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1. Introduction

Exact tests, based on factorization of Wilks' A were derived by Williams
(1952, 1955) and Bartlett (1951), for testing the goodness of fit of a single
hypothetical discriminant function, in the case of several groups. An ana-
lytical derivation of the distributions associated with these tests was given
by the author (1964 a), after expressing the test statistics in canonical forms.'
Williams (1961) and later Radcliffe (1966) extended these factorizations of
Wilks' A to cover the case of s (s > 1) hypothetical discriminant functions.
Radcliffe, in his paper, states that an analytical derivation of the distribu-
tions, as well as of the independence of the factors of A is desirable. This is
done in the present paper, by expressing the test criteria in simpler forms and
using matrix transformations in the multivariate Beta distribution (Kshir-
sager 1961). This is a straightforward extension of the author's paper
(1964 a), which dealt with only one hypothetical discriminant function.

The notation in this paper is the same as that of Radcliffe's (1966) and
is slightly different from that of the author's earlier paper (1964 a).

2. Factorisation of Wilks' A and some preliminary results

Let there be two vectors

x = [ajj, x2, . . . xv\

and y' = \ylty2, . . . ya]

with p ;S q and let the matrix of the corrected sum of squares and sum of
products (s.s. and s.p.) of these p-\-q variables be

(2.1)
C.XX

c.vx c,vv
P 8

based on n degree of freedom (d.f.). If we consider the regression of x on y,
we shall get the following partitioning of the "total" s.s. and s.p. matrix
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Source

Regression

Residual

Total

d.f.

q

n—q

n

A. M. Kshirsagar

Matrix of s.s.

cxx =

. and s.p.

\x = A

B

If we have q-\-\ multivariate populations and if we carry out a multivariate
analysis of varience on the p characters x, we shall get a similar partitioning
of the total matrix B into "Between populations" (d.f.q.) and "Within
Populations" (d.f.n-q). We can call these qd.f. here as corresponding to a set
of dummy variables y and then the "Between Populations" matrix A is the
regression of x on these dummy variables (Bartlett, 1951). The means of
these q-\-1 populations will lie in only an s-dimensional space (s < p), if and
only if the canonical correlations pl, p2, . . ., pp between x and y are such
that Pl > p2 > . . . > Ps > 0 and Ps+1 = Ps+2 = . . . = Pp = 0.

The canonical variables corresponding to plt . . ., ps are then the s dis-
ci iminant functions adequate for discriminating between the ^+1 groups.
Given a set of s discriminants F'x where F' is an (sxp) matrix of rank s, one
will be interested in testing, whether these assigned functions are adequate
for discriminating between the <7+l populations or not. Williams (1961) and
Radcliffe (1966) obtained the following test criteria for this purpose. Wilk's
A is \B—A\I\B\. The A criterion based on F'x alone is

(2.2) Ao = \F'{B~A)F\j\F'BF\.

The residual likelihood ratio criterion is, therefore,

(2.3) A* = A/Ao

and this is factorized as

(2.4) A* = A'A"

or

(2.5) A* = AVAV1

where

(2.6) A' = \F'AB-1(B-A)r\IA0\r'AF\,

and

(2.7) Av = A\r'Ar+F'A{B-A)-iAF\l\r'A\.

A' is called the direction factor and A" the partial coplanarity factor of A,
because A' deals with the adequacy of the directions of the s assigned func-
tions, while A" is more concerned with whether s linear functions are suffi-
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cient at all, for discrimination. In the alternative factorization (2.5), Av is
the coplanarity factor and Avl is the partial direction factor.

We now proceed to deiive the distribution of A', A", Av and AV1 ana-
lytically and show that A' is independently distributed of A" and so also
Av of AV1. The distributions are derived under the null hypothesis viz.

The canonical correlations p s + 1 , . . . , pv are all zero and that F'x are the
canonical variables corresponding to the non-null correlations Pi,p2, • • -,ps-
There is no loss of generality in assuming

because, if it is not so, we can always transform from xv . . . xv to xf, . . . x*
and y1,... yq to yf • --y* where x* and y* are the canonical variables and
then suppress the stars. Therefore, we can assume that this is already done,
so that x and y are the canonical variables in the population. Consequently,

(2.8) [ /JO]
a p-a

where / is the identity matrix and 0 is the null matrix. It is well-known
that the distribution of A is a non-central Wishart distribution (see for ex-
ample Kshirsagar 1964 b) and that of B—A is the central Wishart distribu-
tion, independent of A. The non-central Wishart distribution is given by
James (1964). Make the transformations

(2.9)

(2.10)

(2.11)

B-A = CLC

B = CC

— i 1

where C and Tare lower triangular matrices of order p. It can then be easily
seen that the distribution of T is

(2.12) const. h{Tx; Pl, . . .,

where A(TX; px, . . ., ps is a function of Tx and the non-null p's only,
being the sxs submatiix of

0
(2.13) T =

An explicit form of h is not necessary at all; it is sufficient to note that it
involves 7\ only. When s = 1, an explicit form of h is given by the author
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(1961). For the sake of brevity, we shall denote A(7\; px, p2, . . ., p$) by
h(Tlt p) only. From (2.9) to (2.11)

(2.14) A=\L\=Jltl

and when all p's are zero, it is known that the distribution of t\t

(*= 1,2, ...,p) is

(2.15) const (^)»n-«

and that of L is

(2.16) const \L\in-g~1'-1)/2\I-L\«-p-1)l2dL

(see Kshirsagar 1961, 1964 b). A is then distributed as the product of the p
independent Beta variables t% given by (2.15). This distribution of A is known
as the A(n, p, q) distribution. A{n, p, q) and A(n, q,p) are the same. We
therefore have the following two lemmas:

LEMMA 1: / / the distribution of a pxp lower triangular matrix T is

const n t7ra'1\t-TT'\^-"-^l2dT,
i

the distribution of Yi.1^% = \TT'\ JS the A(n, p, q) distribution.

LEMMA 2: If the distribution of a pxp matrix L is (2.16), the distribu-
tion of \L\ is the A(n, p, q) distribution.

If Z is an nxp matrix of independent standard normal variables,
S = Z'Z has the Wishart distribution. This leads to

LEMMA 3:

f dZ = const |.S|(»-J»-I)/2^S
JZ'Z = S

where j r z = s means, transforming from Z to S and some other variables and
integrating out these other variables.

We need the following results also:

Result 1: \I—PQ\ = |/— QP\.

Result 2: ( / - P Q ) 1 = /+/>(/-QP)-!Q.

Result 3:

Result 4:

~]
= \P\\S-Q'P-*Q\.
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3. Simpler expressions for A', A", Av and /1VI

Using (2.9), (2.10), (2.11) and (2.8), it can be seen by a little algebra,
that

and

(3.1)

(3.2)

so that

(3.3)

and

(3.4)

A' =

Av =

A" =

Avl =

= II-T^I-T^)-^,

We have repeatedly used results 1 to 4 of the previous section in obtaining
the above expressions.

4. Distribution of A' and A"

From (2.13),

(4.1) \I-TT'\ = \I—T'T\ =
-T^-TiTzi -T'tTt

— T'T
1 4 •* 3

t—T' T

We can always express the (p—s)x(p—s) matrix

(4.2)

as DD', where

(4.3) D

A+i, s+i 0 ••• 0

"•s+2, s+l **s+2, s+2 ' ' ' 0

V, S+2 • • • ^ » » J

is a lower triangular matrix. Hence from (4.1)

\I-TT'\ = IZ-TiTi-rg
(4.4) = |/-r;r1||/-r3(/-r;T1)-ir3||/-r;(DD')-ir4|

= |/—T;TX1|/
where
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(4.5)

and

(4.6)

From (4.6)

(4.7)

and from (4.2)

M'

E =

_ °v, s+l °v, s+2

eu = ta

DD\ = IT 4 = |/+r3(/-r;T1-r;T3)-ir;i

But from (3.1), this is A' and this is also

(4.8) = \I—MM'\,

from (4.5).
Observe that, from (4.6) and (4.8)

(4.9)
T" T'

4 4

s+ l

From (2.12), (2.13) and (4.4), the distribution of Tx, T3 and T4 is

(4.10)
const h{T1,P)Yltn

ir"'i XI ^ f l - '
i=s+l

\I-MM'\^-p-1^2\I-EB'\{q-I'-1)'2dT1dT3dTi.

Transform from T4 to E by (4.6) and from T3 to Af by (4.5). The Jacobians
of these transformations are respectively, IJiLs+i^ir8 a n ( i \I—TlT'1\

{v~s)l2t

(see Deemer and Olkin, 1951). Thus, using (4.7) and (4.8), the distribution
of 7\, M and E is

const h{Tv P) f[tf£Q-i\I-TlT']\«-*-»l*\I-M'M\in-*--"li

• IT eiri-^l-EE'V-'-WdTidMdE.
i=s+l

Now use lemma 3 to obtain the distribution of M'M, from that of M above.
This results in proving that Tv M'M and E are independently distributed,
the distribution of M'M being
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(4.11) const |

and of E being,

(4.12) const n ; J _ | |

Now apply lemma 2 to (4.11) and lemma 1 to (4.12). This shows that

\I-M'M\ = A'

has the A(n—s, s, p—s) distribution, and

\BE'\ = A" has the A{n—2s, p—s, q-s)

distribution and that both are independent as E and M are independent.

From (2.13),

\I-TT'\ :

7. Distributions of Ay and AVI

I T T'

(5.1)

where

(5.2)

I f T' T T'
1 ' 3 ' 3 I 4 i 4

l i l ! l / ^ / 3 i 3 ~ - l 4 7 4 ~ - l 3 i l l / ~ - l l / l ] i l i 3

G

gS+l, s+l

», s+l 6 P, s+2

is a lower triangular matrix such that

(5.3) aa'Z^^^rT1

by using result 2 in sect. 2. Thus by (3.2),

(5.4) GG'I =

Also note that,

(5.5)

where

(5.6)

= \GG'\\I-H'H\

H=
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Using (5.1) in (2.12) the distribution of 7\, T3 and T4 is

const A(7»n*£-«-' n nr*-i\i-T1r1\«-*-»i*
(5.7) i=l *=*fl

\I
Transform from T4 to G by (5.3), the Jacobian of the transformation, de-
noted by J {Tx : G) is

7(r4: r4r;)/(r4r;: GG)J(GG' •. a)
and equals to

J(GG':G)

as / ( T 4 T 4 : GG) is unity, by (5.3). Using Deemer and Olkin (1951), the
required Jacobian is, therefore

P la \ J>+1—i

(5.8) n ()
t=s+l

Now use this Jacobian and (5.5) to obtain the distribution of Tlf T3 and G
in the form

const h{Tx, P) n *«••-' i/-^ini(9-p-i) /2 n git1-*
«=1 i = s + l

(5.9) • |

Now transform from T3 to H by (5.6). The Jacobian is (Deemer and Olkin,
1951)

The distribution of Tlt H and G is therefore,

const A(rlfp)n<;r'-1l/-n^l(e—1)/a f[ g:r3+s^
(5.10) *=i

Finally apply lemma 3 to obtain the distribution of It'll from that of H.
This shows that Tlt G and H'H are independent; the distribution of G is

(5.11) const ilgftT'ki*"""' |/-OO'|»«-')-<»-t»-1'/2dO,

and that of if'// is

(5.12) const | / r ' / f | < ( | - I ) - "
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Apply Lemma 1 to the distribution of Q and lemma 2 to that of fl'li to
observe that \GO'\ = Av has the /l(w—s, q~x, p—s) distribution and
by (5.5) \I-HH\ = |r4T4|/|GG'| = AVI has the A(n-q,s,p~s) distri-
bution.

Further they are independent.
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