + s)-a c~2b) - max (0, l(u) - a c~2b)
\\S\\L2

< C —— I max (0, L(u + s) + g - a c~2b) - max (0, L u + g -ac~2b)

~ac -2 b)Ls\\L2, (3.12)
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[11] PDAS for mixed control-state constraints 11

where S?n
a
iax denotes an arbitrary Newton map of the max-operator. Here we have

used Proposition 3.2, which yields ||Lj||/,2+«/||.s||i2 < C for some positive constant C.
By Remark 1, the quotient in (3.12) tends to zero for ||.y||L2 -» 0. As a result
max(0, £(•) - ac~2b) is generalized differentiable, and ̂ ax(L • +g — ac~2b)L-
provides a Newton map fulfilling (3.1). D

Now we have all the ingredients at hand for defining a semismooth Newton method
for solving (1.1), or equivalently (2.1).

ALGORITHM 1 (Semismooth Newton method). (i) Choose w° e L2(Q), and
set k = 0.

(ii) Unless some stopping rule is satisfied, compute &(uk) according to (3.10) and
solve for Suk:

<g(uk)8uk = -#(uk), (3.13)

with & given by (3.9).
(iii) Set M*+1 = uk + Suk, and k := k + 1. Return to (ii).

We start our convergence analysis of Algorithm 1 by showing that (3.13) admits a
unique solution for every k e N. For this purpose observe that (3.13) is equivalent to

0 = c - ' (p(ii*) + p'(uk)Suk) - a c - V + Suk) - X*i {L(uk + 8uk) + g-a c~2a)

( k + Suk) + g-ac-2b), (3.14)

where we have used

s/$ := (xe f i :Xk(x) + ac-luk(x) + ac-2(yk -a)(x) < 0}, (3.15)

< := {xeQ:Xk(x)+ac-iuk(\)+ac-2(yk -b)(x) > 0}, (3.16)

yk := fi \ s/k, with tfk := tfk U < .

Next recall that rj(u») = A~\w + f) for w e L2(Q), with A"1 a linear continuous
operator, and p(w) = (A* + c"1 i d ) " 1 ^ + ac~lw — n(u;)). This yields

A*p(w) + c"'(p(io) - aw) = yd-

Since l(io) = c~'p(u>) — ac~]w, we obtain
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Forw = uk + Suk =: uk+i we set yk+l = rj(w* + Suk), and similarly for pk+x and Xk+i.
Hence (3.14) becomes

0 = Xk+l - x*' (At+1 + a c-luk+l + a c " 2 ( / + 1 - a))

- ^ ( A i + l + a c - ' « w + a c - 2 ( / + l - b)), (3.17)

0 = Ayk+1 - uk+] - / , (3.18)

0 = A'pk+l + Xk+X + y k + i - yd, (3.19)

0 = auk+1 - pk+x + c Xk+l. (3.20)

A further analysis of (3.17) yields

Xk+l = 0 on Jk, (3.21)

c uk+l + yk+l = a on sfk, (3.22)

e u
t + l + / + l = i on̂ 6*. (3.23)

Combining (3.18)—(3.23) we conclude that in every iteration of our Algorithm 1 the
following system has to be solved:

Ayk+X = uk+l + f, (3.24)

p + A = yd — y , (j.23)

a M * + ' _ p * + i + c ^ + ' = 0 , (3.26)

A * + 1 = 0 o n / , (3.27)

c « * + 1 + / + I = a o n < , (3.28)

cuk+l + yk+l=b o n < . (3.29)

For proceeding with our arguments that Step (ii) of Algorithm 1 is well defined, we
rewrite (3.24)-(3.26). In fact, solving (3.24) for yk+\ inserting the result in (3.25),
solving for p k + \ utilizing the result in (3.26), and taking into account the various
embedding operators, we get

(T'T + a id)uk+x + F'Xk+x = T'yd. (3.30)

Using H*+1 = F~lvk+i and the invertibility of F', (3.30) is equivalent to

F~*(T*T + a i d ) F ~ v+ +X+ — F ~ ' T * y d .

Further recall that

cuM + yk+l = Fuk+l + A" 1 / = vk+i + A~lf.

Thus, (3.27H3.29) become

Xk+1 = 0 on Jk,

vk+x=a o n < ,

vk+x=b o n <
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PROPOSITION 3.4. The system

w + fM = al, (3.31)

Ii = 0 o n / , (3.32)

w = a2 ons^a, (3.33)

w = a-i on #fb, (3.34)

with a, 6 L2(Q), i e {1,2, 3}, and ( / , srfa, srfb) a partitioning of Q, admits a unique
solution (w, it) e L2(Q) x L2(Q).

PROOF. First note that

(F-(rr + ai

y<p e L^n) . (3.35)

Hence, for given/x, ai 6 L2(Q), (3.31) admits a unique solution w = w(n) e L2(Q).
Let £jf denote the extension-by-zero operator from J to fi, and analogously

for Erf with ^ = ^ U ̂ , . By Ey and £^. we denote the respective restriction
operators. Then, considering (3.32)-(3.34) in (3.31) we obtain

s = E^ai - E^CE^a^, (3.36)

where wj e L2{^),

a |as, := a2 \^a , a \^b := a3 \Wb (3.37)

and

C:= F-(T'T + a id) F~l. (3.38)

If y ^ 0 is measurable, then, from the properties of C, we conclude that Equa-
tion (3.36) admits a unique solution wj € L2(J?). From this we construct a solution
of (3.31)-(3.34) in the following way:

w\j,:=ibs, w \rfa :=a2

Then w 6 L2(fl). Further, jx\j = 0 and

[1^ e

w \^b := a3 \^b. (3.39)

which defines / i | ^ = / i ^ uniquely. This ends the proof. •

From Proposition 3.4 we immediately infer that Step (ii) of Algorithm 1 is well
defined.
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COROLLARY 3.5. For every i t e N , Step (ii) of Algorithm 1 admits a unique solution

Suk e L2(Q). Further, there exists a constant Keg > 0 independent of k such that

\\&(uk)~l\\ < K^ for all k e No.

PROOF. By our discussion before Proposition 3.4 the Newton system (3.13) is
equivalent to (3.31)-(3.34) with J = Jk, sfa = . < , s*b = sfk, w = F{uk + 8uk),

/x = Xk+l, a, = F-*T*yd, a1 = a and a3 = b. Now, Proposition 3.4 yields that (3.13)
admits a unique solution 8uk = uk+l — uk. Further Xk+i is the multiplier associated
withu*+1.

The uniform boundedness of { |^(«*)~1 |} t > 0 follows from the fact that C (see
(3.38) in the proof of Proposition 3.4) and its corresponding coercivity constant, see,
for example, (3.35), are independent of k. •

The locally superlinear convergence of the semismooth Newton Algorithm 1 is the

subject of our next result.

THEOREM 3.6. Let {«*•} be the sequence generated by Algorithm 1, and define the

corresponding states by yk = A~\uk + f) € HQ(Q). Then {{yk, uk)} converges to

the solution (y, u) e HQ(Q) X L2(Q) of (1.1) at a superlinear rate provided that

u° € L2(Q.) is sufficiently close to u.

PROOF. Proposition 3.3 shows that Algorithm 1 is a semismooth Newton method
for solving (3.9) with x = u. Hence, by our general result, Theorem 3.1, the sequence
{K*} converges superlinearly to u provided that «° is sufficiently close to u. The
locally superlinear convergence of {yk} is then an immediate consequence. •

We end this section by establishing a relation between the semismooth Newton

method, Algorithm 1, and a primal-dual active-set method. We already showed that

computing Suk such that (3.13) is satisfied is equivalent to solving (3.24)-(3.29).

Hence we may restate Algorithm 1 as follows.

ALGORITHM 2 (Primal-dual active-set method). (i) Choose u° e L2(Q.) and

compute ( / , p°, X°) such that

Stlk :=0.
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(ii) Unless some stopping rule is satisfied, determine

<* := {x e Si : (kk + a c~'uk + a c " 2 ( / - a)) (x) < 0} ,

s/£ := { x e f i : (kk + a c ~ V + aC-2(yk - b)) (x) > 0} ,

(iii) Solve for (uk+l, / + ' , / + ' , ^ t + l ) :

A/+1 - uM = f,

A'pk+l+kk+i+yM=yd,

auk+i-pk+l+ckM =0,

Xk+l = 0 on Jk,

cuk+\+yk+\=b ?

Set k := k + 1, and continue with (ii).

4. Mesh independence

In this section we establish a mesh-independence result for our semismooth Newton
method. It states that for any ^-linear rate of convergence 6, there exists a radius
p > 0 such that, for all h sufficiently small, the convergence basin of the primal-
dual active-set method, Algorithm 2, or equivalently the semismooth Newton method,
Algorithm 1, and the discrete counterparts contain the p-balls about their respective
solutions. A similar result was proven in [14] for control constrained semilinear
elliptic control problems. This type of mesh independence is in contrast to the strong
mesh-independence principle like the one in [2] for smooth operator equations.

We consider a finite element discretization of (3.9). Here we only provide a brief
description and refer to, for example, [4] for more details on appropriate discretizations
in constrained optimal control of PDEs. In fact, let S?h be a sufficiently regular
subdivision (triangulation) of £1 into subdomains T e !?h such that

Q = ( J T, TuT2e srh, TX^T2 =• r, nr2 c ar, uar2.

The subscript h refers to the maximal diameter of all elements. Motivated by (3.9) we

next define the space

Uh = {uh : Q ->• R : «A|iMT = constant VT e S?h\
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which we endow with the L2-norm, that is, || • \\Uh = || • \\L2. An appropriate discretiza-
tion of (3.9) yields &h :£/,,—>• Uh and in particular th : Uh -> Uh and ph : Uh —>• £/*,
the discrete versions of p and £, respectively. We denote by uh e Uh the unique
solution of &h{uh) = 0- Further, discrete Newton maps of &h are denoted by %.
This allows us to define a discrete version of Algorithm 1, the discrete semismooth
Newton iteration:

ALGORITHM 3. (i) Choose u°h e Uh, and set k = 0.
(ii) Unless some stopping rule is satisfied, compute 5^(M^), a Newton map of @h

at uk
h, and solve for (5H£ :

(iii) Set uk
h

+x = uk
h + Suk, and jt := k + 1. Return to (ii).

For %, based on (3.10), by a similar reasoning as in the continuous case, one can
show that (4.1) is equivalent to the discrete version of (3.24)-(3.29) and Algorithm 3
is equivalent to the discrete analogue of the active-set method, Algorithm 2.

For the proof of our main assertion we need an auxiliary result concerning the
mesh independence of (3.1). For this purpose recall that E(u) = Lu + g with
L e 5f(L2{Q), L"(Q)) and g € Lq(Q) with

q e

We also suppose that our discretization yields lh{uh) = Lhuh + gh such that the
following assumption holds true.

ASSUMPTION 1. There exist some q >1 and some positive constant K such that

Alkn max (\\g - g J M , \\C-2a - c-2ah\Lq, \C-2b - c-2bh\Lq) = 0, (4.2)

lim \\uh -u\\L2 = 0 ,

lim\\Lhuh-Lu\\L,=0, (4.3)

[1,

[1,

[1,

CO]

00)

2 +

n

n

n

= 1,
= 2,

> 3.

L, < K.

Note that due to (3.1), for given y e (0, 1), there exists <50 > 0 such that

\\s\\o Vs e L2(Q), \\s\\Li < So. (4.4)
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Here ^{u + s) denotes an arbitrary Newton map of & at u + s. For our main result
we need the mesh independence of

\\&H(UH) - ^h(Uh) - %(«*)(«* - «*)IU as h -+ 0 (4.5)

for arbitrary %(uh) satisfying the discrete analogue of (3.1). Due to the structure
of ^/,, that is,

&h («;,) = c~'p* (uh) - a c~luh - min (0, th (uh) - a c~2ah)

- max (0, £„ (uh) - a cfbh), (4.6)

with ph affine linear, we only have to focus on the max- and min-terms, respectively,
when proving the mesh independence of (4.5). We define

^max(w) := max (0,l(u)-a c~2b).

In what follows, the Newton maps of ^ m a x are denoted by ^max. Their discrete

counterparts are ^max,/i and ^mm,h, respectively.

LEMMA 4.1. Suppose that Assumption 1 holds true, and

\{i(u)-ac-2b = 0}\ = \{Lu + g-ac-2b = 0}\ = 0 (4.7)

is satisfied. Further assume that

% » ( « ) = SCx"1" (Lu + g-ac-2b) L

(see Remark 1 for the definition oftf^^"") and its discrete analogue are chosen as
the Newton maps of^miX and ^max,h, respectively. Then, for y € (0, 1), there exists
8 > Oandh > 0 such thatVu e L2(€l), \\u — u\\Li < 8,

(«) - ^n-x(«) - % « ( « ) ( « - «)lll.« < Y II" - Milt*

as well as

||^max,/i(«A)-^max.A(«A)-^max,A(«/i)(«A-«A)||y(i < Y \\"h ~ Uh\\Uh

VuheUh, \\uh-uh\\Uh<S, Whe(0,h}.

PROOF. For c > 0 and 0 < r] < e define the sets

£2(e) := {\Lu + g - ac~2b\ < e), Qh(e) := {\Lhuh +gh-ac~2bh\ < e],
J2i(e) := [\Lh(uh - uh)\ < n) \ «*(e), «J(c) := fi*(O U

Note that Q]
h(e) U ^^( e ) = ^- Further define the remainder term

On ftl,(e) we have Rh(uh;uh) = 0. Indeed:
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(1) Forx e Q with (Lhuh + gh -acj;2bh)(x) > e and \Lh(uh - uh)(x)\ < r), we
obtain

(Lhuh + gh-a cfbh) (x) > e > rj > (Lh(uh - uh)) (x)

and, hence,

(Lhuh + gh-oc c;2bh) (x) > 0.

As a consequence, we have

Rh(uh\uh)(x) = (Lhuh + gh-a cfbh) (x) - (Lhuh + gh - ac~2bh) (x)

-(Lh(uh-iih))(x)

= (Lh (uh - uh)) (x) - (Lh (uh - uh)) (x) = 0.

(2) For x e Q with (Lhiih + gh - a cfbh)(\) < -e and \Lh(uh - «A)(x)| < r)
we get

(Lhuh + gh-a c~2bh)(x) < -e < -rj < (LA(MA - «A)) (x)

and, hence,

Consequently, we infer ^max,/i("/i)(x) = 0 and Rh(uh;uh)(x) — 0.

Summarizing both cases we have

Rh(uh;uh)(x) = 0 Vxe^(e).

The estimate on Sl2
h(€) is more delicate. We make use of the following fact: For

v e Lq(Q), q > 2 and r) > 0 we have

|{M>»?}|<-^IMI!,. (4.8)

For \x > 0, this estimate implies

KIM",, - «/,)l > r)}\ < -q\\Lh{uh - uh)\\
q
Lq < -^ | |LA| |^L, | |« , , - uh\\\ < tx (4.9)

for \\uh - uh\\Uk < 8 with

5 : = m i n f 60,

V
and<50 from (4.4). Observe that |max(0, r) -max(0 , s)\ < \r-s\. We, thus, conclude

\\Rh(i'h;uh)\\Li = | m a x (0. LhUh + gh -ac~2bh) - max (0, Lhuh + gh -ac~2bh)

-&2?HU (LHUH + 8H - a c;2bh)Lh(uh - uh) | t f

< \\Lh{uh - uh)\\L, + \<02ZH" {LhUh + gh-a cfbh)Lh{uh - uh)\Lq

< (1 + max(|m;|, \mu\)) \\Lh\\o^Lq \\uh - uh\\Uh. (4.10)
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Further note that our assumption (4.7) implies

|£2(<0l = \ { \ L ii - g - a c~2b\ < e}\ - > 0 a s e | 0 . (4.11)

We next use the last two equations to establish the desired estimate of Rh(uh;uh)
on nj(€).

(3) Consider x e Q such that

d,,(u, w,)(x) := (L u + g - a c~2b)(x) - (Lhuh + gh- acfbh)(x) > e. (4.12)

Now assume that x e Q(2e) satisfies (4.12). Then

=(Lu + g-ac~2b - Lhuh -gh + acfbh)(x) + (Lhuh + gh - ac~h
2bh){x)

>e + (Lhuh + gh- acfbh) (x),

which implies

(Lhiih + gh-a cfbh) (x) < e.

Similarly we obtain

(Lhiih + gh-a cfbh) (x) > -€.

We hence conclude

n * ( e ) c a ( 2 € ) n {£/»(«,«*)>*}. (4.13)

Since dh(u, uh) e Lq(Q), (4.8) yields

\idh(u,uh) > €)\ < ^\\dh(u,uh)\\
9

L,. (4.14)

The estimate

\\dh(u, uh)\\L, < \\g - gh\\L,+a\\c-2b - cfhWu + \\Lu - Lhuh\\L.,

(4.2), (4.3) and (4.14) yield

Hh)>e}\^0 a s / i ^ O + . (4.15)

Using (4.11) and (4.15), for/x > 0 there exist e = c(ii) > Oand/ii = hi(e) > Osuch
that for all h < h\ we obtain

| « ( 2 € ) l < | and !

and therefore

by (4.13).
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(4) Since q > 2, Holder's inequality and the estimates (4.10), (4.16) and (4.9)

yield

| ' "

- uh\\Uh

for ||«/, -uh\\Uh < &•

(5) For y e (0, 1) we choose

v 2q/(q-2)

2 \{\ + max(|m,|, \mu\)) \\Lh\\L2_>L,)

and e = e(/x), h = h\(e), 8 = 8(/u., e). Then, for all h < h, we have

II^/,(«/.;«A)IIUA < y \Wh - "/.lit;, V"A e t//.- II«A - «AIIJ/» < 5.

This proves the assertion. •

The same proof technique yields a similar result for the min-operation in (3.9), that

is,

^min(u) := min (0, £{u) — a c~2aj

and its discrete version «̂ mjn,a in (4.6).

LE.N4.MA 4.2. Suppose that Assumption 1 holds true, and

is satisfied. Further assume that

%»n(«) = SCn"' {Lu + g-a c~2a) L

(see Remark I for the definition oftf™^1"") and its discrete analogue are chosen as the

Newton maps of &mm and JPm\njlt respectively. Then, for y e (0, 1), there exist 8 > 0

and h > 0 such that

well as

( ) ^ ( ) % ( ) ( «/.)||(;f| < y II"ft ~

Combining Lemmas 4.1 and 4.2, we obtain the following mesh-independence

result.
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PROPOSITION 4.3. Let the assumptions of Lemmas 4.1 and 4.2 hold true. Further
assume that for u € L2(fi) and uh € Uh with \\u — uh\\L2 ->• 0 as h '-*• 0+ we have

\\c-'p(u)-c^ph(uh)\\L2 - • 0 ash - • 0+ .

Then, for y e (0, 1), r/zere emf 8 > 0 and A > 0 .SMC/Z tfiaf

- u)\\L2 < y \ \ u - u\\L2

and in the discrete case

VMA6f/A) IIM/, — M/,11^ < 5, Vhe(0,h].

PROOF. Note that p and ph are affine linear. Hence

P(«*) - P(«*) - P'(«*) ("A - «*) = 0.

This fact, together with Lemmas 4.1 and 4.2, yields the assertion. D

Our mesh-independence result now follows from [14, Theorem 3]. Here we only
state the theorem and refer to [14] for the proof.

THEOREM 4.4. Let the assumptions of Proposition 4.3 hold true. Then, for arbi-

trarily fixed 6 e (0, 1), there exists 8 > 0 and h > 0 such that for all h < h and

provided that max(\\u° -u\\o, II«° - " / . Ik) < S.

In Section 5 we provide a validation of the above result. In fact, in our numerical
tests we even observe strong mesh independence, that is, for h sufficiently small and
for fixed e > 0 the algorithm stops with ||«jf — MA||y* < e after essentially the same
number of iterations regardless of the mesh size of discretization.

5. Numerics

Now we report on the numerical behaviour of Algorithm 3. Among other aspects,

we aim at numerically verifying our mesh-independence result, Theorem 4.4. Further

we study our algorithm when solving degenerate problems.
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Below we denote by yh, uh, ... the coefficient vectors for the corresponding finite
element representation. We assume that yh, ph e R"* and uh,Xh e tR"\ where ny

h

and n\ depend on the mesh size of discretization. Concerning the data a, b, c, f (which
we assume to be in L2(£2) for simplicity), and yd we employ a piecewise constant
(over every triangle T) discretization. We therefore have ah,bh,ch, fh, ydih e K"\
respectively. For later use we also introduce the mass matrices M° e Kn*xn* and
Ml := (M°)TM° € IR"**"*. Further, we denote by Ch the diagonal matrix diag(cA)
with entries chii, i = 1 , . . . , nu

h.

In all of our test runs reported on below, we initialize Algorithm 3 by setting k\ = 0
and computing (y%, u°h, p°h) as the solution to

Ahyh - (M°h)
T uh = (M°h)

T fh, AT
hPh + Mlyh = (M°h)

Tyd,h, auh-M°hph=0.

This procedure provides our initial u°h. Note that (y%, u°h, p
a
h, X°h) corresponds to the

solution of the unconstrained version of (1.1). We stop the algorithm if the active sets
Csa^J1, -i^b.V) a "d C^*/,. ^b,h) coincide forfc > 1 or as soon as the norm of the residual
of the first-order optimality system drops below a prescribed tolerance. Above, we
denote by si^h, £?£h the discrete analogues of srf*, srf£ in (3.15) and (3.16). Assuming
that the linear systems are solved exactly in Algorithm 3, then the first stopping rule
yields the exact solution of the discrete problem.

THEOREM 5.1. Let {uk
h} be computed by Algorithm 3. If for k > 1 we have

« f . < , + 1 ) = « „ . < : ' ) - then (uk
h
+\ yk

h
+\ pk

h
+\ kk

h
+i) solves

Ahyh-(M°h) uh = (M°h) /„,

AT +(M°)Tk + Ml -(M°)T

auh- M°hPh + Chkh = 0,

and the complementarity system

ah < Chuh + M°hyh < bh,

khii < 0 for all i e ̂ f t ' -

khfi > 0 for all / 6 jz^jt"1,

h.i=0 for all / € Jk+\

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

PROOF. First notice that due to the equivalence of Algorithm 3 to the discrete

analogue of Algorithm 2 the system (5. l)-(5.3) is satisfied in every iteration k. Hence,

we only need to check (5.4)-(5.6). If sfk^x — s/k
h, then, for / € sik^, we have

c/u « £ ' + (M°hy
k
h

+1h = ahJ and

0 > XJJ1 + a c"? (cw «»+' + (M«^+•),- - a,,) = ^ .
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Similarly, if srf^1 = srf£h, then we get

A*+ '>0 and cA, «*+' + (M°?*+1), = 6*,, for all i 6 < + ' .

Finally, for ;' 6 J^*+1 = J^f w e have

X^ = 0 and aKi < cKiu
k
hf + (MA%£+1), < bhJ.

This ends the proof. •

Subsequently we focus on the following test problems. In all cases we have
Q = (0, I)2.

5.1. Problems Next we specify our test problems.

EXAMPLE 1. With x = (x\, x2), the data for this example are:
yd(x) = sin(57r.*i) + cos(10^^2), / ( x ) = - exp(x | ) , a(x) = -0A\xi + x2 - l|,
b = 0.045 + a, c(x) = 0.0025(1 + (*, - 0.5)2 + (x2 - 0.5)2) and a = 0.001. In
Figure 1 we depict the optimal state yh, the optimal control uh, the corresponding
optimal Lagrange multiplier Xh and the active set (black regions) for h = 1/256. Note
that due to the active regions next to the boundary in the lower left and upper right
corners of the domain and the requirement y\3n = 0, the Lagrange multiplier becomes
large in these regions.

EXAMPLE 2. The data are as in Example 1 except for the upper bound which is now
b = -a. Notice that we have a = b along the diagonal {x € £1 : |*i + x2 - 1| = 0)
of the unit square (= Q). As a consequence a < b is violated on a set of measure
zero in K2. The discrete optimal state, control, multiplier and active set are shown in
Figure 2.

EXAMPLE 3. The data are as in Example 1 except for c and a, which are now
c(x) = 7.5E-4(1 + (xi - 0.5)2 + (x2 - 0.5)2) and a = 0.1. Notice that this choice
increases the quotient a/c2 when compared to the one in Example 1. This fact and
the resulting active-set structure make this problem more challenging than Example 1.
The discrete optimal state and the active set can be found in Figure 3. Due to the
requirements y\3n = 0 and a < c u + y < b, the control action close to the lower left
and upper right corners (where we have b < 0) is more pronounced then the one in
Example 1.

EXAMPLE 4. The construction of this test problem yields a highly degenerate, that

is, very flat transition of cu + y into the active set. As can be seen from Figure 4, X is

also highly degenerate. This usually poses severe difficulties for numerical algorithms
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Discrete optimal state (A = 1/256) Discrete optimal control (A = 1/256)

[24]

Discrete multiplier (A = 1/256) Active (black) and inactive (white) sets

FIGURE 1. Example 1: Optimal state % (upper left), optimal control uh (upper right), corresponding
Lagrange multiplier Xh (lower left), and active set (in black; lower right) for h = 1/256.

due to possible instabilities in the active set detection. For the problem formulation
we slightly extend the objective function in (1.1) by considering

The remaining problem data are as follows: Set g(x) := jcf(1

c = 0.5, and define the optimal control and state by setting u :=

The source term in the state equation is chosen as / = A(g -

fix t(x) := (xi - 0.5)2 + (x2 - 0.3)2 - 0.4 and determine sft

J2", = Sl\sft. Then the upper bound is defined by Z? := Xx/,8 +

the lower bound is a = —oo. The optimal multiplier is X = Xs/M

state is p = 10JCI(1 — *I)JC2(1 - ^2) sin(57rxi). Then the desired

as yd = Ap + X + y. Finally, we set ud — u + a~x{c A. — p) with a

contains the discrete solution, the corresponding multiplier and the

- *i)*2(l - x2),

g, y := g -cu.
• cu) — u. Next

:= {t > 0} and

Xs.ig + f8). and
|4, and the adjoint
state is computed

= 1E-5. Figure 4

active set (black).
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Discrete opiimal stale (A = 1/256) Discrete optimal control (A = 1/256)

25

Discrete multiplier (A = 1/256) Active (black) and inactive (white) sets

FIGURE 2. Example 2: Optimal state y* (upper left), optimal control uh (upper right), corresponding
Lagrange multiplier kh (lower left), and active set (in black; lower right) for h = 1/256.

Discrete optimal state (A = 1/256) Active (black) and inactive (white) sets
1 .

FIGURE 3. Example 3: Optimal state yh (left) for h = 1/256 and the active set (in black; right) for
/ i= 1/512.
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Discrete optimal state (A = 1 /256) Discrete optimal control (h = 1 /256)

[26]

Discrete multiplier (h = 1/256)

• i

110

Active (black) and inactive (white) sets (h = 1/512)

X\

FIGURE 4. Example 4: Optimal state yh (upper left), optimal control uh (upper right), corresponding
Lagrange multiplier A./, (lower left), each for h = 1/256, and active set (in black; lower right) for
/ )= 1/512.

5.2. Mesh independence In the following tables, for the numerical validation of
Theorem 4.4 we provide the quotients

* = 1,2,3, . . . ,

where u*h denotes the discrete optimal control which is obtained by restricting the
discrete solution for the mesh size 1/512 to the current mesh of mesh size h. Here
we use the restriction operator corresponding to the nine-point-interpolation scheme.
For Examples 1, 2 and 4, Tables 1-3 depict the behaviour of q\ for various mesh sizes
(rows). The qualitative behaviour of q\ for Example 3 is similar.

Upon studying Tables 1-3 we can draw the following conclusions: For each fixed
mesh size (row) Algorithm 3 converges superlinearly, that is, the quotients q\ tend to
zero. The increase of q\ from the next to the last column, respectively in each table,
is related to the restriction process for obtaining u*h. If we study the behaviour of
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these critical quotients along the columns, we observe a stabilizing (even decreasing)
behaviour. The mesh independence (validation of Theorem 4.4) of Algorithm 3 is
reflected by qk

h along the columns of each table. For each test example we clearly
detect a stable behaviour of q\ as the mesh is refined. As a consequence, we obtain a
mesh-independent superlinear convergence. We further observe that for each exam-
ple the algorithm requires essentially the same number of iterations until successful
termination. This effect, which is beyond our theoretical result, is known as strong
mesh independence; see [2] for smooth operator equations. Also note that the mesh-
independent convergence of our algorithm is not influenced by the degeneracy of the
solution of Example 4. Although the optimal solutions, the adjoint states and the
Lagrange multipliers on various meshes reflect this numerical stability, the active set
detection is indeed affected. In Figure 5, we show the active sets upon termination of
the algorithm when solving Example 4 for mesh sizes h ranging from 1/32 to 1/256.
The active set for h = 1/512 is depicted in Figure 4 (lower right plot). It coincides
with the true active set on the underlying mesh.

TABLE 1. Example 1: Mesh-independent behaviour of (convergence) quotient^.

h
1/32
1/64

1/128
1/256
1/512

0.633
0.570
0.542
0.528
0.521

0.386
0.394
0.394
0.396
0.395

q
0.315
0.309
0.313
0.314
0.313

h

0.389
0.161
0.147
0.145
0.144

0.977
0.577
0.149
0.047
0.036

—
-

0.969
0.624
0.002

TABLE 2. Example 2: Mesh-independent behaviour of (convergence) quotient

h
1/32
1/64
1/128
1/256
1/512

0.930
0.937
0.945
0.946
0.946

0.362
0.393
0.391
0.397
0.397

1
0.185
0.149
0.154
0.152
0.152

h

0.773
0.233
0.085
0.063
0.062

- -
- -

0.585
0.157
0.015 5E-5

5.3. Comparison with a short-step path-following interior-point method. The
recent paper [19] establishes a convergence result for a short-step path-following
interior-point method (SPF) in function space for the solution of the unilaterally
constrained version of (1.1). We point out that for more progressive versions of path-
following interior-point methods (such as long-step methods or predictor-corrector
algorithms; see, for example, [25]) to date no function space analysis is available.
It is therefore of interest to compare SPFs with our semismooth Newton (SSN), or
equivalently primal-dual active-set, framework.
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TABLE 3. Example 4: Mesh-independent behaviour of (convergence) quotient qk
h.

[28]

h
1/32
1/64
1/128
1/256
1/512

0.010E-1
0.013E-1
0.013E-1
0.013E-1
0.013E-1

0.403E-1
0.403E-1
0.365E-1
0.357E-1
O.358E-1

0.586E-1
0.728E-1
0.649E-1
0.681E-1
0.682E-1

ft*
0.540E-1
0.526E-1
0.521E-1
0.499E-1
0.503E-1

0.416E-1
0.286E-1
0.312E-1
0.302E-1
0.274E-1

-
-

3.151E-1
3.282E-1
0.979E-1

Consider the duality measure

with Zh = ((<A)T, (A*,A)T)T 6 K2"* and wh = ( < „ , < h ) T e R2"!, w > 0, denotes
a vector of slack variables such that

Chu\ + M°hy
k
h - a h -

Chu\ + M°hy
k
h -bh +

= 0,

= 0.

We stop the interior-point method as soon as \x\ drops below some prescribed tolerance
eM > 0. In Table 4 we report on the number of iterations required until successful
termination for various mesh sizes h.

TABLE 4. Comparison of iteration numbers required by a short-step path-following interior-point method
(SPF) and by our semismooth Newton method (SSN).

Alg.

SPF
SSN

SPF
SSN

SPF
SSN

SPF
SSN

h =1/32

17
5

19
4

64
9

17
5

1/64 1/128
Example 1

17 17
5 6

Example 2
19 19
4 5

Example 3
64 63
10 10

Example 4
17 18
5 6

1/256

17
6

19
5

63
10

18
6

1/512

17
6

19
6

63
11

18
6
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h = 1/32 A = 1/64

29

i

h= 1/128 h = 1/256

X\

FIGURE 5. Example 4: Active (black) and inactive (white) sets upon termination of Algorithm 3 for
various mesh sizes.

From the results in Table 4 we find that in all test cases the SSN requires a
significantly smaller number of iterations than the SPF. In Figure 6, for the degenerate
Example 4 we depict the active-set estimates upon termination of the SPF for various
mesh sizes.

Comparing these results with the ones for the SSN in Figures 4 and 5, we see that
the SSN yields better approximations of the true active sets than the SPF.

5.4. Coarse-to-fine sweep. Next we report on the speed-up of the solution process
when combining Algorithm 3 with a coarse-to-fine sweep with respect to the under-
lying meshes. Starting on the coarsest mesh (h = 1/4 on our regular triangulation)
Algorithm 3 is used for computing the numerical solution which is then prolongated
to the next finer mesh. The prolongated coarse-mesh solution is taken as the starting
point for Algorithm 3 on the fine mesh. This cycle is repeated until a desired mesh size
is reached. In Table 5 we report on the results for Examples 1 and 3. In the penultimate
column, in parenthesis we provide the number of iterations needed by Algorithm 3
on the finest mesh (h — 1/512 in our case) without the coarse-to-fine technique.
The last column contains the ratio of the CPU-time consumed by Algorithm 3 with
coarse-to-fine feature versus the CPU-time without the mesh refinement.

From the results in Table 5 we infer that the coarse-to-fine sweep speeds up the
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Active set (black) for SPF (A = 1/128) Active set (black) for SPF (A = 1/256)

[30]

X\

Active set (black) for SPF (A = 1/512)

FIGURE 6. Short-step path-following interior-point method (SPF) for Example 4: Active sets upon
termination of the SPF for mesh sizes h = 1/128, /J = 1/256 and h = 1/512 (from left to right).

TABLE 5. Coarse-to-fine sweep combined with Algorithm 3 for h{ = 2~', i = 2,3 9 (from left to
right).

Problem
Example 1
Example 3

#iterations//i
3 3 3 2 2 1 2 1 (6)
1 2 2 7 3 2 2 1(11)

CPU-ratio
0.41
0.26

overall solution process (CPU-ratio < 1) considerably. It provides excellent initial
points on the fine meshes (h < 1/128 in our examples) such that Algorithm 3 requires
at most two iterations until successful termination on these fine meshes. The results
for Examples 2 and 4 are similar to the ones for Example 1. In the case of Example 3
we point out that only for h = 1/32 (and smaller) the problem features are resolved
reasonably well (with increasing accuracy as h decreases). Therefore, Algorithm 3
requires seven iterations for h = 1/32 where it encounters these problem features for
the first time in our mesh refinement process. Again, the subsequent applications of
Algorithm 3 benefit from excellent initial points.

6. Asymptotics and Holder regularity

Whenever (1.1) is the result of a Lavrentiev-type regularization of the state-
constrained problem (1.2) with c = e > 0, it is of interest to study the asymptotic
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to c when solving (1.2) numerically, certain convergence and smoothness properties of
the solution (ye, « J of (1.1) with c = e with respect to e are of interest. These issues
are addressed next. For ease of presentation we restrict ourselves to the unilaterally
constrained case with / = 0, that is, we consider

minimize J(y, u) := -\\y - yd\\
2

o + - | | H | | 2
2

over ^ 2

subject to Ay = u in

+ b a.e. in

(y,u) e

Ay = u

€ u + y <b

which is the Lavrentiev regularization of the state-constrained problem

(6.1)

minimize J(y, u) := -\\y - ydfo + -\\u\\\,

over (y, u) 6//o '(n) x L2(Q),

subject to Ay = u in £2,

y < b a.e. in Q..

(6.2)

We assume that the coefficients of A are sufficiently smooth and b € H2(Q.) with
b\r > 0. It is well known (see [8,9]) that there exists a unique optimal solution
( / , M*) e H2(&) D x of (6.2) which is characterized by the existence
of (p*, A.*) e L2(fi) x <g*{Q.) such that

Ay* = u*, y* < b a.e. in Q,

(y* - yd,

(A*, & -

= 0,

< 0

for all cp\, cp2 e H2(£2) D //o '(^) with <p2 < -̂ Further, in [8] it is shown that under
sufficient regularity of b and the active set jrf* = {x e Q : / ( x ) = £(*)} the
multiplier X* can be decomposed into an absolutely continuous part X*|^. e L2(£2)
and X*|jr. = 0, and a singular part A.* 6 H1/2(E*) concentrated on the boundary E*
between the active set ^ * and the inactive set J* = f2 \ si*.

Our first goal is to show that the optimal state-control pair (y(, u() associated
with Problem (6.1) approaches (y*, u*) as € tends to zero. In what follows we use
Y := H2(Q) n H^(Q) and the bilinear form a : //o'(f2) x H]

Q

a(v, w) = {Av, w).H->jj>(n). Note that a satisfies

a(v, v) > co\\v\\2
Ht =oi||Vu||22 and a(v,w):

for constants co > 0 and C > 0.

defined by

(6.3)
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PROPOSITION 6.1. Let {en} C K+ + denote a sequence with en | Qforn -> oo and let
(p, it) e Y x L2(Q.) be a feasible point of {6.2). Further, assume that €nu(n + y(n := _?
<7/7<i /l_yfi? = M€n. 77zen (;y€n, uej - > (_y, u) strongly in Y x L2(£2). Moreover,

II««!, lit' < ||ii||i.2/orfl//n € N.

PROOF. By definition we have

C«fn + k :=y<b (6.4)

and y(n = (A + e~l id)~1(en"
1>'). Then the state equation yields

yf, - y)v + (%„,%„ - y)o = (y, %„ -

Since p, pfn e Y we get

^nC|U-P|l (6.5)

with C > 0 independent of en. This implies that y(n -> y strongly in L2(Q) and that
IIP*, — y\\o = &(en) f ° r « -* oo. Further note that due to (6.4) and (6.5) we have

< C. (6.6)
Hence, once again from the state equation, we obtain

- y)\\2
L2 < -€;

l\\yt. - y\\2
L> + (Ay, y - yjc-

= ff(€n) for n -> oo. (6.7)

As a consequence we have %n -*• y strongly in //o'(ft) and ||V(pfn —y)\\^ =
for n -> co.

Concerning the convergence of {«fn} we observe that

a(y, V)o = («, <f*)o and a(y(n, <p)Li = {u(

for <p s / / o ' ( ^ ) . By subtraction, these two equations yield

a{y- k ,(p)L2 = {u- uu, (p)Ll for (p e //„' (J2).

Since yf,, converges strongly in HQ(Q), by a density argument we get uin -> M weakly

in L2(fi). From A%n = «fii = e~'(>> - yej
 w e mfer t n a t

^ I I ^ - P) |L + (Ay. k - y)L2 < - « ; ' ||P. - P|2L2
and hence

e» («. "«.)tI = ( - ^ P . >«. - P)t2 > en K |2t2 + <u IV(ytm - y)\fL2 > 0.
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Next consider

Consequently, we obtain

\\u(n\\Li < \\u\\L2 for all n e N .

Due to the weak lower semicontinuity of norms we get

J(9, u) < Hminf j(y(n, uA < liminf J(y(n, u) = lim J(ye,,u) = J(y, «) •
n—^00 n—*oo n—• oo

This implies IIwtn IIz,
2 -*• \\U\\L2 for n -> oo. Now the weak convergence of {u(j in

L2(£2) together with the convergence of norms yields u(n ->• u strongly in L2(Q.).
Considering Ay = u,u(n = €~l(y-y(Jand\\u(J\L2 -> || M || LI , we derive from (6.7)

)\\o = K^) for « ^ oo.

The strong convergence of y(n in H2(Q) follows from standard elliptic regularity
estimates; see, for example, [11, Theorem 8.13]. In fact, we have

A(y(n — y) = u(n — u inSl.

Since \\y(n — y\\Li = £?(en) and u(n -> u strongly in L2(Q), we obtain

\\h-y\\H,<C(\\h-y\\L2 + \\u(n-u\\L2)^0 f o r n ^ o o . D

We note that due to the boundedness of {\\uen \\L2] (see (6.6)), we have

en \\ufii ||£2 —>• 0 for n —> oo.

Next we study the convergence behaviour of (yf, u() to (y*, u*) as € I 0. For this

purpose we invoke the assumption

J(y\ M*) < inf {Sf^iy, u, X*) :(y,u)eYx L 2 ( f i ) with Ay = u], (6.8)

where we use

&*-{y,«. n = J(y, u) + ( rL . , (y - b)\^)Ll.

Notice that (6.8) relates to some type of a saddle-point condition (see, for example,
[16]) and we require the additional multiplier regularity addressed in connection with
(6.2) at the beginning of this section.

THEOREM 6.2. Let [en) C K++ denote a sequence with en i 0 for n -> oo and

assume that assumption (6.8) holds true. Then the sequence {(y6n, u€n)} is uniformly

bounded in Y x L2(£2) and

and
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PROOF. Let if, : Y x L2(Sl) x #„'(«) x L2(Q) 4 - OS with

iff (y, M, p, X) = J(y, u) + (Ay - u, p)H-\H* + (X,eu + y- b)o

denote the Lagrange function associated with (6.1). For ease of notation we use
w = (y, u). Note that by first-order optimality we have

VW5?( (ye , wf , /?<;„, Xe) = 0.

Further, we observe that

(vww^f(n(y(n' u(n' Pe»> k ( n ) (y, u), ( y , « ) ) = llylliz - t -o r | i« | | ^ 2

for all (y, u) e Y x L2(Q). The point (y(n, u(n) of Proposition 6.1 is chosen as

6nMfn + y(n —: y* and Ayfn = u(n.

Then J(y(n, uej < J(y(n, u(j < C implies max{||y€J|/,2, ||«tn Itz.
2) < C. The uniform

bound on {y(n} in Y then follows from elliptic regularity theory. Further, we have
y(n — b < — €nuu a.e. in Q by feasibility. Hence, we infer that

Now, assumption (6.8) yields

J{y*,u*)-J(yu,uu) < {X*^., (y(n -b)\^)Ll < 6 (en). (6.9)

Subsequently we use wu = (yfn, u(j, w(n = (y(n, u(n) and w* = (y*, u*). From a
second-order Taylor expansion of S£(n we obtain

= / ( u O - J(w*) + J(w*) - J{w(n) + {X(n,enu(n + yu - b)Ll

< J{w(n) - J(w*) + J(w*) - J(w(n), (6.10)

where we also used X(a > 0 and enu(n + %„ — b < 0 by feasibility.

Next observe that due to ||wfn \\Li < \\u*\\2
o by Proposition 6.1 we get

J(wJ - J{w*) = X- (\\y(n - yd\\
2

L2 - | | / - yAli) + | ( | K III " H«*M^)

sUtf-yi.h-y'hi + Uh-y'W2

h-y% = 0teH). (6.11)
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Now, (6.9)-(6.11) yield

1 &. ~ yen \\2
L2 + « | « e . ~ U(n \\\2 < 0(fin). (6.12)

Finally observe that due to Proposition 6.1 and (6.12) we have

IK - / | t J < ||*. - yu \\L1 + |y«, - y*\\L2 < <?(ViD

fore,, < 1. An analogous assertion is true for ||«6n—M*||i,!, which proves the claim. •

We end this section by showing that yf and u( are Holder continuous with exponent

1/2 with respect to c > 0. For this purpose we recall the first-order optimality system

of (6.1):

Ayf-ut=Q, (6.13)

ye-yd + A*Pe + k(=0, (6.14)

aut - p( + eK = 0, (6.15)

eue + yf<b, Xe>0, k((eu( + y€ - b) = 0. (6.16)

We start by proving an auxiliary result.

LEMMA 6.3. Let et > 0 and e2 > 0. Then we have

(u([ - M€2, e,(A.fl - K2))L2 + (K, ~ K,, yei ~ ytl)ui > (ei - €2)(K2 - k€t,u(2)Li.

PROOF. Using (6.16) we find that

- (u(l - uC2, €i(k(l - kC2))L2 + (ke>,b - €iU(i)Li - (k(2, y(i)Li - (k(l,yf2)Li

+ (k(2,b-€2U(1)L2

= -{e\it(2,k(l)L2 -(€iu(l,k(2)L2 + (k(1,b)L2 -(k(2,y(l)L2 - (k(l, y(2)L2

+ (K2, b)L2 + (e, - e2)(A€2, ut2)o

= (k(l,b - y(2 - €\u(2)L2 + (k(2, b-y(l - €\u(x)Li + (e, - c2)(k(2, u(2)Li

> (K, (e2 - ei)u(2)L2 + (e, - €2)(k(2, u(2)L2

> (e, -€2)(ke2 -k(l,u(2)L2

which proves the claim. •

THEOREM 6.4. Let min(ei, e2) > f. > 0. Then there exists a constant C > 0 such

that

max
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PROOF. With e = ex and e = c2 in (6.14), subtraction yields

y(l - y(1 + A*(p(l - p(2) + kei - k(2 = 0.

From this we obtain

I K - 3v2 III»+ a{pe> - Pa* >«i -y*) + {K - K> y« - y^)o = °-

The state equation yields a{y(i — yei, p(l — pe2) = («e, — utl, p(l — p(2). Hence we
have

1^, - y,2 \\Li + («e. - "«2. Pu - P&) + (K - ^ . yu - y^)Li = o. (6.17)

Using (6.15) in (6.17) we get

+ (kei -K2,y(, -y^)L2

= I K ~ ^llz.2 +CX l " f ~ M«llL2 + ("f> ~ "^' ^' ~ €2) A.ft)tj
+ («f, - Mft. ei (A.ei - A.f2))L2 + (Af, - X(2, y(l - ye2)L2

- I K ~ ^ l t + a | K > -««2|i2 + ("«l -"^2.(^1 -€2)A.e,)t2

+ (e]-€1){K2-Xei,u(2)L2 (6.18)

where we used Lemma 6.3 for the last estimate. From (6.18) we infer that

| K - ^ L * +<*!"«. - " ^ I L s - le' - e 2 l | ( « e i . ^ 2 ) L 2 - (Uej.A.f,)

The boundedness of uei,utl,ktl,k(2 in L2(Q) for min(ei,f2) > £ > 0 yields the
existence of C = C(e) > 0 such that

which ends the proof. D

7. Conclusions

In this paper we prove the locally superlinear convergence of a primal-dual active-
set, or equivalently semismooth Newton, method in function space. We further
establish a mesh-independence result proving the numerical stability of the fast local
convergence of our algorithm under mesh refinements. This latter behaviour was
observed in numerical practice before. In our report on numerical results we validate
the mesh-independence theory and study the numerical behaviour of our algorithm in
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the case of primal as well as dual degeneracy. We also provide a comparison with a
short-step path-following interior-point method. This latter comparison is of interest
since the short-step version of interior-point methods is currently the only available
path-following method with a function space convergence analysis. In our tests we
find that our method is superior to the short-step path-following algorithm. Another
advantage of our primal-dual active-set method when compared to the interior-point
technique is related to its warm-start ability. In fact, our numerical results show
that our algorithm benefits significantly from a coarse-to-fine mesh refinement. For
interior-point methods, on the other hand, it was observed in [5] and [13] that such a
warm-start property is much harder (if possible at all) to achieve.

The warm-start ability (respectively the speed-up) under coarse-to-fine mesh-
refinements of our primal-dual active-set method is also of interest in the case of
a vanishing Lavrentiev parameter. In this case (1.1) is used as a (regularizing) device
for solving the state-constrained problem (1.2). From our numerical findings and the
convergence results with respect to the Lavrentiev parameter e > 0 a combined tuning
of the mesh size of the underlying discretization and the Lavrentiev parameter appears
to be appealing and is the subject of future research.

Acknowledgements

This research was supported by the Austrian Science Fund FWF under START-
program Y305-N12 "Interfaces and Free Boundaries" and by the Institute of Math-
ematics and its Applications (IMA) at the University of Minneapolis, Twin Cities,
Minnesota.

References

[1] R. A. Adams, Sobolev spaces (Academic Press, New York-London, 1975).
[2] E. L. Allgower, K. Bohmer, F. A. Potra and W. C. Rheinboldt, "A mesh-independence principle

for operator equations and their discretizations", SIAM J. Numer. Anal. 23 (1986) 160-169.
[3] W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,

Volume 195 of Lecture Notes in Pure andAppl. Math. (Dekker, New York, 1998) 1-30.
[4] N. Arada, E. Casas and F. Troltzsch, "Error estimates for the numerical approximation of a

semilinear elliptic control problem", Comput. Optim. Appl 23 (2002) 201-229.
[5] R. E. Bank, P. E. Gill and R. F. Marcia, Interior methods for a class of elliptic variational

inequalities, Volume 30 of Led. Notes Comput. Sci. Eng. (Springer, Berlin, 2003) 218-235.
[6] M. Bergounioux, M. Haddou, M. Hintermiiller and K. Kunisch, "A comparison of a Moreau-

Yosida-based active set strategy and interior point methods for constrained optimal control prob-.
lems", SIAM J. Optim. 11 (2000) 495-521.

[7] M. Bergounioux and K. Kunisch, "Primal-dual strategy for state-constrained optimal control
problems", Comput. Optim. Appl. 22 (2002) 193-224.

https://doi.org/10.1017/S1446181100012657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012657


38 M. Hintermuller [38]

[8] M. Bergounioux and K. Kunisch, "On the structure of Lagrange multipliers for state-constrained
optimal control problems", Systems Control Lett. 48 (2003) 169-176.

[9] E. Casas, "Control of an elliptic problem with pointwise state constraints", SIAM J. Control Optim.
24(1986)1309-1318.

[10] X. Chen, Z. Nashed and L. Qi, "Smoothing methods and semismooth methods for nondifferentiable
operator equations", S1AMJ. Numer. Anal, (electronic) 38 (2000) 1200-1216.

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Volume
224 of Crundlehren der mathematischen Wissenschaften (Springer Verlag, Berlin, 1977).

[12] M. Hintermuller, K. Ito and K. Kunisch, "The primal-dual active set strategy as a semismooth
Newton method", SIAM J. Optim. 13 (2003) 865-888.

[13] M. Hintermuller and K. Kunisch, "Feasible and non-interior path-following in constrained mini-
mization with low multiplier regularity", SIAM J. Control Optim. 45 (2006) 1198-1221.

[14] M. Hintermuller and M. Ulbrich, "A mesh-independence result for semismooth Newton methods",
Math. Program. 101 (2004) 151-184.

[15] B. Kummer, "Generalized Newton and NCP methods: convergence, regularity, actions", Discuss.
Math. Differ. Incl. 20 (2000) 209-244.

[16] D. G. Luenberger, Optimization by vector space methods (John Wiley & Sons Inc., New York,
1969).

[17] C. Meyer, U. Priifert and F. Trb'ltzsch, "On two numerical methods for state-constrained elliptic
control problems", Technical Report 5-2005, Department of Mathematics, TU Berlin, 2005.

[18] R. Mifflin, "Semismooth and semiconvex functions in constrained optimization", SIAM J. Control
Optimization 15 (1977) 959-972.

[19] U. Priifert, F. Troltzsch and M. Weiser, "The convergence of an interior point method for an elliptic
control problem with mixed control-state constraints", Technical report, TU Berlin, 2004, Preprint
36-2004.

[20] L. Qi and J. Sun, "A nonsmooth version of Newton's method", Math. Programming 58 (3, Ser. A)
(1993)353-367.

[21] S. M. Robinson, "Generalized equations and their solutions. I. Basic theory. Point-to-set maps and
mathematical programming", Math. Programming Stud. 10 (1979) 128-141.

[22] S. M. Robinson, "Strongly regular generalized equations", Math. Open Res. 5 (1980) 43-62.
[23] S. M. Robinson, "Generalized equations and their solutions. II. Applications to nonlinear pro-

gramming. Optimality and stability in mathematical programming.", Math. Programming Stud. 19
(1982)200-221.

[24] F. Troltzsch, Optimale Steuerung partieller Differentialgleichungen (Vieweg, Wiesbaden, Ger-
many, 2005).

[25] S. J. Wright, Primal-dual Interior-Point Methods (Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997).

https://doi.org/10.1017/S1446181100012657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012657

