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ON NONSTANDARD HULLS OF CONVEX SPACES 

STEVEN F. BELLENOT 

A nonstandard hull of a TVS (locally convex topological vector space) (E, £) 
is a standard TVS (E, £) constructed from a nonstandard model for (E, £) [3]. 
If the nonstandard hulls of a TVS are independent of the non-standard model, 
we say that the TVS has invariant nonstandard hulls. This is (for complete 
spaces) the property that every finite element is inflnitesimally close to a 
standard point. We build on the work of Henson and Moore [4], to show that 
invariance of nonstandard hulls is a self dual property equivalent to bounded 
sets being precompact, for F and DF spaces, (see Theorem 4.4). 

In Section 3, we consider the weaker property of every finite element being 
weakly inflnitesimally close to a standard point. Theorem 3.1 shows that this 
property is equivalent to the standard property of inductive semi-reflexivity 
[2]. (For standard results about inductive semi-reflexivity see [1; 2; and 5].) 
The question of invariance of nonstandard hulls being equivalent to inductive 
semi-reflexivity and bounded sets being precompact, is left open. However, we 
have a partial negative answer in Corollary 3.2 and the example in Section 5. 

This example is of some standard interest. It shows that inductive semi-
reflexivity is strictly stronger than semi-reflexivity and completeness (without 
the use of measurable cardinals.). Also of standard interest is the result that 
a DF space is a Schwartz space, if and only if, bounded sets are precompact 
(Corollary 4.3). This improves a result of Terzioglu [12]. The proofs of Corol
lary 4.3 and the preceeding Proposition 4.2 use no nonstandard analysis. 

The first two sections are of a preliminary nature. Section 1 contains standard 
definitions, while Section 2 has the basics of the nonstandard analysis we need. 

1. Preliminaries. By a TVS (E, £), we will always mean a vector space E, 
over the real or complex field, with a locally convex Hausdorff vector space 
topology £. The continuous (algebraic) dual of (E, £) will be denoted E'(E#). 
We will use a(E, E^iPiE, E')) for the weak (strong) topology on E given 
by E'. 

The TVS (E, £) is quasi-barrelled (a-quasi-barrelied) if every bounded subset 
(bounded sequence) of (E', 0(E', E)) is £-equicontinuous. We note that (E, £) 
is o--quasi-barrelled if every weakly separable bounded subset of (E', 0(E', E)) 
is £-equicontinuous. 

An F space is a Fréchet space (i.e. a complete metrizable TVS). A DF space 
is a TVS with a fundamental sequence of bounded sets and which satisfies a 
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condition between quasi-barrelled and o--quasi-barrelled. This condition is that 
every strongly bounded subset of £ ' , which is a countable union of equicon-
tinuous sets, is equicontinuous. The strong dual of a (7-quasi-barrelled space 
with a fundamental sequence of bounded sets is an F space [8, p. 11]. 

An M space is a Montel space (i.e. a quasi-barrelled TVS in which bounded 
sets are relatively compact). An S space is a Schwartz space (see [6 or 12]). 

If / G £ / # is in the canonical image of E, we will s a y / is already in E. Thus 
(£, £) is semi-reflexive if every / G (£' , /3(E', E))' is already in E. A TVS 
(E, £) is inductively semi-reflexive (Berezanskii [2]) if every / G E /#, which is 
bounded on £-equicontinuous sets, is already in E. This property was called 
H Cm [1]. 

A filter ^ on E, is an almost Cauchy filter, if for every neighborhood of the 
origin £/, there is an integer n, such that nU G ^~. This condition appears as 
(*) in Theorem 4.1 of [3, p. 416]. 

2. Nonstandard hulls. We will use nonstandard analysis as developed in 
[10] or [11]. All our nonstandard models will be enlargements. The reference 
for this section is Henson and Moore [3]. 

Let (£, £) be a TVS, let P be the set of ^-continuous semi-norms on E and 
let ^ be a ^-neighborhood basis of the origin in E. In the nonstandard TVS 
(*£, *£) we identify certain subsets as follows: 

fin£ = {x G *E : *p(x) is finite for each p G P} 
M£ = {̂  G *E : *p(x) is infinitesimal for each p f P) 
pnss = {x G *£ : x G £ + *£/for each [7 G ^ } . 

For a filter ^ on £ we define M ( ^ ) = n *F(F G ^ ) ; note that n(<%) = /*«• 
A filter Ĵ ~ converges to x G £ , if and only if, n(^) C x + /*$. A filter ^ is an 
almost Cauchy filter, if and only if, /x(^r) C fin^. If ^ is a Cauchy filter, 
then \xi&~) C pns^. 

JE is defined to be the set of equivalence classes of fin^ modulo \x^ (i.e. x ^ y 
if and only if x — y G Ms)- Hence there is a quotient map 4> : fin^ —» £ . For 
each X C *£, we define X = <j>(X H fin{). Let £ = { * # : [ / G £}, which is 
just the quotient topology on E, if fin^ is given the topology rj = {* 17 : £/ G £). 
The standard TVS (£, | ) is a nonstandard hull of (£, £). 

In general, (E, £) varies with the choice of the nonstandard model. If (E, £) 
is independent of the model, we say (E, £) has invariant nonstandard hulls. 
This will happen if and only if, (E, £) satisfies one of the following equivalent 
conditions [3, pp. 416-417]: 

(1) fins = pns£. 
(2) (Ê, | ) is the completion of (£, £). 
(3) Every almost Cauchy ultrafilter is Cauchy. 
F o r / G fin$, let °/ be the linear functional on E' given by °f(e') = standard 

part of the *scalar (/, e' ). We need the following theorem in the next section. 
A proof is given in [4, Theorem 6, p. 204]. 
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T H E O R E M 2.1 (Henson and Moore) . Let (£ , £) be a TVS, then {°/ : / 6 fin^} = 

{/ G £ / # : / is bounded on ^-equicontinuous sets of E''.} 

Finally, let _LE
f be the subspace of £ given by ±.E> = 0 ( / M # , . E ' ) ^ fin^). 

Equivalently, ±_E> = {/ G fin^ : °/ = 0}. We note t ha t E and _LE' are sub-
spaces of £ with £ P\ J_#> = {0}. 

3. S p l i t t i n g n o n s t a n d a r d h u l l s . Those TVS's (£ , £), for which 
Ê = E ® ±E', are characterized in this section. This is a strong semi-reflexive 
and completeness condition, equivalent to being inductive semi-reflexive. 
Also, for complete spaces (£ , £), £ = £ 0 ±.E> is a necessary condition for 
( £ , £) to have invariant nonstandard hulls. 

T H E O R E M 3.1. For a TVS (£ , £) the following are equivalent: 
(1) £ = £ © _!_#/, algebraically. 
(2) £ = £ © _!_#/, topologically. 
(3) Every almost Cauchy ultrafilter is a(E, E') convergent. 
(4) (E, £) is inductive semi-reflexive (or any of the other equivalent conditions 

of Theorem 4.1 0/ [1]). 

Proof. We will show (1) => (4) => (2) and (1) <=> (3). T h e implication 
(2) =» (1) is formal. 

(1) ==> (4). Let / G £ / # which is bounded on £-equicontinuous sets. By 
Theorem 2.1, there is a g G fin^ t ha t agrees w i t h / , up to an infinitesimal, on 
s tandard points of E'. By hypothesis, there exists x G £ t h a t agrees with g, 
up to an infinitesimal, on s tandard points of E'. Hence x = / , and (£ , £) is 
inductive semi-reflexive. 

(4) => (2). If / G fin^, then by Theorem 2.1, °/ is bounded on J-equicontinu-
ous sets and by hypothesis °/ G E. Define a projection P : £ —» £ by £ ( / ) = °/. 
I t is easy to see tha t P is well defined since jû  C V<T(E,E')- If Î7 is a <r(£, £ ' ) 
closed absolute convex ^-neighborhood of the origin, and if / G *U, then 
/ G *C/00 = *£/. So °/ G £/, and hence P is continuous and £ = £ © JLB,, 
topologically [9, p. 95]. 

(1) => (3). Let # ~ be an almost Cauchy ultrafilter, hence n(^) C fin^. By 
hypothesis there exists an x G £ such tha t M ( ^ ~ ) meets x + ± # ' which is in 
tu rn contained in x + ^{E,E')- Since # ~ is an ultrafilter, this implies t ha t 
M(^ r ) C # + Va(E,E') and therefore J^~ converges a(E, E') to x. 

(3) => ( l ) . I t suffices to show tha t for all x G fin^ there is a 3/ G £ such tha t 
x G y + Va(E,E>)- F ° r then x G (y + V.*{E,E')) ^ fin^ = 3; + (na(E,E') H fin^) = 
3> + _L^'. Let x G fin^, then there is an almost Cauchy ultrafilter J^~ such tha t 
x G MG^"")- By hypothesis, J ^ converges weakly to some y G E. T h a t is, 
x G MG^"") C y + VV(E,E')' The proof is complete. 

COROLLARY 3.2. 4̂ complete T V S (£ , £) ftas invariant nonstandard hulls, if 
and only if, ( £ , £) is inductive semi-reflexive and 
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(*) every almost Cauchy ultrafilter which is a(E, E') convergent is also 
£ convergent. 

The corollary gives another characterization of spaces with invariant non
standard hulls. (The restriction to complete spaces is minor, since a TVS has 
invariant nonstandard hulls, if and only if, its completion does [3, p. 419].) 
However, the condition (*) is hard to get a hold on. It is easy to show that 
(*) implies that bounded sets are precompact for semi-reflexive spaces (use 
[9, Proposition 6, p. 50]). The converse is false as the example in Section 5 
shows. The corresponding condition (3) of Theorem 3.1 is a new standard 
characterization of inductive semi-reflexivity. 

4. F and DF spaces. Theorem 4.4 exposes the self-duality of possessing 
invariant nonstandard hulls for F and DF spaces. In particular, we show a DF 
space has invariant nonstandard hulls, if and only if, bounded sets are pre
compact. Along the way, we give a standard proof of Proposition 4.2, which is 
of standard interest in itself (see Corollary 4.3). We need the following result 
[12, §4, (2), p. 240]. 

THEOREM 4.1. (Terzioglu). The strong dual of an FM space is an S space. 

PROPOSITION 4.2. If the TVS (E, £) is a-quasi-barrelled, has a fundamental 
sequence of bounded sets and bounded sets are precompact, then (E, £) is a quasi-
barrelled DFS space and (E', £(£ ' , E)) is an FM space. 

Proof. First we show that in (Ef, f3(E', E)) bounded sets are precompact. 
Suppose not and let B be a bounded set which is not precompact in (Ef, fl (Ef, E) ) . 
There exists a &{Ef, E)-neighborhood of the origin U and a sequence (xn) C B 
such that, n 9^ m implies xn — xm g U. The sequence (xn) is not strongly 
precompact, but is strongly bounded and hence is £-equicontinuous. This is 
impossible, since on the £-equicontinuous sets (which are relatively weakly 
compact) the weak and strong topologies agree [7, §21, 6.(3), p. 264]. We 
have that {Ef, (3(E/, E)) is an FM space. 

Next we show that (E, £) is quasi-barrelled, hence a PF-space. Since an FM 
space is separable [7, § 27, 2.(5), p. 370], every strongly bounded subset of E' 
is separable. Thus, by the o--quasi-barrelledness of (E, £), every strongly 
bounded set is £-equicontinious. 

Now, since (E, J) is quasi-barrelled, the canonical injection of (E, £) into 
(E"} $(E", E') is a homeomorphism. By Theorem 4.1, (£" , p(E", Ef)) is an S 
space. As a subspace of an 5 space, (E, £) is an 5 space [6, pp. 278-279]. 

COROLLARY 4.3. A DF space is an S space, if and only if, bounded sets are 
precompact. 

The corollary improves a result of Terzioglu [12, § 4, (8), p. 241]. 

THEOREM 4.4. / / (E, J) is an F space or a DF space, then the following are 
equivalent: 
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(1) (E, £) has invariant nonstandard hulls. 

(2) Bounded sets are precompact in (E, £). 

(3) ( £ ' , fi(E', E)) has invariant nonstandard hulls. 

(4) The completion of (E, £) is an M space. 

Before proving Theorem 4.4 some remarks on the work of Henson and Moore 
are in order. In [4], they show the equivalence of (1), (2) and (4) for F spaces 
and tha t these imply (3). In [3], they show tha t for any TVS, (1) implies (2). 
Finally, we shall need their Theorem 4 of [4] which we state as: 
(*) An S space has invariant nonstandard hulls. 
For a quick proof of (4) => (3) for F spaces, combine Theorem 4.1 and (*). 

Proof. First we complete the proof of Theorem 4.4 for F spaces (i.e. (3) => 
(4)) . By [7, § 28, 5.(1), p . 385], ( £ ' , £ ( £ ' , £ ) ) is a complete DF space. From 
this and the hypothesis, it follows t ha t bounded sets are relatively compact 
in ( £ ' , 0 ( 4 ' , E)). ( £ ' , (3(Ef, E)) is quasi-barrelled by Proposition 4.2, hence 
it is an M s^ace. T h u s the strong bidual of (E, £) is an FM space [7, § 27, 2. (2), 
p . 269]. And finally, by [7, § 29, 2.(5), p. 396], (£ , £) is reflexive and hence an 
FM space itself. 

Now let (£ , £) be a DF space. 
(2) =» (3): From Proposition 4.2, we have ( £ ' , p(E', E)) is an FM space. 

Now (3) follows from the theorem for F spaces. 
(3) => (4): Bounded sets are precompact in (£ , /3(E', E)) by the theorem 

for ^ s p a c e s . Thus ( £ ' , /3(E', E)) is an £ M space. As in the proof of Proposition 
4.2, we have (E, £) is quasi-barrelled. Therefore, (E, £) is a subspace of the 
complete DFS space ( £ " , /3(E", £ ' ) ) by Theorem 4.1. So bounded subsets of 
the completion of (£ , J) are relatively compact. Since quasi-barrelledness is 
preserved by completion [7, § 27, 1.(2), p. 368], the completion of (£ , £) is 
an M space. 

(4) => (1): (E, J) is a subspace of its completion, which is a D E S space by 
Proposition 4.2 and the reflexivity of M spaces. Thus (£ , £) is an 5 space 
[6, pp. 278-279]. And so by (*) we have (1). This completes the proof of 
Theorem 4.4. 

5. Example . The example is borrowed from [4], which is an example of 
a complete semi-reflexive space which is not inductive semi-reflexive. This 
shows tha t E = E © ±_E> is strictly stronger than semi-reflexivity and 
completeness. 

The example. A complete TVS whose bounded sets are relatively compact bu t 
is not inductive semi-reflexive. 

Construction. Let N be the set of natural numbers and let X be the set or 
real valued functions on N with finite support . Let °U be a free ultra-filter on 
N. A function 6 : N —• R is admissible, if there exists a M G ^ , such that , 
6 is bounded on M. For each admissible 0, let pe be the semi-norm on X defined 
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by pe(x) = 21^(^)1 l#(w)l- Let £ be the topology on X generated by the set 
of semi-norms {pe : 6 admissible}. Finally, for n Ç N, let en £ X be the func
tion that is one at n and zero otherwise. 

The space (X, £) is an example of Henson and Moore [4, pp. 196-197]. 
They have shown that bounded sets of (X, £) are finite dimensional, hence 
relatively compact. Thus (X, £) is semi-reflexive. Furthermore, it was shown 
that, for n 6 /x(^) , en G fin^\pns^. So (X, £) does not have invariant non
standard hulls. They also have shown that X' = {/ : N —> i? : / is admissible}. 

Let's show that (X, £) is not inductive semi-reflexive. For the sake of the 
argument, suppose that there is an even integer n Ç /x('^0- If C^\ f) were 
inductive semi-reflexive, then by Theorem 3.1, the linear functional F on X', 
given by F(X') = ° (xr, en ), is already in X. Let x ^ I and let m be an integer, 
such that, k ^ m implies x(k) = 0. L e t / Ç X' be the function which is one 
on even integers past m and zero otherwise. Now F(f) = ° (fy en) = 1 and 
f(x) = 0. Therefore F cannot be in X, and so (X, £) is not inductive semi-
reflexive. 

To show that (X, £) is complete, let ^ be a £-Cauchy filter on X. Clearly, 
^ converges pointwise to some function y on N. Suppose y (? X, then the 
set A = [n : y(n) 9e 0} is infinite. We can write A as the disjoint union of two 
infinite sets, and one of them, say B, does not belong to Ql. Define 6 : N —> R 
by 0(w) = 2|;y-1(w)|, if n £ -5, and zero otherwise. 6 is admissible since N\B £ 
^ . Let [ / = |xG I : p o ( x ) ^ 1). There exists a sequence of sets (Fn) ÇL& 
such that: 

(1) Fn - Fn C U. 
(2) x £ Fn implies \x(i) — y(i)\ < n~l, i = 1, 2, . . . , n. 
(3) FnC Fn+U forw = 1, 2, . . . . 

Let w G B and x £ F\. Now for each k £ N, we have 7*\ — Fm+fc C ^i — 
T7! C £/. So for z £ ^m+fc, |x(w) — z(w)| ^ 2~"1|3>(ra)| and |z(w) — y(m)\ < 
(m + fe)-1. By choosing k large enough, we have \x(m) — y{m)\ < \y(m)\ or 
that x{m) 9^- 0 for m in the infinite set B. This contradiction shows that 

y ex. 
Let 6 be any admissible function and let JJ — {x £ X : p»(x) ^ 1}. Let 

^ G ^ , such that F — F C 2_ 1 £/. Let z £ F and let » be the largest integer 
such that z(n) ^ 0. For any x £ F, E~+i|0(i)| \x(i)\ S pe(z - x) ^ 2"1. Let 
m be the largest integer such that y(m) ^ 0, and let q = max (n, m). Since 
&~ converges pointwise to y, for each k £ N, there is a Ĝ - £ J^~, such that 
x £ Gk implies |#(i) — 3>(i)| < &-1, for i = 1, 2, . . . , q. For large enough k, 
we have x £ G* implies 2!|x(^) — 3^)1 l#WI < 2_1. Thus for x (z Gk C\ F, 
Pe(x - y) = ZW) - ?(*)! l*(*)l + E?+i|*(*)l I*(01 ^ 2"1 + 2"1. Therefore 
y + £/ 6 &~ and #~ ^-converges to y. 
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