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A NOTE ON THE COEFFICIENTS OF

MIXED NORMED SPACES

E.G. KwoN

For 0 < p,q < =, o> -1, AP,q,a denotes the space of all

holomorphic functions in the unit disc satisfying

p - Prq_pyo -
HF,g,a = 1o Mp(rsfP(1-2)% dr < o,

where
1 27
M (e, £ =5 ;7| f(re1®) (T dy
q 2m "o
In this paper, we find a sufficient condition for the multipliers
o
from AF2%: into £° »128<=2,1=2xqg< 2, which inter-

polates the results of Patrick Ahern and Miroljub Jevtic. as

a corollary, we can calculate
Dsqsa s
(A,,, 9/)

!

for q' s s sw», 1/g + 1/q"' =1 . BAlso, we can find a sharp

coefficient condition for Hp functions.

1. Introduction.

H(U) denotes the space of all holomorphic functions in the unit

disc U . For a function f(z) ¢ H(U) and for aq > -1 , 0< p,g <= ,
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we let
2
Mp(r,f)p = 1/2m fo" | £re®)|P go |
||f||p = s;P Mb(r,fV
and

p - st P g
P14 o= To M (mafIP (1= 2)% de .

The spaces HP(u) ana AP*9>%U) are defined to be

# (v)

Feaw ; el <=1

Psq,a )
A =1 H < o},
f e B ; Hpr,q,a

These spaces form Banach spaces or Frechet spaces. We refer to [ 3] ,[1]
for properties of these spaces.
Let A, B Dbe two vector spaces of complex sequences. A sequence

A= {An} is said to be a multiplier from A into B if {Xnan} € B
for any Lan} € A, The space of all such multipliers is denoted by
(A,B). We want to calculate multipliers from HP or 4P°9*% into
2(s,t) , the space defined below.

DEFINITION. For 1 < s,t < =, we denote by (s,t) the set of

those sequences {ak}: for which

s ,1/8, & t
4 kiI la |” )77y 2 e 2 (g < =)
and
t
{swp |gq} =) ¢ 2 (s==),
keIn
where In = {k ; Mk < 2n+1} (n=1,2,...) and IO = {0} .

The #(s,t) form normed spaces. For dual spaces and multipliers
between these spaces we refer to [5]. We follow Anderson and Shields (2]
for notation and many results. Let A be a sequence space. A% is

defined to be the space of sequences Lan} for which

https://doi.org/10.1017/50004972700003129 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003129

Mixed Normed Spaces 255

limz a_r’
n
r-+1-

1
exists and Ak is defined to be (4,2°) . s(4) is defined to be the
largest subspace of A4 having the property that if {an}e s(A) and

lbnl < |anl then {bn} € s(4) . Similarly S(A) is defined to be the

smallest superspace having this property. If s(4) = S(A) , we call the
space A solid. Of course, the L(s,t) are solid. It is known [2] that

for a solid space X with ka =X

Akk

(4,X) = (504),%) = (4%, x) = (s(a%)% , x)

Note that f e H(U) can be identified as a sequence {an} if

n

f(z) = § a 2 We denote {(n+1)7P an} by Ipf and {(n+1)pan} by

I_pf , the fractional integral and the fractional derivative of f of

order p. Also, for a space S < H(U) we denote {Ipf; f e 8} by ®s

and for two sequence spaces A,B we denote { {anbn}; {an}e A,{bn}e B}
by A*B . Note that

{ n+1)P ) ea(1/p,=)
so that

P acallfp,=) * 4.

Throughout this paper, 1/p + 1/p' =1(1 <p £ ) and Clp,q,...J)
denotes a positive constant depending only on p,q,... , but its size

may vary under the same notation.

2. Results

Ahern and Jevtic¢[]] have calculated multipliers from AP9% o

2% in the case 0 <p < =, q = 1,2. They prove that if r = max(p,1)
then
a+l
. 14 w
{ {An}, {(k+1) Ak}el( ,r)}

(s(F>1:%)2)a

a+l
(A>T % = (O L (k1) P 2 en(2,7)) (g22)
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(Indeed, they proved these for 1 < p < « and remarked on the case
0 <p < 1. see [1] Remarks.) Noting that
AP2A% (g (P20 T
it is natural to conjecture the following:
THEOREM 1. For 1 < q < 2, 4P2920 ¢ [~ (atD)/p
where 1/q + 1/q' = 1.

2(q',max(p,1)),

I (a+1) /o

Proof. Note that X ={) n} € 2(q',p) if and only if

o0

£ | (k#1)~ (et1)/P ).qu' 2L AP

z
keIﬁ

tet f(z) =% a 2% ¢ H(U) . Then
0

P (g ()T (P g 4P

n

<5 gnlatl) (z Iaqu')p/q' .
I
n

applying the result of Mateljevi¢ and Pavlovi¢ [6], this term is

dominated by

o ' ’
cw.q,0) 11 G lapl? 2P (1) ap
Since g ak rk/q, zk = f(rl/q' z) , the Hausdorff-Young theorem [3.

Theorem 6.1] gives
© ’ ’ © 1ot ’
(% la]? K (% lay ~a'la'y1/q
'
< ||F= 211,

14
for 1 <q < 2. On the other hand, if we let f 1/@'(3) = f(pl/ﬁ z), -
r

simple calculations give

51| lFex/2 2)] |g (1-7)% dr

il

1
j2 a
6 sgp M&(p,f;l/b,) (1-r," dr

[

1
{)‘ Mq(rl/q’ ,f)p (1-7)* dr
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1 r_
=q' fo Mq(o,f)p (l—pq’)a o? T 4
1
< (g1t /, Mb(p,f?p (1-0)% do ,

’
where we used the fact that (1—pq ) £ q'(1-p) in the last inequality.

Thus we have

at+l

- L 12
' 14
5 p 9,9 - p .
(T 1) a7 < cto.q.0 1IFID
n
This process can also be applied when p < 1 by the duality method

aforementioned ([1] Remarks). The proof is now complete.

COROLLARY 1. If 0<p <2 and p <q, 1<5q <>, then

(1) £« P yqr vy,
where r = max(p,1) . That ig, f= {an} e B, then
1_1 r
14 13
2z |0t)? P g 1) <w
n In

with the obvious understanding when q =1 or q == .

Proof. First we note that it suffices to prove (1) for 1/q-1/p

small. Indeed, if {a,l} ¢ I'Z/q1 -1/p 2(q',r) and 1 < < ®
% 9 q q

1 2
then
{(k+1)1/QI—1/p a} e Z(Q{.P) ;
Since
Ya2-1/21 ¢ g1 a) = (a0q7 ,
(k+1) € 2(1/q1“1/ﬁ2’ ) (z(ql,r), (qz,r)),
we have

{(k+1) /2" 1/P a} = ((k+1)1/2271/81 (147)1/21-1/p a)

1
Y17g,-17a,

m

, =) *a(ql,r)

n

2(q) v .
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Thus, we have proven that
Il/ql_l/p 2(q{,r) < Il/q2-1/p z(qz',r)
in the case that 1 < q, <q, £=.

Now, if 0 < p < 2 , the Hardy-Littlewood theorem [3. Theorem 5.11]
and Theorem 1 gives

WP < 4Ps9P/A ¢ [1/a1/p g )

by taking ¢ < 2 . Finally, the remaining case when p = 2 is easy

1/2-1/q 2 1 . 2
I H® < z(———-—l/z_l/q, , =) % g
c (q’,2) ,
because
1 _ .02
Z(WZ_—T/Q—" w) = (27 ,8(q',2)) .
Hence

yc r/a-1/2 L(q', 2) .
!
since H > (Hp)k = (Hp,ﬂl) if 1 <p £ 2, we have the dual form of
(1) as follows. '

COROLLARY 2.
(2) #>/P gqr p), 2spew, 1s5q-<p.

(3) BMOA(U) > T4 2(qt,@), 1s5q<w
[where BMOA(U) is the space of analytic functions on U having
bounded mean oscillation].

Remarks. 1. If we set g = 2 in (1) and (2) then we have ® <P

for p <2 and # 5P for p > 2. (see [11, [4] for #). Thus
Corollary 1 and Corollary 2 are stronger than [ 3. Theorems 6.2, 6.3]
and [4. Theorems C,D].

2. The limiting case of (1) namely # < 2lp' ,p) (1 <p < 2) is not
true (thus neither is the limiting case of (2)): If we suppose

H c 2(p' ,r) then S(H) < Lp' ,v) , so

https://doi.org/10.1017/50004972700003129 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003129

Mixed Normed Spaces 259
2™ < (5(HP), alp',r) ) = (2, a(p',r) ) .
But HZ c# < Lp' ,2) [5] gives

(2, ulp" ,r)) > (B ,a(p' ,0)) > (R(p',2),%(p",r)) .

Hence

in
In

L(w,2r/2-r) if 1 <r <2,

(H ,0(p',r)) = {

<«

2 if 2

I
A

g .

r

o - .
Therefore £ < (Hp,l(p’,r)) only if 2 S » € ® . That is there is no
ordered pair (p',r) r < 2 satisfying < Yp',r) . We can say (1)
is sharp in this sense. Also, if 0 < p < 1 , then from (1) we have

P o7 e, 1), but VP g(e,1) 15 (2)FK (3. Theorem 6.6]

1
Recall that Ak = (4,2 )).

COROLLARY 3. Let 1sq <2 and r =max(p,1). Then

(4) (AP295% 08) 5 1P (40t ) 0%), 1< s <@,
(5) (P 5) =P e, 6), gl ss s
where t = sp/p-s if s <p

and t = ® if sz2p.

Proof. (4) is obvious from Theorem 1. We prove (5). Jensen's
2
inequality gives that Mq(p,fv < MZ(p,f) so that AP29:% AP+9:% |
which in turn gives

(4P2D% 48y o (P30 ¢8) = (et D/p

2(2,r),0°% )
= P (402,0,45) .

Combining this with (4) gives (5).
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