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1. Introduction

Let
Hf(x) = (−1)m

∑
|α|=m
|β|=m

Dα{aαβ(x)Dβf(x)}, x ∈ Ω ⊂ R
N , (1.1)

be a self-adjoint uniformly elliptic operator of order 2m with measurable coefficients and
subject to Dirichlet boundary conditions on ∂Ω. It is known that if 2m > N , then the
associated heat semigroup e−Ht has a kernel K(t, x, y) which satisfies the estimate

|K(t, x, y)| < c1t
−N/2m exp

{
−c2

|x − y|2m/(2m−1)

t1/(2m−1) + c3t

}

for some positive constants ci. Under suitable conditions this was recently [4] sharpened
to

|K(t, x, y)| < cεt
−N/2m exp

{
−(σm − cD − ε)

dM (x, y)2m/(2m−1)

t1/(2m−1) + cε,M t

}
, (1.2)

where σm = (2m − 1)(2m)−2m/(2m−1) sin(π/(4m − 2)), D � 0, depends on the regularity
of the coefficients and dM (x, y) is a Finsler-type metric that is induced by the principal
symbol of H and depends on the arbitrarily large parameter M ; as M → ∞, dM (x, y)
increases to a Finsler distance d(x, y), but (1.2) is valid only for M < ∞. This estimate
is sharp, as is seen by comparison with the small-time asymptotics for operators with
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smooth coefficients obtained in [10] (see (2.12) below). In the same direction, Dungey [8]
used resolvent estimates to obtain a better estimate than (1.2) for powers of second-order
operators. He showed in a general framework that if the self-adjoint operator H satisfies
a standard Gaussian estimate with exponential constant 1

4 − ε, then the heat kernel of
Hm satisfies (1.2) with D = 0 and M = +∞. For an alternative approach valid also for
higher-order systems see [1]. For a comprehensive review of recent results on the spectral
theory of higher-order operators with measurable coefficients see [7].

Dungey’s result also applies to operators with singular or degenerate coefficients, but
it does not apply when the operator is not the power of a second-order operator. A sharp
heat-kernel estimate for operators of the form (1.1) with singular and/or degenerate
coefficients is the main result of this paper. At the same time, for the sake of greater
generality, we do not assume that H is self-adjoint.

Concerning the singularity or degeneracy of H, we assume that there is a positive func-
tion a(x) that controls in a suitable sense the behaviour of the coefficient matrix {aαβ}
and we then impose two conditions (H1) and (H2) on a(x). The first is a weighted Sobolev
inequality and the second is a weighted interpolation inequality. These conditions were
introduced in [3] and led to (non-sharp) off-diagonal estimates on the heat kernel of
non-uniformly elliptic self-adjoint operators. Besides conditions (H1) and (H2) we shall
assume that the symbol A(x, ξ) is close—in a suitable sense—to a certain class of ‘good’
symbols denoted by Ga. These symbols, besides satisfying (H1) and (H2), correspond to
operators that are self-adjoint, their coefficients have some local regularity, and they are
strongly convex in the sense of [9]. We make use of a certain stability property inherent
in our approach and obtain bounds that are asymptotically sharp: they involve the expo-
nential constant σm − cD, where c is an absolute constant and D is the distance of the
symbol A(x, ξ) from the class Ga in a certain weighted norm. In particular, the constant
σm is obtained for symbols in Ga. To the best of our knowledge such estimates are new
even if the coefficients are assumed to be smooth and the symbol lies in Ga.

2. Formulation of results

We first fix some notation. Given a multi-index α = (α1, . . . , αN ) we write α! =
α1! · · ·αN ! and |α| = α1 + · · · + αN . We write γ � α to indicate that γi � αi for
all i, in which case we also set cα

γ = α!/γ!(α − γ)!. We use the standard notation Dα

for the differential expression (∂/∂x1)α1 · · · (∂/∂xN )αN , and for k � 0 we denote by
∇kf the vector (Dαf)|α|=k. We denote by f̂ the Fourier transform of a function f ,
f̂(ξ) = (2π)−N/2

∫
eiξ·xf(x) dx. We shall denote by ‖A‖p→q the norm of an operator A

from Lp(Ω) to Lq(Ω). The letter c will stand for a positive constant whose value may
change from line to line.

Let Ω be a domain in R
N . We fix an integer m � 1 and consider the operator

Hf(x) = (−1)m
∑

|α|=m
|β|=m

Dα{aαβ(x)Dβf(x)} (2.1)

subject to Dirichlet boundary conditions on ∂Ω; the precise definition shall be given
below. The matrix-valued function {aαβ} is assumed to be measurable and to take its
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values in the set of all complex, ν × ν matrices, ν being the number of multi-indices α of
length |α| = m. We assume that each aαβ lies in L∞

loc(Ω); we do not assume {aαβ} to be
self-adjoint.

We define a quadratic form Q(·) on C∞
c (Ω) by

Q(f) =
∫

Ω

∑
|α|=m
|β|=m

aαβ(x)Dαf(x)Dβ f̄(x) dx, f ∈ C∞
c (Ω).

We assume that there exists a positive weight a(x) with a±1 ∈ L∞
loc(Ω) that controls the

size of the matrix {aαβ} in the following sense: first,

|aαβ(x)| � ca(x), x ∈ Ω, (2.2)

for all multi-indices α, β; and second, the weighted G̊arding inequality

Re Q(f) � c

∫
Ω

a(x)|∇mf |2 dx, f ∈ C∞
c (Ω), (2.3)

is valid for some c > 0. We also assume the symbol version of (2.3), namely

Re A(x, ξ) � ca(x)|ξ|2m, x ∈ Ω, ξ ∈ R
N , (2.4)

where A(x, ξ) :=
∑

aαβ(x)ξα+β . Relations (2.2) and (2.3) imply in particular that there
exists β > 0 such that

|Q(f)| � β Re Q(f), f ∈ C∞
c (Ω). (2.5)

It is easily seen that Q is closable [3]. The domain of its closure is a weighted Sobolev
space that we denote by Wm,2

a,0 (Ω). We retain the same symbol, Q, for the closure of
the above form and denote by H the associated accretive operator on L2(Ω), so that
〈Hf, f〉 = Q(f), f ∈ Dom(H), and (2.1) is valid in a weak sense.

We make two hypotheses on the weight a: the first is a weighted Sobolev inequality
and the second is a weighted interpolation inequality.

(H1) There exists s ∈ [N/2m, 1] and c > 0 such that

‖f‖∞ � c[Re Q(f)]s/2‖f‖1−s
2 , f ∈ C∞

c (Ω). (2.6)

(H2) There exists a constant c such that
∫

Ω

ak/m|∇kf |2 dx < ε

∫
Ω

a|∇mf |2 dx + cε−k/(m−k)
∫

Ω

|f |2 dx, (2.7)

for all 0 < ε < 1, 0 � k < m and all f ∈ C∞
c (Ω).

Both (H1) and (H2) are satisfied when H is uniformly elliptic, in which case the best
value for the constant s is s = N/2m, showing that in the general case we cannot expect
any value that is better (smaller) than N/2m; in particular, (H1) is valid trivially with
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s = N/2m if a(x) is bounded away from zero. We refer to [3] for non-trivial examples
for which (H1) and (H2) are satisfied; they involve suitable powers of either 1 + |x| or
dist(x, K), where K is a smooth surface of lower dimension.

We note that condition (H2) implies that for any k, l with 0 � k, l � m, k + l < 2m,
there exists a constant c such that

(1+λ2m−k−l)
∫

Ω

a(k+l)/2m|∇kf | |∇lf | dx < εRe Q(f)+ cε−(k+l)/(2m−k−l)(1+λ2m)‖f‖2
2,

(2.8)
for all ε ∈ (0, 1), λ > 0 and all f ∈ C∞

c (Ω). Indeed, for λ = 1, (2.8) is a consequence
of (H2) and the Cauchy–Schwarz inequality; the case λ < 1 follows trivially from the
case λ = 1; finally, writing (2.8) for λ = 1 and replacing ε by ελk+l−2m we obtain the
result for λ > 1.

Next we introduce the distance that shall be used in the heat-kernel estimates. Consider
the set

Ea = {φ ∈ C∞(Ω) ∩ L∞(Ω) : φ real valued and ak/2m∇kφ ∈ L∞(Ω), 1 � k � m}

and its subset (recall (2.4))

EA,M = {φ ∈ C∞(Ω) ∩ L∞(Ω) : Re A(x,∇φ(x)) � 1,

|∇kφ(x)| � Ma(x)−k/2m, 2 � k � m, a.e. x ∈ Ω}. (2.9)

Our estimates will be expressed in terms of the distance

dM (x, y) = sup{φ(y) − φ(x) : φ ∈ EA,M} (2.10)

for arbitrarily large but finite M . For M = +∞ this reduces to the distance

d∞(x, y) = sup{φ(y) − φ(x) : Re A(x,∇φ(x)) � 1, x ∈ Ω}.

This is a Finsler distance, induced by the (singular/degenerate) Finsler metric with length
element

ds = ds(x,dx) = sup
η∈R

N

η �=0

〈dx, η〉
(Re A(x, η))m/2 . (2.11)

We refer the reader to the recent book [2] for a comprehensive introduction to Finsler
geometry. The distance d∞(x, y) relates to the short-time off-diagonal behaviour of the
heat kernel: it was shown in [10] that if Ω = R

N and H is self-adjoint, uniformly elliptic
with strongly convex symbol (see (2.13)), then d∞(·, ·) controls the small-time behaviour
of K(t, x, y) in the sense that

log tN/2mK(t, x, y) = −σm
d∞(x, y)2m/(2m−1)

t1/(2m−1) (1 + o(1)), as t → 0, (2.12)

for x, y fixed and close enough; here and below we have

σm = (2m − 1)(2m)−2m/(2m−1) sin(π/(4m − 2)).
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Let us now proceed with the definition of the class Ga. Let the functions aγ(·), |γ| = 2m,
be defined by requiring that∑

|α|=m
|β|=m

aαβ(x)ξα+β =
∑

|γ|=2m

c2m
γ aγ(x)ξγ , x ∈ Ω, ξ ∈ R

N

(recall that c2m
γ = (2m)!/γ!). Following [9] we say that the principal symbol A(x, ξ) of

H is strongly convex if the quadratic form

Γ (x, p) =
∑

|α|=m
|β|=m

aα+β(x)pαp̄β , p = (pα) ∈ C
ν , (2.13)

is positive semidefinite for a.e. x ∈ Ω.
Induced by the weight a(x) is the weighted Sobolev space

Wm−1,∞
a (Ω) = {f ∈ Wm−1,∞

loc (Ω) : |∇if(x)| � ca(x)(2m−i)/2m, a.e. x ∈ Ω, i � m − 1}.

(2.14)

Definition 2.1. We say that the symbol A(x, ξ) lies in Ga if

(i) A(x, ξ) is strongly convex;

(ii) {aαβ} is real and symmetric;

(iii) the coefficients aαβ lie in Wm−1,∞
a (Ω).

We denote by D the distance of the coefficient matrix {aαβ} from Ga in the weighted
uniform norm

‖f‖a,∞ := sup
x∈Ω

|f(x)/a(x)|;

that is
D = inf

{ãαβ}
‖{aαβ} − {ãαβ}‖a,∞, (2.15)

where the infimum is taken over all matrix-valued functions {ãαβ} that induce a symbol
in Ga. Here we have used the notation

‖{bαβ}‖a,∞ := sup
x∈Ω

|{bαβ(x)}|
a(x)

,

where, for each x ∈ Ω, |{bαβ(x)}| denotes the norm of {bαβ(x)} regarded as an operator
on C

ν .
Our main result is as follows.

Theorem 2.2. Assume that (H1) and (H2) are satisfied. Then for all δ ∈ (0, 1) and
all M large there exist positive constants cδ, cδ,M such that

|K(t, x, y)| < cδt
−s exp{−(σm − cD − δ)dM (x, y)2m/(2m−1)t−1/(2m−1) + cδ,M t} (2.16)

for all x, y ∈ Ω and t > 0; the constant c is independent of x, y, t, δ, D and M .

In the special case where H is uniformly elliptic and self-adjoint this estimate has
already been obtained in [4].
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3. Proof of Theorem 2.2

Given φ ∈ Ea, the mapping f 
→ eφf maps Wm,2
a,0 (Ω) into itself [3, Lemma 7]. Hence one

can define a sesquilinear form Qφ(·, ·) with domain Wm,2
a,0 (Ω) by

Qφ(f) = Q(eφf, e−φf)

=
∫

Ω

∑
|α|=m
|β|=m

aαβDα(eφf)Dβ(e−φf̄) dx, f ∈ Wm,2
a,0 (Ω). (3.1)

The associated operator is Hφ = e−φHeφ and has domain Dom(Hφ) = e−φ Dom(H).
The form Qφ is a lower-order perturbation of Q (cf. (3.8)) and it is a consequence
of (H2) [3, Lemma 8] that for all ε > 0 and f ∈ Wm,2

a,0 (Ω), the following inequality
holds:

|Q(f) − Qφ(f)| < ε Re Q(f) + cε−2m+1(1 + p(φ))2m‖f‖2
2, (3.2)

where we have used the seminorm

p(φ) := sup
1�k�m

ess sup
x∈Ω

a(x)k/2m|∇kφ(x)|. (3.3)

Defining s(φ) = (1 + p(φ))2m, it follows in particular that

Re Qφ(f) � −cs(φ)‖f‖2
2, f ∈ C∞

c (Ω), (3.4)

where c is independent of φ, and this justifies the definition

−kφ = inf{Re Qφ(f) : f ∈ C∞
c (Ω), ‖f‖2 = 1}. (3.5)

The next lemma closely follows an argument used in [5].

Lemma 3.1. Assume that (H2) is satisfied. Then for any φ ∈ Ea, the following inequal-
ities hold:

(i) ‖e−Hφt‖2→2 � ekφt,

(ii) ‖Hφe−Hφt‖2→2 � (cδ/t)ekφteδs(φ)t, for all δ > 0,

where the constant cδ is independent of φ ∈ Ea and t > 0.

Proof. Part (i) is the standard energy estimate that follows by integrating

d
dt

‖e−Hφtf‖2
2 = −2 Re〈Hφe−Hφtf, e−Hφtf〉 � 2kφ‖e−Hφtf‖2

2.

Now by (3.2) the following inequality holds:

|Qφ(f) − Q(f)| � 1
2 Re Q(f) + c′s(φ)‖f‖2

2, f ∈ C∞
c (Ω), (3.6)
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where c′ > 0 depends only on m. Hence, for any ε ∈ (0, 1),

Re Qφ(f) = ε Re Qφ(f) + (1 − ε) Re Qφ(f)

� 1
2ε Re Q(f) − [c′εs(φ) + (1 − ε)kφ]‖f‖2

2,

and hence

Re[Q(f) − Qφ(f)] � (1 − 1
2ε) Re Q(f) + [c′εs(φ) + (1 − ε)kφ]‖f‖2

2.

Fix f ∈ L2(Ω) and θ ∈ (−π/2, π/2), and for ρ > 0 set fρ = exp(−Hφρeiθ)f . We then
have

d
dρ

‖fρ‖2
2 = −2 Re[eiθQφ(fρ)]

= −2 cos θ Re Q(fρ) + 2 sin θ Im Qφ(fρ) + 2 cos θ[Re Q(fρ) − Re Qφ(fρ)]

� −2 cos θ Re Q(fρ) + 2 sin |θ|[( 1
2 + β) Re Q(fρ) + c′s(φ)‖fρ‖2

2]

+ 2 cos θ[(1 − 1
2ε) Re Q(fρ) + [c′εs(φ) + (1 − ε)kφ]‖fρ‖2

2]

= [−ε cos θ + (2β + 1) sin |θ|] Re Q(fρ)

+ [2 cos θ{c′εs(φ) + (1 − ε)kφ} + 2c′ sin |θ|s(φ)]‖fρ‖2
2.

Let α ∈ (0, π/2) be such that tanα = ε/(2β + 1). For |θ| � α we then have −ε cos θ +
(2β + 1) sin |θ| � 0 and hence

d
dρ

‖fρ‖2
2 � 2 cos θ

[
c′εs(φ) + (1 − ε)kφ + s(φ)

c′ε

2β + 1

]
‖fρ‖2

2

� 2(kφ + 2c′εs(φ))‖fρ‖2
2

=: 2Aε‖fρ‖2
2.

It follows that ‖e−Hφz‖2→2 � eAε|z| in the sector |arg z| � α. We conclude that letting

τε =
Aε

cos α

we have
‖ exp{−(Hφ + τε)z}‖2→2 � 1,

and hence [6, Lemma 2.38]

‖(Hφ + τε)e−(Hφ+τε)t‖ � c

αt
,

for all t > 0. Multiplying both sides by eτεt and using the triangle inequality we obtain

‖Hφe−Hφt‖2→2 � c

αt
exp

{
kφ + 2c′εs(φ)

cos α
t

}
+ τεekφt.

This last expression can be made smaller than the right-hand side of Lemma 3.1 (ii)
provided ε is chosen small enough; this completes the proof. �
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Proposition 3.2. Assume that (H1) and (H2) are satisfied. Then for any δ > 0 there
exists cδ > 0 independent of φ ∈ Ea such that

‖e−Hφt‖1→∞ � cδt
−sekφteδs(φ)t. (3.7)

Proof. Let f ∈ L2(Ω) and set ft = e−Hφtf , t > 0. Using (H1) we have

‖ft‖∞ � c[Re Q(ft)]s/2‖ft‖1−s
2

� c[Re Qφ(ft) + s(φ)‖ft‖2
2]

s/2‖ft‖1−s
2 (by (3.6))

� c[‖Hφft‖2‖ft‖2 + s(φ)‖ft‖2
2]

s/2‖ft‖1−s
2

� c[(cε/t)eεs(φ)t + s(φ)]s/2ekφt‖f‖2 (by Lemma 3.1 (ii) and Lemma 3.1 (i))

= ct−s/2[cεeεs(φ)t + s(φ)t]s/2ekφt‖f‖2.

Taking ε to be small enough we conclude that given δ > 0 there exists cδ such that

‖e−Hφt‖2→∞ � cδt
−s/2ekφteδs(φ)t.

The same arguments are valid for (Hφ)∗ = (H∗)−φ, the constant kφ clearly staying the
same. Hence by duality and the semigroup property, (3.7) follows. �

In order for Proposition 3.2 to be useful we need a precise upper estimate on kφ, which
amounts to a precise lower estimate on Re Qφ(·) (cf. (3.5)). This will be established in
Lemma 3.11 following a series of intermediate lemmas. Recalling that cα

γ = α!/γ!(α−γ)!
it follows immediately from (3.1) that for λ > 0, φ ∈ Ea we have

Qλφ(f) =
∫

Ω

∑
|α|=m
|β|=m

aαβ

∑
γ�α
δ�β

cα
γ cβ

δ Pγ,λφPδ,−λφDα−γfDβ−δ f̄ dx, (3.8)

where
Pγ,λφ(x) := e−λφ(x)Dγ [eλφ(x)]

is a polynomial in various derivatives of λφ. Now, the induction relation Pγ+ej ,λφ =
(λ∂jφ + ∂j)Pγ,λφ implies that Pγ,λφ has the form

Pγ,λφ(x) =
|γ|∑

k=1

λk
∑

cγ;γ1,...,γk
(Dγ1φ) · · · (Dγkφ), (3.9)

where the second sum is taken over all non-zero multi-indices γ1, . . . , γk such that γ1 +
· · · + γk = γ and cγ;γ1,...,γk

are constants. Hence, recalling that |∇kφ| � ca−k/2m, we can
write

Pγ,λφ(x) =
|γ|∑

k=1

λkP̃k,φ(x),
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where |P̃k,φ(x)| � ca−|γ|/2m. It follows from (3.8) that

Qλφ(f) =
∫

Ω

∑
|α|=m
|β|=m

∑
γ�α
δ�β

∑
k�|γ|
j�|δ|

λk+jwαβγδkj(x)Dα−γfDβ−δ f̄ dx, (3.10)

where wαβγδkj := aαβcα
γ cβ

δ P̃k,φP̃j,−φ satisfies |wαβγδkj | � ca(2m−|γ+δ|)/2m. Replacing γ

and δ by α − γ and β − δ, respectively, we conclude from (3.10) the following lemma.

Lemma 3.3. Qλφ(f) is a linear combination of terms of the form

T (f) = λs

∫
Ω

w(x)DγfDδ f̄ dx, (3.11)

where |w| � ca(|γ+δ|)/2m on Ω and

(i) s is an integer with 0 � s � 2m;

(ii) γ and δ are multi-indices with |γ|, |δ| � m;

(iii) s + |γ + δ| � 2m.

Definition 3.4. We call the number s + |γ + δ| the essential order of T .
Hence the essential order is an integer between 0 and 2m. We denote by La,m the

linear space consisting of (finite) linear combinations of forms whose essential order is
smaller than 2m. In Lemma 3.9 we will see that terms in La,m are in a sense negligible.
We also point out for later use that (2.8) implies the interpolation inequality

|T (f)| < c{Re Q(f) + λ2m‖f‖2
2}, f ∈ Wm,2

a,0 (Ω), (3.12)

valid for all terms T (·) of essential order 2m.

We have the following lemma.

Lemma 3.5. Given φ ∈ Ea and λ > 0 define

Q1,λφ(f) =
∫

Ω

∑
|α|=m
|β|=m

∑
γ�α
δ�β

aαβcα
γ cβ

δ (λ∇φ)γ(−λ∇φ)δDα−γfDβ−δ f̄ dx.

Then the difference Qλφ(f) − Q1,λφ(f) lies in La,m.

Proof. One simply has to recall (3.8) and observe from (3.9) that Pγ,λφ, considered
as a polynomial in λ, has λ|γ|(∇φ)γ as its highest-degree term. �
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3.1. Symbols in Ga

At this point and for the whole of this subsection we restrict our attention to operators
H whose symbol belongs to Ga. For x ∈ Ω, ξ, η ∈ C

N and ζ ∈ R
N let us define

km = [sin(π/(4m − 2))]−2m+1,

A(x, ξ, η) =
∑

|α|=|β|=m

aαβ(x)ξαη̄β ,

S(x, ζ; ξ, η) = Re A(x, ξ − iζ, η + iζ) + km Re A(x, ζ).

Lemma 3.6. Assume that the symbol A(x, ξ) lies in Ga. Then

Re Q1,λφ(f) + kmλ2m

∫
Ω

Re A(x,∇φ(x))|f |2 dx

= (2π)−N

∫∫∫
Ω×RN ×RN

S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dxdξ dη (3.13)

for all φ ∈ Ea, λ > 0 and f ∈ C∞
c (Ω).

Proof. Writing

Dγf(x) = (2π)−N/2
∫

RN

(iξ)γeiξ·xf̂(ξ) dξ

we have

Q1,λφ(f) = (2π)−N

∫∫∫
Ω×RN ×RN

∑
|α|=m
|β|=m

aαβ

∑
γ�α
δ�β

cα
γ cβ

δ (−iλ∇φ)γ(−iλ∇φ)δ

× ξα−γηβ−δei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N

∫∫∫
Ω×RN ×RN

∑
|α|=m
|β|=m

aαβ(ξ − iλ∇φ)α(η − iλ∇φ)β

× ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N

∫∫∫
Ω×RN ×RN

A(x, ξ − iλ∇φ(x), η + iλ∇φ(x))

× ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx.

This last integral has the form
∫

Ω
q[g] dx, where, for fixed x ∈ Ω,

g(ξ) = eiξ·xf̂(ξ),

q[g] =
∫

RN ×RN

p(ξ, η)g(ξ)g(η) dξ dη,

p(ξ, η) = A(x, ξ − iλ∇φ(x), η + iλ∇φ(x)).
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Since the matrix {aαβ} is symmetric we have p(ξ, η) = p(η, ξ) and therefore

q[g] =
∫

RN ×RN

p(ξ, η)g(ξ)g(η) dξ dη.

Hence
Re q[g] =

∫
RN ×RN

Re p(ξ, η) dξ dη

and integration over x ∈ Ω yields

Re Q1,λφ(f) + km

∫
Ω

Re A(x, λ∇φ(x))|f |2 dx

= (2π)−N

∫∫∫
Ω×RN ×RN

Re[A(x, ξ − iλ∇φ(x), η + iλ∇φ(x)) + kmA(x, λ∇φ)]

× ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N

∫∫∫
Ω×RN ×RN

S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx.

�

We now proceed to estimate the triple integral on the right-hand side of (3.13). It is
shown in [9, Theorem 2.1] that there exist positive numbers w0, . . . , wm−2 such that

S(x, ζ; ξ, ξ) =
m−2∑
s=0

wsΓ (x, p
(s)
ξ,ζ), x ∈ Ωζ, ξ ∈ R

N , (3.14)

where Γ (x, ·) is the quadratic form associated with the principal symbol of H (cf. (2.13))
and p

(s)
ξ,ζ is the vector in R

ν defined for fixed ξ, ζ ∈ R
N by requiring that∑

|α|=m

p
(s)
ξ,ζ,αaα = (sin θm)−s−2(ξ·a)m−s−2(ζ·a)s{(sin θm)2(ξ·a)2−(cos θm)2(ζ·a)2} (3.15)

for all a ∈ R
N ; here θm = π/(4m − 2). To simplify the notation let us define the sesqui-

linear forms Γ (x, ·, ·) on C
m−1 ⊗ C

ν � C
ν(m−1) by

Γ (x, u, v) =
m−2∑
s=0

wsΓ (x, u(s), v(s)) =
m−2∑
s=0

∑
|α|=m
|β|=m

wsaα+β(x)u(s)
α v

(s)
β

for all u = (u(s)
α ), v = (v(s)

β ) ∈ C
ν(m−1). Then Γ is positive semi-definite by the strong

convexity of A(x, ξ). To handle the above expressions we introduce two auxiliary elliptic
differential forms Sλφ and Γλφ on L2(Ω). They have common domain Wm,2

a,0 (Ω) and are
given by

Sλφ(f) = (2π)−N

∫∫∫
Ω×RN ×RN

S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx, (3.16)

Γλφ(f) = (2π)−N

∫∫∫
Ω×RN ×RN

Γ (x, pξ,λ∇φ, pη,λ∇φ)ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx, (3.17)
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where
pξ,λ∇φ = (p(s)

ξ,λ∇φ,α)|α|=m
0�s�m−2 ∈ C

ν(m−1)

is defined by (3.15).

Lemma 3.7. Assume that the symbol A(x, ξ) lies in Ga. Then the form Sλφ(·)−Γλφ(·)
lies in La,m.

Proof. It follows from (3.14) that Sλφ and Γλφ have integral kernels which are polyno-
mials of ξ and η and whose values coincide for ξ = η. Using the inverse Fourier transform
this implies that the difference Sλφ(f) − Γλφ(f) is a linear combination of terms of the
form

T (f) = λs

∫
Ω

w(x)[Dγ+κfDδ f̄ − (−1)κDγfDδ+κf̄ ] dx, (3.18)

where w is some function and κ is a multi-index of length |κ| � m − 1. In fact, recall-
ing (3.13) and the definition of Q1,λφ we see that w = aαβ(∇φ)µ, where |µ| = s and
γ + δ + κ + µ = α + β. Since aαβ ∈ Wm−1,∞

a (Ω) ⊂ Wm−1,∞
loc (Ω), we can integrate by

parts |κ| times and use Leibnitz’s rule to obtain

T (f) = (−1)|κ|λs
∑

0<κ1�κ

cκ
κ1

∫
Ω

Dκ1wDγfDδ+κ−κ1 f̄ dx. (3.19)

We estimate Dκ1w: clearly,

|Dκ1(aαβ(∇φ)µ)| � c

|κ1|∑
i=0

|∇|κ1|−iaαβ ||∇i(∇φ)µ| in Ω.

Recalling the definition of EA,M it is easily seen that |∇i(∇φ)µ| � ca−(|µ|+i)/2m; recalling
also from (2.14) the definition of the space Wm−1,∞

a (Ω) where the aαβ lie we conclude
that

|Dκ1(aαβ(∇φ)µ)| � cMa(x)(2m−|κ1+µ|)/2m = cMa(|γ+δ+κ−κ1|)/2m.

Hence (3.19) implies that T has essential order s+ |γ +δ+κ−κ1| < 2m, as required. �

Proposition 3.8. Let A(x, ξ) ∈ Ga. Then for any φ ∈ Ea, λ > 0 and all f ∈ C∞
c (Ω),

the following inequality holds:

Re Qλφ(f) � −kmλ2m Re
∫

Ω

A(x,∇φ(x))|f |2 dx + T (f), (3.20)

where T (·) ∈ La,m.

Proof. Combining Lemmas 3.5, 3.6 and 3.7 we have

Re Qλφ(f) + km

∫
Ω

Re A(x, λ∇φ(x))|f |2 dx = Γλφ(f) + T (f), (3.21)
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for a form T (·) ∈ La,m. Now let

u(x) =
∫

RN

pξ,λ∇φeiξ·xf̂(ξ) dξ

(a C
ν(m−1)-valued integral defined component wise); it follows immediately from defini-

tion (3.17) that

Γλφ(f) =
∫

Ω

Γ (x, u(x), u(x)) dx, (3.22)

and hence Γλφ(·) is non-negative by the strong convexity of A(x, ξ). �

3.2. The general case

We now remove the assumption A ∈ Ga and return to the general setting described
in § 2. We recall that the quantity D measures the distance of A from Ga and has been
defined in (2.15).

Lemma 3.9. Let T ∈ La,m. Then for any ε ∈ (0, 1) the following inequality holds for
all λ > 0 and f ∈ C∞

c (Ω):

|T (f)| < ε{Re Q(f) + λ2m‖f‖2
2} + cε‖f‖2

2. (3.23)

Proof. By definition, T (f) is a finite linear combination of expressions of the form

I(f) = λs

∫
Ω

w(x)Dγf(x)Dδ f̄(x) dx,

where |w(x)| � ca(x)|γ+δ|/2m and s + |γ + δ| � 2m − 1. Setting µ2m−|γ+δ| = λs and
recalling (2.8) we have

|I(f)| � cµ2m−|γ+δ|
∫

Ω

a(x)|γ+δ|/2m|Dγf | |Dδf | dx

� ε Re Q(f) + cε−2m+1(1 + µ2m)‖f‖2
2

� ε Re Q(f) + cε−2m+1(1 + λ2m−1)‖f‖2
2

� ε{Re Q(f) + λ2m‖f‖2
2} + cε−4m2+1‖f‖2

2.

�

Remark 3.10. It is seen from the proof that the size of the constant cε in (3.23)
depends only on ε > 0 and the (finite) quantity maxI sup{|w(x)|a(x)−|γ+δ|/2m}, where
the maximum is taken over all forms I(·) that make up T (·). In particular, when we
restrict our attention to functions φ ∈ EA,M we obtain a constant cε = cε,M which is
otherwise independent of φ.

Lemma 3.11. For any φ ∈ EA,M , λ > 0 and ε > 0 the following inequality holds:

Re Qλφ(f) � −{(km + cD + ε)λ2m + cε,M}‖f‖2
2, f ∈ C∞

c (Ω), (3.24)

where the constant c is independent of D, M , ε, λ and φ and the constant cε,M is
independent of D, λ and φ.
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Proof. Let Ã ∈ Ga be such that ‖A − Ã‖a,∞ � 2D. It follows from (3.12) that

| Re Q̃λφ(f) − Re Qλφ(f)| < cD{Re Q(f) + λ2m‖f‖2
2},∣∣∣∣λ2m

∫
Ω

[A(x,∇φ(x)) − Ã(x,∇φ(x))] dx

∣∣∣∣ < cD{Re Q(f) + λ2m‖f‖2
2}.

Combining these relations with (3.20)—as applied to the operator H̃—we obtain

Re Qλφ(f) � −kmλ2m

∫
Ω

Re A(x,∇φ(x))|f |2 dx − cD{Re Q(f) + λ2m‖f‖2
2} + T (f).

We have Re A(x,∇φ(x)) � 1 and therefore (allowing c to change from line to line and ε

to rescale)

Re Qλφ(f) � −kmλ2m‖f‖2
2 − cD{Re Q(f) + λ2m‖f‖2

2} + T (f)

� −kmλ2m‖f‖2
2 − (cD + ε){Re Q(f) + λ2m‖f‖2

2} − cε,M‖f‖2
2 (by (3.23))

� −kmλ2m‖f‖2
2 − (cD + ε){Re Qλφ(f) + λ2m‖f‖2

2} − cε,M‖f‖2
2 (by (3.6)).

Now, either Re Qλφ(f) is positive, in which case (3.24) is true, or it is not, in which case
it can be discarded from the right-hand side of the last inequality. This completes the
proof. �

Proof of Theorem 2.2. The rest of the proof is standard. Combining Proposition 3.2
with (3.24) and using the relation Kλφ(t, x, y) = e−λφ(x)K(t, x, y)e−λφ(y) we obtain

|K(t, x, y)| < cδt
−s exp{λ[φ(y) − φ(x)] + [(km + cD + δ)λ2m + cδ,M ]t}.

Optimizing over φ ∈ EA,M introduces dM (x, y) and choosing

λ =
(

dM (x, y)
2mkmt

)1/(2m−1)

we obtain

−λdM (x, y) + kmλ2mt = −σm
dM (x, y)2m/(2m−1)

t1/(2m−1) ,

which completes the proof. �

Remark 3.12. It is shown in [4] that the term cD cannot be eliminated from (3.24).
Thus for it to be removed from Theorem 2.2 an essentially different approach is needed—if
indeed the term is removable at all.

Remark 3.13. We point out that the above method can also work for operators of the
form H + W , where W is a lower-order perturbation of H. It is clear that the estimate
of Theorem 2.2 is valid for H + W provided Wλφ can be estimated by

|Wλφ(f)| < ε{Re Q(f) + λ2m‖f‖2
2} + cε‖f‖2

2

for all φ ∈ Ea and λ > 0 and any ε > 0. Such estimates can be obtained by means of
weighted Hardy- and Sobolev-type inequalities. We do not elaborate on this and prove a
theorem for zero-order real perturbations.
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Proposition 3.14. Let V = V+ − V−, where V+ ∈ L1
loc(Ω) and V− ∈ L1(Ω) are,

respectively, the positive and negative parts of the real-valued potential V . Then the
heat kernel of H + V satisfies the estimate of Theorem 2.2.

Proof. We have∫
Ω

V−|f |2 � ‖V−‖1‖f‖2
∞

� c‖V−‖1[Re Q(f)]s‖f‖2−2s
2 (by (H1))

� ε Re Q(f) + cε,V ‖f‖2
2

(hence H + V is defined with the same form domain as for H + V+). Moreover,

Re(H + V )λφ = Re Hλφ + V � Re Hλφ − V−.

Hence the estimate of Lemma 3.11 is also valid for H + V and the rest of the argument
goes through. �
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