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We study the structure of inductive limits of weighted spaces of harmonic and holomorphic functions defined
on the open unit disk of C, and of the associated weighted locally convex spaces. Using a result of Lusky
we prove, for certain radial weights on the open unit disk D of C, that the spaces of harmonic and
holomorphic functions are isomorphic to complemented subspaces of the corresponding Kothe sequence
spaces. We also study the spaces of harmonic functions for certain non-radial weights on D. We show, under
a natural sufficient condition for the weights, that the spaces of harmonic functions on D are isomorphic to
corresponding spaces of continuous or bounded functions on 3D.

AMS classification numbers: primary 46E10, secondary 46A13, 46E15.

1. Introduction

We study the structure of inductive limits of weighted spaces of harmonic and
holomorphic functions defined on the open unit disk of C, and of the associated
weighted locally convex spaces.

Weighted spaces and weighted inductive limits of spaces of holomorphic functions
on open subsets of CN (N e N) arise in fields like linear partial differential operators,
convolution equations, complex and Fourier Analysis and distribution theory.
Weighted spaces of continuous functions have been studied in many works by K.. D.
Bierstedt, R. Meise, J. Bonet and others, see e.g. [2, 5-8, 9-12, 23], and as a
consequence, this case is now quite well understood. In view of the recent
counterexample of J. Bonet and the third named author (see [13]), the corresponding
spaces of holomorphic functions seem to be more complicated, and much less is known
in that case; the same applies to the case of spaces of harmonic functions. It may be
too hard to create a general theory of weighted inductive limits in the case of spaces of
holomorphic or harmonic mappings which would be as satisfactory as the case of
continuous mappings. So, it is natural to restrict the attention to some reasonable
subclasses of weights.

In this paper we consider two cases. First, using the results of Lusky, [18], we study
radial weights on the open unit disk D of C. We prove that, under certain conditions,
the spaces of harmonic and holomorphic functions are isomorphic to complemented
subspaces of the corresponding Kothe sequence spaces (Theorem 3.5). Second, we
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study the spaces of harmonic functions also for certain non-radial weights on D. Under
a natural sufficient condition for the weights (Theorem 4.2) we show, using the Poisson
kernel to solve the Dirichlet problem for Laplace operator, that the spaces of harmonic
functions on D are isomorphic to corresponding spaces of continuous or bounded
functions on 3D (Corollaries 4.3 and 4.4, Theorem 4.7). The results imply immediate
applications to the so called projective description and topological subspace problems.

2. Preliminaries

We denote by K+ (resp. Kj) the space of strictly positive reals (resp. R+ U {0}). We
denote N = {1, 2, 3 , . . . } . D denotes the open unit disk of C. The vector spaces are over
C An isomorphism means an algebraic and topological isomorphism between locally
convex spaces.

Let V = (vk)^=l be a decreasing sequence of continuous strictly positive weight
functions defined on D. We denote by Vh(D) and VH(D) the inductive limits indkhvk(D)
and indkHvk(D), where hvk(D) (respectively, Hvk(D)) denotes the Banach space

{/ : D —> C harmonic (resp. holomorphic) |

zeD

In order to describe the topology of the weighted inductive limits Bierstedt, Meise
and Summers [11] introduced the system of weights V, associated with the sequence V,

V = {v : D -> WL+ continuous | Vk e N3Ck > 0 such that v < Ckvk}.

The projective hull hV(D) (resp. HV(D)) of Vh(D) (resp. VH(D)) is the locally convex
space

{/ : D —> C harmonic (resp. holomorphic) |

Pi(J) := supD(z)|/(z)| < oo for all v e V).
zeD

endowed with the locally convex topology defined by the seminorms p-v as v varies in
V. Clearly the inclusions Vh(D) <-+ hV{D) and VH(D)^- HV(D) are continuous.

We also deal with spaces of harmonic and holomorphic functions vanishing on the
boundary. The definitions are the same as above except that hvk is replaced by

M«*)o(0) = {/ : D ->• c harmonic | lim suput(z)|/(z)| = 0},

endowed with the norm pVk. The definition of H{vk\ is analogous. The notation Vh(D)
(resp. VH(D), hV(D), HV(D)) is replaced by Voh(D) (resp. V0H(D), hV0(D), HV0(D)).

We shall also need the corresponding space of continuous mappings. The definitions
and notations are analogous, with h replaced by C and D, say, by a metric space G.
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For the basic properties of these spaces we refer to [11] and [9, 10]. In [11] it was
proved that VC(D) = CV(D) and Vtf(D) = HV(D) hold algebraically and that the two
spaces in each equality have the same bounded sets. Moreover one of the main results
in [11] shows that if V satisfies condition (S)

(S) for all k there is / such that lim ^44 = °.
Ul-»1 Vk(Z)

then VH(D) = HV(D) holds topologically and VH(D) is a topological subspace of
VC(D). In [10], [2] and [7] the topological identity VC(D) = CV(D) was characterized in
terms of a condition (D) on the sequence V.

There is a special notation for the spaces of continuous mappings in the case
G = N (discrete topology). In this case we denote (see [12]; [9, Section 4]) V0C(G)
(resp. VC(G),_CV0(G), CV(G)) by k0 = ^(N, V) (resp. kx = k^N, V), Ko = K0(N, V),
Kx = KM(N, V)). The linear topological properties of these spaces are particularly well
understood, see [12], [5], [17] and [23].

We refer to [8] for a survey article on spaces of type VC(G).

3. Radial weights on the unit disc

In this section we study inductive limits of spaces hvo(D), Hvo(D), hv(D) and Hv(D),
and the associated weighted spaces, in the case the weights v are radial and satisfy
certain technical conditions. Using the approach of Lusky, [18], we present these spaces
as complemented subspaces of Kothe sequence spaces. Since the structure of Kothe
spaces is nowadays well known, we can thus solve e.g. the projective description
problem in some cases.

3.1. Notation. Unless otherwise stated, throughout this section we consider radial
weights

u:D-»]0, oo[ (3.1)

which are continuous, non-increasing with respect to |z|, and satisfy v(0) — 1, v(r) > 0
for 0 < r < 1 and v(ei0) := lim^, v(rei0) = 0 for 0 < 6 < 2TC.

If/ : D -+ C, we denote

pv(f):= sup v(z)\f(z)\. (3.2)

The following condition (*) for v was introduced in [18], and will also play a role
here:

- 2
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Let / be a harmonic function D ->• C. Then by [16], LA,/ has a representation which
converges uniformly on compact subsets of D,

^+pkn (3.3)

where z e D, and (oO^l, and (/?t)£Ii are sequences of complex numbers.
We denote for n e N the Cesaro mean

We denote by Rn the convolution with a de-la-Vallee-Poussin kernel: set Ro := 0 and,
for n e N,

^ - ^ (ockz
k + pkz

k). (3.5)
Jc=O H=2"+l

Contrary to [18], we are also interested in the spaces without O-subindices. It will
thus be necessary to present some preliminary results in a slightly more general form
than in [18].

Lemma 3.2. There is a constant c > 0 such that for every harmonic f : D —*• C and
0 < r < 1

sup \RJ(z)\ < 3 sup |/(z)| for all n e N, (3.6)
|z|=r |r|=r

sup |/(z)| < sup sup |Rn/(z)| < oo, (3.7)
|z|=r neN |z|=r

sup |(i?n - Rm)f(z)\ < csup |(/J, - Rp)f(z)\ (3.8)
|z|=r |i|=r

for p < m < n < q.

Proof. For m large enough we have RJm = RJ, where /m(z) := £^=0 (akz
k + Pk~zk),

see (3.3). Now (3.6) holds for fm in place of/, by [18, Section 3.1], hence, it holds also
for/, since/m -*• f uniformly on compact subsets on of D.

The first inequality of (3.7) follows approximately similarly the function / by fm

and using (3.6) to evaluate Rn(f —fm). The second inequality of (3.7) follows from
(3.6).

The inequality (3.8) follows from [18, Section 3.1], since RmRn — Rmin^,m) for m / n. •

The following lemma, in the case / e hvo(D), is an important result by Lusky. We
need to indicate here how to extend it to the more general case.
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Lemma 3.3. Assume that v satisfies (*) and the condition

\ Jinf lim sup - i - — — - i < 1 (3.9)
* € N n-»oo "(1 — 2 )

There exists c > 0 JMC/I that for all harmonic f : D -*• C, /or a// n,

P . ( ( ^ i - « . ) / ) < c sup |((/?n+1-Rn)/)(z)|t;(l-2-") (3.10)

Moreover, if

sup sup |((Rn+l-Rn)/)(z)|t)(l-2-")<oo> (3.11)
n e N | r | = l —2—"

t hen /e /JU(B) and

p.(/) < csup sup ^ |((Kn+1 - Rn)f)(zMl - 2-"). (3.12)

Proof. We have RmRn = Rmin(m,n) for m ̂  n ([18, Lemma 3.1]). Thus (Kn+1 - Rn)f =
(Rn+i — Rn)Rn+2f and hence (3.10) follows f o r / since it holds for the trigonometric
polynomial Rn+2f, by [18, formula (1) in Section 4].

Assume then that the harmonic/ satisfies (3.11). The inequality (3.7) implies, for
0 < r < 1,

sup |/(z)|o(r) < sup sup \RJ(z)\v(r) < sup p.[Rkf). (3.13)

Since every Rkf is a trigonometric polynomial, [18, Theorem (ii)], yields for a constant
c > 0 and for every k e N

p.{Rj) < c sup sup_n |(Kn+1 - /?„) (Rkf) (z)\v(l - 2""). (3.14)

For all k

**n+ll^n+l Kn), It n = K 1, ,- . . .
R (R - R) if n = k (il->)

0, if n > k,

This and (3.6) imply

sup n |(Rn+1 - Rn) (Rkf) (z)| < 3 sup ^ \(Rn+l - Rn)f(z)\ (3.16)

for all n, k. The result now follows by combining (3.13), (3.14), (3.16) and (3.11). •
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To be able to consider spaces of holomorphic mappings we recall that for a
h a r m o n i c / : D -*• C , / ( z ) = X!*atz<c + PkZk> the Riesz projection R is defined by

kz*. (3.17)

if the sum on the right hand side converges uniformly on the compact sets of D.

Lemma 3.4. (i) RRn = RnRfor all neK
(ii) There exists a constant c > 0 such that iff : D —>• C is harmonic, then

sup \R(Rn+1 - /?n)/(z)| < c sup | / (z) | (3.18)
|z|=r |z|=r

for all 0 < r < 1 a«*f M.

Proof, (i) See [18, Lemma 3.1.(i)].
(ii) I f / and n are given, choose m > n + 1. Then / ?„ / is a trigonometric polynomial,

and hence [18, Lemma 3.1.(i) and (ii)], and our Lemma 3.2., (3.6), yield

sup |R(Rn+l - R n ) / (z) | = sup \R(Rn+, - Rn)Rmf(z)\
\z\=r \z\=r

< c, sup |Rm/(z) | < 3c, sup | / (z) | . •
|z|=r |z|=r

We next state the main result of this section.

Theorem 3.5. Let V = {vky^=x be a decreasing sequence of weights on D satisfying
the conditions after (3.1). Assume moreover that for some EQ > 0, «o € N, every vk satisfies
the conditions

\e0 (3.19)
m=N Vk(\ - 2 )

and

Hm sup k \ } < 1 - e0. (3.20)

There is a sequence (fnn)^l0, mn e No, WIQ = 0, mn < mn+1 / o r a// «, as follows. Denoting
U := ( « X i . "). : N -> K+,

ut(m) := vk(\ - 2-) mn_{ < m < mn, (3.21)

we have the following as complemented subspaces:
(i) hV0(D) c K0(N, U)

(ii) fc7(D) C ^ ( N , 0)
(iii) Voft(D) c fco(N, U)
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(iv) Vh(D) c kM(N, U)
(v) HV0(D) c K0(N, U)

(vi) HV(D) c KX(N, U)
(vii) V0H(D) C fco(N, 17)

(viii) V//(D) c kx(N, U).

Before proving this we give the following technical result.

Lemma 3.6. If V is as in Theorem 3.5 and w e V, then there exists a continuous,
radial weight v e V on D satisfying the following:

(i) v> cw for a constant c > 0,
(ii) the conditions after (3.1),

(iii) the condition (*), and
(iv) the condition (3.9).

Proof of Lemma 3.6. By (3.20), for every k e N there exists an nk such that

^ = > < l - W 2 (3.22,

for n > nk; we may assume that nk+l > nk for every k e N. Let the numbers ck > 0,
k e N, be such that vv < ckvk. We choose the numbers ock, k e N,

0 <ak <2~kck-\ (3.23)

as follows. Let a, = l/(4c,). If <xk is defined, we choose <xk+l so small that, in addition
to (3.23),

afc+ife+iWr1 < eo2-*-4 min {a,(u,(s)r'} (3.24)

for all, r, 0 < r < 1 -2 " " " ' .
We define the radial, non-increasing weight function v on D by

v(r) := v'(r)/v'(0) (3.25)

for 0 < r < 1, and D(l) = 0. The weight v is continuous on [0,1[, since (3.24) implies
that the series in (3.25) converges locally uniformly (set t = 0 in (3.24)). Clearly,
limr_,D(r) = 0, hence v is continuous also on [0,1]. So, (ii) holds.

We have, for all k e N,

5'to < («*(o*(r))-')-' = of V ) (3-26)
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and,

> supcj1 Mr))'1

* k=\ k=i

which implies

J 2 A (3.27)

So, (3.26) and (3.27) imply v e V and (i).
For every n e N, (3.19) yields

5(1 - 2—1) = Er=. «*faO ~ 2-))-' > Efa, otfa( )) =

5(1 - 2"1) £ » , at(Wt(l - 2—1))-1 " E £ , «*(»»(! - 2—1))-1 °"

Hence, (*) holds for v.
To prove (3.9) we assume that K e N and that n e N satisfies nK < n < nK+]. Using

(3.24) we get

0(1-2-"-" - ) ET- . «*(»*(!-2-"))"1

—*v(l - 2"") YlZi ock(vk(\ - 2

V K n.(nk{\ - 2""))"' + E * 1 K + 1
 e02~k~*Xl((vK(l - 2""))"'^ EL,
2—-)>-•

" EL, ^ d - 2 — ) ) - •

Since n > «K, we can use (3.22) and (3.28) to estimate

- 2 "

! ^ - . (3.28)

< ( l - e o / 2 ) ( l + e o / 8 ) < l - e o / 4
5(1 - 2~")

for nK < n < «K+]. Since K is arbitrary, this implies (3.9) •
Proof of Theorem 3.5. We first consider the case (i) (resp. (ii)). The following proof

is analogous to the Banach space case considered in [18, proof of Lemma 3.8]. Because
of the technical details it is necessary to repeat the whole proof.

Denote rn = \ — 2'" and Tn = {z e D | \z\ = rn). Let Yn be the space of functions on
FB which is the closure of trigonometric polynomials with respect to the sup-norm
| | / | | n := sup|z|=rn |/(z)|. Denoting by h{D) the space of all harmonic functions D -*• C, a
partition of unity argument yields a finite dimensional subspace Xn c Yn with

C X. (3.29)
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and
supd(Xn,C

mX")<oo, (3.30)
n

where d denotes the Banach-Mazur distance. We may assume that Xn is spanned by
trigonometric polynomials. We define the weight system W = (wt)^, on N by
wk{n) = vk(rn), and

Ao ={x := ( x j " , \xne Xn, q*(x) := sup vv(n) || xn ||n < oo,
neN

limw(n)||xn||n = 0 for every vv e W) (3.31)
n-*oo

(resp. A = {x := (xn) | xn e Xn, q^x) < oo for every vv e W}). (3.32)

We show that hV0(D) (resp. hV(D)) is isomorphic to a complemented subspace of
Ao (resp. A). This is enough, since by (3.30), Ao (resp. A) is isomorphic to K0(N, 0)
(resp. KM{N, V)), if we define in (3.21) (inductively)

ml:=dimXl, mn+l := mn +dimXn+I (3.33)

for neN.
Define T : hV0(D) - • Ao (resp. hV(D) ->• A) by

7T = ( (R n + 2 -^_ 1 ) / l rX=. . (3-34)

where Ro — 0. To show that T is continuous, let vv e W be arbitrary and let the
numbers ck > 0 be such that vv < ckwk; since every wk is decreasing, we may also assume
that vv is decreasing. Define the radial, continuous weight function v' on D as follows.
Define first t : [0, 1 [->•[(), l[by

t(r) = (r - O/(/-n+1 - rn),

if r is such that rn < r < rn+1. Set then, for n € N, for rn_, < r < rn, where r0 = 0,

l\r) = (1 - t(r))w(n + 1) + t(r)vv(« + 2), (3.35)

and D'(l) = 0, and extend v' to D by radial symmetry. Since vv is decreasing, it is easy
to see that v' e V, and hence, we can choose the weight v e V, v > cxv', for a constant
c, > 0, as in Lemma 3.6. Since v satisfies the condition (*) and, by the definition of v',
the inequality w(n + 1) < cj"'D(rn), n e N u {0}, we find a c > 0 such that vv(n) < cv(rn~)
for all n e N. This and (3.6) imply

q*(Tf) = sup sup |(Rn+2 - R._,)/(z)|w(n)
neN |z|=rn

< 6csup sup |/(z)|D(rn) < 6c sup |/(z)|i)(z)
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and so T is continuous; a similar estimate also shows that, for/ e hV0(D),

sup |(/?n+2 - Rn_,)/(z)|w(n) -> 0 as n -* oo,

hence, T(/iK0(D)) c Ao in case (i).
As in [18, (1) in the proof of Lemma 3.8], a left inverse of T can be defined by

S : (xX=,->K.*i

where xn G Xn and xn is the canonical extension of xn to a trigonometric polynomial
on £>.

We must first show that the right hand side of (3.36) converges uniformly on
compact subsets of D. This can be done, using [18], as follows. It is possible to choose
a radial, continuous, non-increasing weight v, satisfying the conditions (*) and (3.9),
such that hV(D) c hvo(D) algebraically. (For example, fix first v e V satisfying (*) etc.,
and define then v(r) := (1 — r)v(r).) Define for all n e N

«(«) = v(rn),

and denote by A,,, the space

Aa = {x := (x.) | xn g Xn, lim co(n) || x, ||n = 0}. (3.37)

We then also have A c A ,̂. If Aw is endowed with the norm supnco(«)||xn ||n, then by
[18, proof of Lemma 3.8], S : Aw -> hwo{D) is a well-defined, continuous operator.
Hence, Sx is a harmonic function on D for all x e A C A^, and the series in (3.36)
converges uniformly on compact subsets of D.

It remains to prove that S(A0) C hV0(D) (resp. S(A) c hV{D)) and that 5 is
continuous. Let v' e V and choose v e V, v > cv' as in Lemma 3.6. Define w(n) = v(rn)
for n e N; clearly, we If. We want to use Lemma 3.4, and we thus need to estimate
the expression

sup sup |(Kn+1 - Rn)Sx{z)\v(rn) < sup sup |(/?n+l -
neN |z|=r, n<=N |z|=j-n

+ sup sup
neN |zl=rn 1=1

(3.38)

where x = (x j~ , € A.
Since x, is a trigonometric polynomial, we have by [18, Lemma 3.1]

sup sup \(Rn+l - RJU.x.CzMr.) = sup \(R2 - R^R^zMn)
neN \z\=rn |z|=r,

< csup |X|(z)|u(r,) < cqw(x) < oo (3.39)
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for some constants c > 0.
We also have

(Rn+[-Rn)
2, ift = n, ( 3 4 0 )

0, for other t,

since R,Rn = Rmm(t,n) f ° r ' ^ "• Hence, the second term on the right hand side of (3.38)
can be estimated by (x := 0)

sup pg((R.-/J .
neN neN neN

(3.41)

We use Lemma 3.3 and then Lemma 3.2 to estimate (3.41) by

csup sup l(Rn-Rn
neN Ul=rn_,

+ csup sup |(Rn+l - Rn)(Rn+l - Rn)xn(z)|D(rn)
neN |z|=rn

4-csup sup |(/?B+2-/?n+,)Rn+,xn+1(z)|D(rB+l)
neN \z\=rn+i

< c, sup sup |xn_,(z)|D(rn_,) + c, sup sup |xn(z)|D(rn)
neN |z|=r,_| neN |z|=rn

+ c, sup sup |xn+I(z)|D(rn+1) < c2q*(x) < oo. (3.42)
neN |r|=r,+]

Hence, Lemma 3.3 and (3.38)-(3.42) imply S(A) C hV(D) in the case (ii) and the
continuity of S:

p-ASx) < c sup sup \(Rn+l - Rn)Sx(z)\v(rn) < cq*{x). (3.43)
neN \z\=rn

If x e Ao, then Sx e hV(D) can be approximated as well as we wish by elements of
the form Sx(m), where xi,m) = xn for n < m and x™ = 0 for n > m. But Sx(m) is a
trigonometric polynomial; hence SA0 is contained in the closure of the subspace of
trigonometric polynomials in hV(D). This implies S(A0) C hV0(D), see [21].

We have (/?„+, - Rn)(Rn+2 - #„_,) = Rn+l - Rn, see [18, Lemma 3.1], and on the other
hand, RJ + E~,(Rn +, -Rn)f=f for f e hV(D). Hence, ST is the identity operator
on hV0(D) (resp. hV(D)), and TS is a continuous projection from Ao onto a subspace
isomorphic to h%(D) (resp. A, hV(D)).

The cases (v) and (vi). Let v' e V and let D, w be as just above (3.38). The operator
S : A -»• /iK(D) is a surjection, since ST is the identity operator on JiK(D). This and
(3.43) imply

Piif) < Qiif) •= c sup sup |(Kn+1 - Rn)f(z)\v(rn) < oo (3.44)
neN |r|=rn
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for a l l / e hV(D). On the other hand (3.43) also shows that g-v(f) < cq^Tf), and since
T is contnuous, there exists a v" e V such that q^Tf) < Cp-v,,(J). We have thus shown
that the system (Q-Xtv defines the topology of the spaces hV0(D) and hV(D). Using the
representation (3.44) and Lemma 3.4 it is easy to see that the Riesz projection is
continuous on hV0(D) and hV(D). Hence, HV0(D) c hV0(D) and HV(D) c hV(D) as
complemented subspaces.

The cases (iii) and (iv). Let us fix k eN. The proof of the case (i) shows that h(vk)0

is isomorphic to a complemented subspace of (cf. (3.31))

co(vk) •= {x := (xn) | xn e Xn, qVk(x) := c sup wk(n) \\ xn \\n < oo,
nefi

Hmwk(n)\\xJH = 0,
n—*oo

where wk(n) := vk(rn). (One can verify this directly or define a new system of weights
on D, V :- (i/,)~,, v\ := vk for all t, and use V instead of V in the proof of (i).) What is
important here is that this isomorphism is determined by the mappings S and T which
do not depend on the weight vk, see (3.34) and (3.36). So, since S and T are continuous
mappings between the corresponding step spaces of Voh(D) and indkc0(vk), they are also
continuous between the inductive limits. Hence,

Voh(D) c mdkc0(vk)

as a complemented subspace, and we are done, since indkc0(vk) is isomorphic to
/co(N, U), see the remark connected with (3.33).

The case (iv) can be obtained in the same way using (ii).

Remark. The case (iii) follows also directly from [18, Theorem (ii),c].

(vii) and (viii). Analogously to (v) and (vi) we can see that the Riesz projection is
continuous on the step spaces of Voh(D) and Vh(D), which implies the result. Again,
(vii) could be obtained directly from the results of [18]. •

As we mentioned in Section 2, the structure of the Kothe spaces is well-known,
and, together with our Theorem 3.5, can be used to solve the projective description
problem and the topological subspace problem.

Theorem 3.7. Let V and U be as in Theorem 3.5, and assume that U satisfies the
condition (D) (see [10, Section 2]). Then

(i) the spaces hV{D) andHV(D) are bomological, andhV(D)^Vh(D) andHV(D) =*VH{D)
as algebraic and topological isomorphisms,

(ii) VH(D) c Vh(D) c VC(D) as topological subspaces.

Proof. Since the condition (£>) holds for U, the space K^N, U) is bomological,
[10, Theorem 2.3]. Since a complemented subspace of a bomological space is borno-
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logical, Theorem 3.5 implies the first part of (i). The second part follows from this.
It is well-known that (i) now implies (ii), see e.g. [13]. •

3.8. Examples. The systems V=(vk)Zt, where vk(\ - r) = rxk/ik+]) or vk(l - r) =
r'(- log(r/e))"*/(t+l) and a e K+, satisfy the conditions of Theorem 3.5. Both of these
examples are Schwartz spaces, as can be seen from the definition of the weight system U.

We also refer to [18, Examples after Theorem in Section 2].

One can construct more complicated examples using the following result. The idea
of the example is to show that a space hV(D) can contain quite general Kothe sequence
spaces as complemented subspaces, even if the weights are very nice.

Proposition 3.9. Let W = ( w ^ , , w'k : N ->• R+, be such that, for some e0 > 0 and
n0 e N, every w'k satisfies

(i) w'(l) = 1, w'k(n + 1) < w'k(n) for all n,
(ii)

infwi(n+l)/wi(n)>eo, (3.45)
(iii)

lim sup Wk{n + nl)/w'k(n) < 1 — e0. (3.46)
n—*oo

Then K0O(N, W') is isomorphic to a complemented subspace of a space hV{D), where
V satisfies the conditions of Theorem 3.5.

Sketch of the proof. We first define the weight system W - (wt)j£,, wk : N - • R+, by

wk(5n - t) := w'k(n) for all n e N, t = 0, 1, 2, 3,4. (3.47)

Using (i)-(iii) it is easy to see that for some M, > 5 every wk satisfies
1° wk(n + 1) < wk{n) for all n,
2° infneN wk(n + l)/wk(n) > e0,
3° limsup,,^ wk(n + n,)/wk(n) < 1 - e0.
We choose the spaces Xn as in the proof of Theorem 3.5 - they do not depend on

the weights. We define the numbers mn, n e No, as in (3.33), and then the space

A = {x := (x j | xn e Xn, q^x) := supw(n)||xn||n< oo, for every w e W) (3.48)

We define the weights vk by ^(0) = 1, ut(rn) = wk(n) for n e N (rn — 1 — 2""), extend vk

affinely to [0,1[ and then by radial symmetry to D. That V=(vk) satisfies the
assumptions of Theorem 3.5 follows from l°-3°. Because of the similarity of the
definitions (3.32) and (3.48), the proof of Theorem 3.5.(ii), shows that T (defined in
(3.34)) is an isomorphic embedding of hV(D) into A.

Denote now by Pn the canonical projection from A onto the nth coordinate space
Xn. If we can find for each n e N a non-zero vector

em € 0 P,(A) (3.49)
I=5n-4
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such that en e T(hV(D)), we are done: the subspace E := spneNen is clearly com-
plemented in A and on the other hand isomorphic to KX(N, W'). (See the relation
between the weights w'k and wk.)

We define

e •= Tz2i""

Then (3.49) holds, by the definition of T, since Rmz2" = 0 for m < 5n — 3 and

Rmz2in" = z2*"' for m > 5n. D

We leave it to the reader to consider Proposition 3.9 for the other spaces occurring
in (i)-(viii) of Theorem 3.5.

4. The case of non-radial weights and harmonic functions

The idea of this section is to study whether a given weighted space of harmonic
functions on D is isomorphic to some standard weighted space of bounded or
continuous functions on 3D.

We start by some notation and definitions. Throughout this section we consider
(not necessarily radial) weight functions v : D ->]0, oo[ which have continuous ex-
tensions v : D -*• [0, oo], where the half line is endowed with the usual compact
topology. We write v* := v\gD, and we always assume that the sets

Nv := {z € 3D | vm(z) = 0}, Sv := [z e dD \ v*{z) = oo} (4.1)

are of measure zero.
For functions / : D -* C we denote fr(e'°) =f(rei0). If/ has radial limits a.e. in 3D,

we define f'(ei0) = limMl- f(rei0) for ei0 e 3D.
Assume that / : 3D -*• C is integrable and z e D. We denote by P(J, z) the value at

z of the usual (harmonic) Poisson extension of/, see [20, Section 11.7].
We still introduce some function spaces. We denote by hvc(D) the closed subspace

of hv(D) spanned by functions that admit continuous extensions to 3D. If K:= (tOjJl, is
a decreasing sequence of weights as above, we denote Vch(D) := indkh(vk)c(D). The
associated weighted space h VC(D) is defined as the closed subspace of h K(D) spanned by
elements which have a continuous extension to 3D. In the following we study the
relation of Vch(D) and hVc(D) only indirectly, by giving a sufficient condition for them
to be isomorphic.

If Q = D or 3D and w is a weight on Q, we set

L°°w(n) = {/ : 3D -> C measurable, | ess. sup w(z)|/(z)| < oo} (4.2)

with the usual identification of those functions that differ only on sets of measure zero
and with the evident choice of norm; here "ess" refers to the two (resp. one)
dimensional Lebesgue measure, if Q = D (resp. 3D). If V= (ut)Jl, is as above, we
denote V* := (wl)~i. VL°°(3D) := ind^L^^D), and
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L°°"F(3D) := {/ : 3D - • C measurable | ess. supF(z)|/(z)| < oo for all If e "F}. (4.3)

The Banach space C*v(dD) (in general not equal e.g. to Cv'(dD\Nv)) is defined as
the closure of C(dD) n L°°v\dD) in L°V(3D).

Lemma 4.1. (i) Le/ X denote the closed subspace of L°°v(D) spanned by continuous
functions belonging to L°°v(D) and admitting a continuous extension to D. Then
C'v(dD) = {g'\ge X}.

(ii) Let f : 3D -> C Then f e Cv(dD) if and only if (modulo sets of measure zero;
recall that f is in an L°°-type space) fv* |JD\(S.UW ) " continuous and lim,_ro fv*(z) = 0 for all
z0 e AT..

(iii) IfSv = 0, then C*v(dD) is canonically isometric to C(v*)0(dD\N„) (see Section 2).
(iv) IfNv = 0, then C*v{dD) is canonically isometric to Cv.(dD\Sv).

Proof, (i) It is evident that each g e X has radial boundary values a.e. and that
g" € C*v(dD). Conversely, assume that / e Cv{dD). For h e C(dD) n L°V(3£>) define
(j)(h): D -»• C by setting

where we agree that h(ew)/\h(ei0)\ = 0 if h(ei0) = 0. It is easily verified that 4>{h) e C(D)
and (4>(h))* — h together with || 0(/i) lli.c»0(o)==ll ̂  lli.~»-(3i»- Take a sequence /„ 6 C(3D) so
that | | / - / „ ||t»u.(8D) < 2"" for n e N and set g = <£(/,) + E « i 0C/«+i - / . ) • It follows that
3 € X and g* = / .

(ii) "iff": Let f e C*v(3D). Choose / , e C ( a D ) so that / „ - » • / in the norm of
C*y(9D). Now /„»' is continuous on dD\Sv and fnv* \Nc= 0 for each n. The claimed
properties of / follow at once as we note that fnv* converges uniformly to fv' (with
respect to the usual sup-norm) on dD\Sa.

"if": Assume that / satisfies the stated conditions. For e > 0 write (Nv)e =
{z e 3D|dist(z, Nv) < e}. Choose £0 > 0 so that ( A ^ r\Sv = 0. By assumption the
function g :=/y*laD\(s.ujv,) n a s a continuous extension g to BD\SV so that g\Nv — 0. Hence,
by continuity, we may choose for each n € N a number £„ G [0, e0] with the property
\g(z)\ < \/n for z e (N\. Set/n(z) =/(z)min{l , 2£-

1dist(z> (JV.)s/2)} (if N, = 0we simply
set /„ = / ) for z e 3D\SU and /n(z) = 0 for z e Sv. Then /„ e C(3D) since /„ is clearly
continuous on dD\(Sv U Na), zero in a neighbourhood of #„, and limz_Zo /(z) = 0 for
z0 G So since |/(z)| < C/v\z) for all z e dD\(Sv U AT,) by assumption. Moreover, the
previous choices yield that supre3D |/n(z) — /(z)|u*(z) < supreW) \g\ < \/n which estab-
lishes t h a t / e C*y(3D).

(iii) and (iv) follow from (i). •

We now study the Banach space case.
Our aim is to find conditions which imply that
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(A) the map/>->/* is an isomorphism hv(D) -*• L°°v*(dD)

or

(A1) the map/i->/* is an isomorphism hvc(D) -*• C'v(dD).

The following characterization can be obtained by a standard argument.

Theorem 4.2. Let v be a weight as in (4.1) and assume that either, for some constants
q > 1 and C > 0, || l/vr ||L, < C /or all 0 < r < I, or that the functions \/vr, 0 < r < 1,
/zave a common integrable majorant. Then (A) (resp. (A')) holds if and only if and there is
a constant C > 0 such that

(B) P(\/v*, z) < C'/v(z) for all z e D.

Proof. We first prove that the conditions on v imply that every element of hv(D)
has radial boundary values and may be expressed as the Poisson extension of its radial
boundary values. Assume that / € hv(D). Then \fr\ < C/v, for 0 < r < 1 which implies
that the sequence ^i_i/n) (n e N) is either a bounded sequence in the reflexive space
V(dD) or a uniformly integrable sequence in the space L'(3D). In either case we may
subtract a subsequence^ converging weakly to g € L'(3D). Taking the limit n —> oo in
the equality f(rnz) — P(frn, z) we see that /(z) = P(g, z) for all z. This implies ([20,
Corollary 11.12]) t ha t / has boundary values a.e. and/* = g. Hence/ = P(f, •).

Assume next that (A) or (A') holds. Since gn := min(n, l/v*) e C'v(dD) {n > 1) with
norm less than 1, the assumption implies that \\P(gn, -)\\v< C for all n. Hence
P(gn, z)v(z) < C for z e D, and letting n->-oo the monotone convergence theorem
yields (B).

Conversely, assume that the condition (B) holds. An easy limiting argument implies
that the map /—>•/* is an injective contraction between the corresponding spaces. The
assumptions imply that l/v* e L'(3D), hence L°°v*(dD) c V{dD). If g e C*v(dD) (resp.
g e L°°v*(dD)) has norm 1 we set w = P(g, •) so that w* = g. Since the Poisson kernel is
positive, we have

|w(z)| = \P(g, z)\ < P(l/v\ z) < C/v(z),

hence pu(w) < C, and the map g i—»P(g, •) is a bounded inverse of / ->• /*. The proof
is completed as we note that clearly w e hvc(D) for g e Cv(dD). •

Remark. There are examples which show that the sheer integrability of \/v* is not
enough for (A) to hold even if/* is well defined for a l l / e hv{D).

Our aim is next to study the consequences of this result to weighted inductive
limits.

Applying Theorem 4.2 to the step spaces gives immediately the following.
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Corollary 4.3. Let V={vk)k
n
=l be a decreasing sequence of weights on D satisfying

one of the assumptions of Theorem 4.2 and the condition (B). Then the spaces Vh(D) and
V*L°°(3D) are isomorphic.

Theorem 4.2 and Lemma 4.1.(ii)-(iii) yield an interesting dichotomy in the behaviour
of the space Vc/i(D):

Corollary 4.4. Let V be as in Corollary 4.3.
(i) / / Nv< = NVk and SVi = SVi for all k, then the spaces Vch(D) and VC(dD) :=

indkC'(vk)(dD) are isomorphic.
(ii) / / in addition SVi = 0, then the spaces Vch(D) and V'0C(dD) := indkC(v'k)0(3D\N Vi)

are isomorphic.
(in) If, in addition to (i), Nv<—0, then the spaces Vch(D) and VC(dD):=

indkCv*k(3D\SVi) are isomorphic.

Corollary 4.5. Let V be as in Corollary 4.4.(ii). The following are equivalent:
(i) The inductive limit Vch(D) is regular.

(ii) Vch(D) is complete.
(iii) V :— (t>fc)£L,, restricted to dD\NVi, is regularly decreasing in the sense of

[11, Definition 2.1].

Corollary 4.5 follows from Corollary 4.4.(ii) and Theorem 2.6 of [11].
Some examples are presented in 4.9.
To treat the associated weighted spaces we need t o prove a technical lemma.

Lemma 4.6. Let V=(vk)kefl be a decreasing sequence of weights on D such that
No := Nv< = NVt and So := SVi = SVk for all k and such that

(i) every vk satisfies the condition (B) with the same constant C,
(ii) 3<7 > 1 s.t. Vfc e N3c'k > 0 s.t. VO < r < 1:

II1/(»*), l i t-<Ct-

Then, for every v e V there exists w e V, w >v, which has a continuous extension
D -*• [0, oo], and satisfies, for a constant C > 0, || l/vvr \\Li < C for all 0 < r < 1, and
satisfies the condition (B).

Proof. For all k e N, let the numbers Ck > 0 be such that
1° v < Ckvk,
2° sup | I | < 1 . l / J l /^ (z) | <Ck,
3° Ck > supiMz))"1 | dist(z, NVt) > l/k) =: c"k,
4° Ck > c'k for all k.

Set

^ - k C l - ' i ; t ( z r l . (4.4)
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Now 2° implies that the sum in (4.4) converges for every z e D. By definition, vv e K
We also have, by 1°,

vv > (supQ'yt(z)"')~' = inf Ckvk(z) > v.
k k

The estimate for the L*-norm follows from 4° and the condition (B) from (i) as we show
that vv admits a continuous extension (again defined through (4.4)) to the boundary with
values in [0, oo\. In order to prove this it is enough to prove the corresponding statement
for 1/vv. Let z0 e dD. If z0 € dD\N0 the series Y^k2~kCk~

lvn(z)~l converges uniformly in a
neighbourhood of z0 by 3°, which implies the continuity at z0. If z0 e No, it follows that
limz^Zo vk(z) = oo. This clearly implies that limr_Zo l/vv(z) = co and again the continuity
at z0 follows. D

Theorem 4.7. Let the weight sequence V = (vk) be as in Lemma 4.6.
(i) The spaces hV(D) and L0CV'(dD) are isomorphic to each other.
(ii) If V satisfies the conditions in Corollary 4.4.(ii), then also the spaces hcV(D) and

CV*0(dD\N0) are isomorphic.
(iii) If V satisfies the conditions in Corollary 4.4.(iii), then also the spaces hcV(D)

and C"F*(3D\S0) are isomorphic.

Proof. It is enough to verify that the map f -*• f defines the desired isomorphisms
(cf. (A) and (A')). First, by Lemma 4.6, V contains weights satisfying the conditions
of Theorem 4.1, including the condition (B). As in the proof of Theorem 4.2 we see
that every/ e hV(D) has radical boundary values a.e..

Using the proof of Theorem 4.2 ("condition (B) => (A) and (A1)") one can now prove
(i) and the isomorphism of hcV(D) and the space C*V(dD); the latter space is defined as
the restriction to 3D of the closed subspace of L00 V(D) which is spanned by continuous
functions having continuous extensions to 3D. (Compare to Lemma 4.1.(i) - here one
has to use Lemma 4.6 and the following fact: given an arbitrary vv e V' there exists
v € V such that v' > cvv for a constant c > 0.) Finally, as in Lemma 4.1 we have the
following characterization:/ 6 C*V(dD) if and only if, (modulo sets of measure zero) for
all v e V, (i>/)laD\(s,ujv,) is continuous and bounded and Iim2_z (if) (z) = 0 for all z0 6 No.
From this C'V(dD) is easily seen to be isomorphic to CV'0(dD\N0) in case (ii) or to
C* V(D\S0) in case (iii). •

Unfortunately it seems that a characterization of the bornologicity of L°° K-spaces
is not yet generally available in the literature. Philosophically it is probable that this
should be possible to obtain using the same methods as in the case of spaces of
continuous functions. In the case of spaces with continuous boundary values we get the
following result, by combining Theorem 4.7 with Corollary 4.3 and using the known
results on weighted inductive limits of spaces of continuous mappings, see [11,
Theorem 2.6], and [10], [2], [7].
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Corollary 4.8. Let V be as in Lemma 4.6.
(i) If V satisfies the conditions in Corollary 4.4.(ii), then Vch(D) is isomorphic to a

dense subspace of hVc(D). These spaces are isomorphic if and only if V* is in addition
regularly decreasing.

(ii) If V satisfies the conditions in Corollary 4.4.(iii), then hVc(D) is bornological if
and only if V* satisfies the condition (D). If this is the case, then h VC(D) is isomorphic to
Vch(D), and moreover, Vch(D) c Vh(D) C VC(D) holds as topological subspaces.

We devote the rest of this section to analyze the isomorphisms (A) and (A1) and the
condition (B) more closely. The following proposition gives necessary and sufficient
conditions for the isomorphisms in the case that the weight function has only one zero
or singularity that is approached monotonically.

Proposition 4.9. Assume that v(z) = l/gf(|l - z\), where g : [0, 2] -»• [0, oo] is mono-
tonic, continuous and satisfies 0 < g(t) < oo for t e ]0, 2].

(i) If g(0) — 0, then (A) (resp. (A')) holds if and only if there is a constant C > 0 such
that

(C) gr(20 < Cg(t) forO<t<\ and

[ x~2g(x)dx < Crxg{t) for all t e ]0, 2].

(ii) In the case g(0) = oo, (A) (resp. (A')) holds if and only if g is integrable and there
is a constant C > 0 such that

(C) git) < Cg(2t) forO<t<l and \ g{x)dx < Ctg(t) for all t e ]0, 2].
Jo

Proof, (i) In this case g(t) decreases monotonically to 0 as t ->• 0+. Now l/v is
bounded from above and hence by Theorem 4.2 it is enough to check the condition
(B). Suppose first that (C) holds. We must show that

Z|)). (4.5)

By continuity it is enough to consider z with r := |1 - z\ < 1/10. Write

P(g(\\ - ei0\), z) = P(g{\\ - ^ D z ^ O ) . z) + J W - ^ | ) (1 - Z[_2r,2rl(0)), z) =: ux + u2,

where x[jfc) is the characteristic function of [a, b\. In this decomposition u, is a bounded
harmonic function with \\u\ ||M< g{\\ — e2"\) < g(2r), where the elementary geometric
estimate |1 - elir\ < 2r was applied. Thus |u,(z)| < Cg(r) - Cg(\l - z\).

In order to estimate u2 we note that \z - e'°\ > |1 - ei0\/3 = 2 sin (|0|/2)/3 for
2r < |0| < n. This observation and the substitution 2 sin |0/2| = s for 2r < \0\ < n in the
Poisson formula u2(z) = (1 - |z|2)(27i)"' ^<mn g{\ 1 - e'°\)\z - ei0\-2d0 leads to
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We note that 1 - |z|2 = (1 - |z|)(l + |z|) < 2r and 2s inr>r . By writing C, =
j*g(s)s~2(i - s2/4)~]/2ds/(fi g(s)s~2ds) and using (C) we obtain the desired estimate

u2(z) < (2/V3 + C ) • 18 - ^ j ^ < Cl9{r) = C2g(\\ - z\),

which was to be shown.
In order to prove the converse assume that (4.5) holds. By choosing in (4.5)

z = 1 - r with 0 < r < 1/10 we have 1 - |z|2 - r{2 - r) > r and

Elementary geometry yields |(1 - r) - e'°\ < 4r and \l-ei0\>2r for 0 e [3r, 4r]. By
substituting these estimates in (4.7) we get

Cg{r) > ̂  -^ g(2r)r = Cg(2r)

for re]0, 1/10]. By continuity g(2r) < C"g{r) for all r e [0, 1].
Next we apply the geometric estimate |1 - r - ei0\ < 2|1 - el0\ for \0\ e [2r, n]

(remember that r e ]0, 1/10]) and obtain (compare with the proof of (4.6))

Combining this with the assumption and the monotonicity of g leads to

g(r) > g(r/2) > ^

Thus the other half of (C) holds as well.

(ii) In this case g(t) increases monotonically to oo as t —y 0+. Assume first that g is
integrable and (C) holds. An easy geometric exercise shows that

sup \/v(rei0) = \/v(cos{e)ei0) = g(\ sin 0|) < g(\0\/2)
0<r<l

for 6 e [—n/2,7t/2]\{0}. Thus the functions \/vr (0 < r < 1) have a common integrable
majorant and Theorem 4.2 shows that it is enough to verify that (B) holds. To that end
we assume again that z e D with r = |z — 1| < 1/10 and write

- eim), z) = P(g(| 1 - ei0\) (1 -*f_r/2,/2|(0)), z)
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As before we deduce that |u,(z)| < g(\\ — e'r/2\) < g(r/4) < C2g(r), where we applied the
first condition of (C). Moreover, (1 - |z|2) < 2r, |1 - ei0\ > 0/2 and \z - ei0\ > r/4 for
6 e t - r / 2 , r/2] so that

where we used both conditions of (C).
In order to obtain the converse statement assume that the isomorphism (/I) (resp.

(A')) holds. Note first that l/v > g(2) and hence hvc(D) contains all bounded harmonic
functions. In particular, un e hvc(D), where un — P(min(n, l/u*)> ) f ° r integers n > 1.
Clearly || «*!!„.< 1 and hence un(0) < C for all n > 1. Letting n -> oo in the representa-
tion un(0) = (2n)~l JSDmin(n, 1/u*) we see that l/v' and hence g is integrable.

Thus the functions l/yr(0 < r < 1) have a common integrable majorant and Theorem
4.2 implies that (B) holds. The rest of the proof is analogous to what we did before:
The inequality g(r/2) < Cg{r) is deduced by comparing g{r) = l/u(l — r) and
P(g(|l — e'°\)x[Or/A], 1 — r), and the estimate g{r) > r"1 ^g(t)dt is obtained by comparing
g(r) = l/v(\ - r) and P{g(\\ - e'°\)X{0M, 1 - r). D

Now we can close this section with some

4.10. Examples, (i) For a e R and weights v = \\ - z\* or v = log(3/|l - z|)|l - z|"
the isomorphisms (A) and (A1) hold if and only if a s ] — 1, 1[, as is easily verified by
applying Proposition 2.

(ii) The system V := (vk)^u where vk(z) := |1 - z|
aA:/(l+<:) and 0 < a < 1, satisfies the

assumptions of Lemma 4.6 and Corollary 4.4.(ii). Moreover, V* is regularly decreasing.
Hence, Corollaries 4.3, 4.4.(i)-(ii), 4.4 and 4.8.(i)-(ii) and Theorem 4.7.(i)-(ii) apply.

(iii) Similarly, the system (v^^iz) := (\\ - z\~>/ik+i))'kZl satisfies the assumptions in
Lemma 4.6 and Corollary 4.4.(iii), and (v'k) satisfies the condition D. This is an example
where Corollaries 4.3, 4.4.(i), (iii), 4.5 and 4.8.(i), (ii) and Theorem 4.7.(i), (iii) work.
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