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ON TRANSFORMATION AND OSCILLATION OF 
LINEAR DIFFERENTIAL SYSTEMS 

DONALD F. ST. MARY 

1. Introduction. In this paper we study second order linear differential 
systems. We examine the relationship between oscillation of ^-dimensional 
systems and certain associated ra-dimensional systems, where m rg n. Several 
theorems are presented which unify and encompass in the linear case a number 
of results from the literature. In particular, we present a transformation which 
extends an oscillation theorem due to Allegretto and Erbe [1], and a compari
son theorem due to Kreith [9], and explains some work of Howard [7]. 

We shall be concerned with the differential system 

(1.1) l[u] = [R{t)uf + Q{t)u]f - [Q*(t)uf - P(t)u] = 0, 

where each of the n X n matrix functions R(t), P(t), Q(t) has complex valued 
entries which are continuous on a given subinterval I of the real line and R(t) 
and P(t) are hermitian on / . A solution of (1.1) on / is an ^-dimensional vector 
function u(t), for which u(t), and v(t) = R(t)u'(t) + Q(t)u(t) are continuously 
differentiate on 7, and (1.1) holds on I. 

Definition. The system (1.1) is said to be oscillatory on the interval [a, oo ) 
if for each a ^ a there is a ft > a and a solution u of (1.1) defined on [a, oo ) 
such that u(a) = 0, v(a) ^ 0 and u(/3) = 0. 

Corresponding to the vector system (1.1), we have the matrix differential 
system 

(1.1m) l[U] = [R(t)U' + Q(t)UY - [Q*U' - P(t)U] = 0, 

with a solution, an n X s matrix, U(t), V(t) = R(t)U'(t) + Q(t)U(t), denned 
in a manner analogous to the earlier definition, 1 ^ s ^ n. The relationship 
between (1.1) and (1.1m) is that U is a solution of (1.1m) if and only if 
u(t) = U(t)y is a solution of (1.1) for all ^-vectors y. 

From time to time we shall require R(t) to be nonsingular and/or positive 
definite R > 0, but we wish to remark that at the present time no such 
assumptions are being made, also we do not make a general assumption of 
positiveness on P(t). 

2. Oscillation. In this section we present an oscillation theorem which we 
will show is the foundation of a number of recent results in the literature. First, 
we shall have need of some preliminary definitions and theorems. 
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Two solutions U\(t), u2(t) of (1.1) on I are said to be isotropic [3, Chapter 2] 
or (mutually) conjoined [11, Chapter 7], if V2*(t)ui(t) — u2*(t)vi(t), which is 
constant on 7, has the value zero. Let U{i) be an n X n solution of (1.1m) on I, 
if the column vectors of U(t) are mutually conjoined, i.e., V*U — U*V = 0 
on I, and the column vectors of the 2n X n matrix (U(t)\ V(t)), (the first n 
rows is U, the next n rows is V), are linearly independent on I then U{t) is 
called a conjoined basis for (1.1m). 

For a given compact interval [a, b] let Z)[a, b] = Dn[a, b] denote the set of 
all w-vector functions 77, which are absolutely continuous on [a, b] and for 
which Rrjf + Qr) is Lebesgue square integrable on [a, b]. The subclass of 
D[a, b] on which 77 (a) = 97 (Z?) = 0 will be denoted by Z>o[#, b]. For 77 G J9[a, 6] 
we shall denote by J[rj\ a, b] the functional 

Jh\a, b] = fb {V*'[Rri' + QV] + ^ [QV - -PÎ?]}*. 
J a 

We remark that an n X 5 matrix, 1 ^ 5 ^ w, may be inserted in this functional 
in place of rj. The following is a standard identity involving J[r); a, b] and 
follows from an integration by parts. 

LEMMA 2.1. If rj G D[a, b] and Rr}' + Qrj is absolutely continuous on [a, b], 
then 

Ar,a, b] = n*(Rn' + Qn)\ - f n*Mdt. 

In particular, if l[rj] = 0 andr)(a) = 77 (&) = 0 then J[rj ; a, 6] = 0. 

We shall show that recent results on oscillation are based on the following 
theorem. 

THEOREM 2.2. Let R{t) > 0 on [a, 00 ). Then (1.1) is oscillatory on [a, 00 ) if 
and only if there exists a sequence of intervals [ak, ftj, a ^ ak < ft, with ak —» co 
with k, and nontrivial functions r]k in D0[ak, (3k] such that J[rjk; ak, ft] ^ 0. 

Proof. It is well-known that J[rj\ a, b] is positive definite on D0[af b] if and 
only if there exists a conjoined basis U(t) which is nonsingular on [a, b]. 
Assume the conditions hold and (1.1) is not oscillatory then for some a ^ a, 
the conjoined basis U(t) satisfying U(a) = 0, Via) = En (the n X n identity 
matrix) is nonsingular for all t > a. Let ak > a then J[ri\ ak, ft] is positive 
definite on Do[ak, ft], contradicting the existence of rjk. The converse is im
mediate in view of Lemma 2.1. 

3. Transformation and oscillation. In this section we shall present a 
transformation of (1.1) and several theorems on oscillation. 

THEOREM 3.1. Let H(t) be an n X r matrix function, 1 ^ r ^ n, such that 
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H and RH' + QH are absolutely continuous on I and 

(3.1) (RH' + QH)*H = H*(RH' + QH), on I 

and put ^[t] = H*RH,0>(t) = H*l[H]. If 

(3.2) <£\X\ = (@{$)X'y + &(t)X 

for X an r X s matrix function, l S s ^ r, with X and RHXr absolutely con-
tinuous on I, then 

(3.3) H*l[U] =£f\X\ 

where U = HX. 
Furthermore, 

(3.4) J[U; a, b] = (HX)*(RH' + QH)X + I {X*'S%X' - X*0>X\il. 
J a 

Proof. ^[X] = H*'{RHX') + H*{RHX')' 

+ H*{RH' + QH)'X - H*(Q*H' - PH)X 

= H*[(RH' + QH)'X + (RH' + QH)X' + (RHX')'] 

- H* (RH' + QH)X' + H*'RHX' - H* (Q*H' - PH)X 

= H*[(RH' + QH)X + RHX']' - (RH + QH)*HX' 

+ H*'RHX' - H*(Q*H' - PH)X 

= H*l[U]. 

It follows from Lemma 2.1 and (3.3) that 

J[U;a, b] = (HX)*[R(HX)' + Q(HX)] - I X*^[X]dt. 
J n 

Now an integration by parts of the last integral yields the desired conclusion. 

The following two corollaries follow from the theorem in a straightforward 
manner using the definitions given earlier. 

COROLLARY 3.2. If H(t) is an n X n nonsingular matrix satisfying the 
hypothesis of the theorem, then X is a conjoined basis for ^[X] — 0 on I if and 
only if U = HX is a conjoined basis for (1.1m) on I. 

COROLLARY 3.3. If H(t) is an n X n nonsingular matrix satisfying the 
hypothesis of the theorem, then the system (1.1) is oscillatory on [a, oo ) if and 
only if the system J5f [X] = 0 is oscillatory on [a, oo). 

An interesting application of Corollary 3.3 occurs when, in (1.1), R = En, 
Q == 0 and JT P(s)ds = S(t) exists (finitely). One takes H to be the funda
mental solution of the system H' = 2S(t)H, then 3? = H*H > 0 and SP = 
H*[4:S2(t) - P(t)]H. It follows that if 4[j? P(s)ds]2 g P(t) then i f [X] is non-
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oscillatory and hence U" + P(t)U = 0 is nonoscillatory (the result itself is 
known and goes back to Wintner). The setting of this example is studied in [5]. 

The next theorem is the kind of result which is of primary interest in this 
paper. The result obtains oscillation of (1.1) on considering a related (in this 
case, scalar) equation. Analogous results appear in Simons [13]. 

For A(t) an n X n matrix, hermitian and continuous on [a, GO), we shall 
let \i(A(t)), . . . , \n(A(t)) be the characteristic values of A (t), with the nota
tion so chosen that \i(A(t)) ^ . . . ^ Xn(̂ 4 (t)) for each t in [a, oo ). The func
tions Xi(A(t)) are continuous. 

THEOREM 3.4. LetR > 0, andqu be real valued and continuously differentiable 
for each i,Q = (qi:j). If the scalar differential equation 

(3.5) ((tr (R(t)))y')' + (tr (Q'(t) + P{t)))y = 0 

is oscillatory on [a, oo), then (1.1) is oscillatory on [a, oo). In particular, if 
(K(R(l))yY + Xi((?'(0 + P(t))y = 0 is oscillatory, then (1.1) is oscillatory. 

Proof. If we denote the /-functional associated with (3.5) by Js[r)) a, b], then 
Theorem 2.2 implies that there exists a sequence of intervals [ak, @k] with 
ak —* oo and nontrivial scalar functions r)k in DQ[ak, ftj such that Js[rik', ak, ftj S 
0. In Theorem 3.1 take H to be the ?z-vector all of whose components are zero 
except the i-th which is 1, and take X to be rjk, then for vt = Hr)kl it follows 
from (3.4) that 

(3.6) J[vùOLk, (}k] = I {Tik'ruVk — Vkiqti + Pa)Vk}dt, 
J ak 

here R(t) — (rtj(t)), etc. If one sums on i in (3.6) the right hand side becomes 
Js[Vk]otkj At], which is less than or equal to zero, thus for some i, J[vùak, f3k] ^ 0. 
The first statement now follows from Theorem 2.2. 

The second statement follows from the Sturm Comparison Theorem and the 
fact that for a hermitian matrix A (/), n\n(A) ^ tr (A), and ri\i(A) ^ tr (A). 

The following corollary utilizes scalar criteria due to Hartman (see, e.g., 
[6, XI, Theorem 7.3]). Eliason [4] obtains a related theorem using entirely 
different methods. 

COROLLARY 3.5. Let Q = 0, R = En. If 

and 

lim inf Xil J, J (J PW^jdM > —oo as T —» -\-(^ 

then (1.1) is oscillatory. In particular ifP^O and Jœ \\P\\ds = +oo then (1.1) 
is oscillatory. 
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The corollary follows from the theorem and Hartman's theorem since the 
hypothesis insures that 

and hence (3.5) is oscillatory. 

We remark that the second statement of the corollary is not true if the 
nonnegative definiteness of P is dropped. To see this choose P(t) = diag 
(sin //4/, — sin t/M) then | |P(/) | | = |sin/|/4/. The scalar equations u" ± 
(sin//4/)^ = 0 are nonoscillatory [15] and thus the (diagonal) system (1.1) 
is nonoscillatory. 

The following theorem extends the result of Allegretto and Erbe [1], and 
others, in the case under consideration here. 

THEOREM 3.6. Let R{t) > 0 on [a, GO ), and let H(t) beann X r matrix function, 
1 è r ^ n, such that H and RH' + QH are absolutely continuous on [a, co) and 
(3.1) holds on [a, oo ). If the system 

&[x] = (@x'y + SPx = o, 
3% = H*RH, SP = H*l[H], is oscillatory on [a, oo), then the system (1.1) is 
oscillatory on [a, co). 

Proof. Let a ^ a. Since J5f [x] = 0 is oscillatory there is a (3 > a and an 
r-dimensional vector solution x(t) oi<S£\x\ = 0 such that x(a) — 0, x(/3) = 0 
and 0ê(a)xf(a) ^ 0. Now take X(t) of Theorem 3.1 to be x{t) and put rj(t) = 
Hx, then rj(a) = r?(/3) = 0, and (3.4) plus Lemma 2.1 yield 

/ k a, £] = I {x*'^x - x * ^ x } ^ = 0. 

Furthermore, n}{t) ̂  0, for if so, then 0 = rj'(t) = H'x + Hx' and thus 
« ( a ) x ' W = (H*RHx'){a) = - (H*RH'x)(a) = 0, a contradiction. The con
clusion of the theorem now follows from Theorem 2.2. 

Allegretto and Erbe have shown that a number of interesting results follow 
from theorems such as the previous one. The corollary below shows that to 
determine oscillation of (1.1) one may consider certain subsystems. If a one 
dimensional such subsystem is used one obtains the result first proved by 
Swanson [18] (see also Barrett [2]), that if a ''diagonal equation" oscillates 
then the original system is oscillatory. It follows that all scalar oscillation 
criteria yield, in a trivial manner, oscillation criteria for systems (1.1), for 
example, one can take H to be an n X 1 vector and the resulting transformed 
system is scalar. 

For a given n X n matrix A = (aif), let Ay be the r X r submatrix of A, 
1 fg r ^ n obtained by deleting each row and column of A except row and 

https://doi.org/10.4153/CJM-1977-042-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-042-8


LINEAR DIFFERENTIAL SYSTEMS 397 

column ii, i2, . . . , ir, where 1 ^ i\ ^ . . . ^ ir ^ n, here y = {i\, . . . , ir). 
If one chooses H(y) to be the n X r submatrix of the n X n identity matrix E, 
obtained by deleting each column of E except column ii, . . . , ir, then Ay = 
Hiy)*AH(y). 

COROLLARY 3.7. Let R > 0 and Q be continuously differ entiable. If for some y, 
Qy* = Qy, and the system 

(Ry(t)u'Y + (Qy'(t)+Py(t))u = 0 

is oscillatory, then (1.1) is oscillatory. 

This statement follows directly from the theorem on choosing H to be H(y). 

In [7], H. C. Howard discusses oscillation of systems of the form (1.1) with 
Q = 0, by introducing and placing conditions on new functions which are 
related to R and P. Theorem 3.1 makes it possible to understand the relation
ship between these new functions and the original R and P. If one takes H(t) = 
\/g(t)E, here g(t) is a positive scalar function for which g, and Rgf are C1, then 
Howard's functions are obtained as the coefficients of the system (3.2), in 
particular, 

, q 7 x &(t)=gR(t) 
{ÔJ) 0>(t) = gP{t) - (l/4)i?(/)(g')2g-x + (1/2)(R(t)g')'. 

For g(t) = t, one obtains the Kneser-type conditions, see, e.g., [11]. 
With the help of the Fite-Wintner-Leighton theorem [10], the following 

theorem encompasses, in the linear case, Howard's original theorem, its exten
sion by Kartsatos [8], and the Noussair and Swanson theorem. 

THEOREM 3.8. Let R > 0 and continuously differ entiable, Q = 0. If for some 
7, the scalar equation 

((tr (^ 7(0))y7 + (tr (0>y(t)))y = 0 

^? andSP as in (3.7), is oscillatory, then (1.1) is oscillatory. 

Proof. By Theorem 3.4 

(M.y'y + ^yy = o 

is oscillatory and thus by Corollary 3.7, (1.1) is oscillatory. 

We wish to remark that a natural choice for H(t), when R(t) > 0, is the 
inverse of the positive definite square root of R(t), for then 01 (t) becomes the 
identity matrix. 

4. Comparison and oscillation. In the previous section many of the 
results are obtained via an indirect comparison of two systems. In this section 
we present a more direct comparison theorem which utilizes the ^-transforma
tion. 
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Consider two systems of the form (1.1), 

lt[u] = [Ri(t)uf + Qt(t)u]' - [Qt*(t)u' - Pt(t)u] = 0, i = 1, 2, 

where the conditions on Ru Qtj and Pt are the same as those on (1.1). 
The following result is a significant extension of the theorem in Kreith [9] 

for the case under consideration here and encompasses the standard Sturm 
type comparison theorem. 

THEOREM 4.1. Let R2 > 0 on [a, oo ). Let H(t) be an n X r matrix junction, 
1 fg r ^ n, such that H and RtHf + QfH are absolutely continuous on [a, oo ), 
{RiH' + QtH)*H = H*{RtH' + QtH),andÛl t(t) = H^R.H,^ <(*) = H*lt[H] 
and&iiX] = (MiX')' + ^iXfor i = 1,2. i j i f \ [x] = 0 w oscillatory on [a, oo ) 
and if Jfeere awfe a sequence of real numbers (ak), ak —> oo swcfe that for each 
k = 1,2, . . . 

{??*'#* (^i - i^2)W + ^ f l * ^ - Zi)[iïfo}<ft 

is nonnegative for all rj £ Do[ak, r] C Dr[a, 6], r > a^, Â̂en /2M = 0 is oscil
latory on [a, 00 ). 

Proof. We shall verify that the condition of Theorem 2.2 is satisfied. For a 
given ak, S£i[x] oscillatory implies the existence of a solution x of <J^i[x] = 0 
and a number ft > a^ such that x(ak) = x(ft) = 0, (S?ix')(ak) 9e 0. Now 

0 ^ I {x*'H*(Ri - R2)Hx' + x*#*(/2 - li)[H]x}dt 
J ak 

{ x * ' ^ V - x * ^ i x } ^ - { x * ' ^ V - x*0>2x}dt 
ak J ak 

= Ji{x\ akj ft] - Ji\x\ ak, ft]. 

But^ / i [x ; ak, ft] = 0 by Lemma 2.1 soc/2[x; ak, ft] ^ 0 and since, by (3.4), 
J 2\_x\ ak, ft] = J2[Hx\ak, ft], it follows that J2[Hx;ak, ft] g 0. 

The following corollary is a trivial consequence of the theorem obtained on 
taking H to be E, the n X n identity matrix, and observing that R(t) — 
\i(R(t))E and \n(P(t))E — P(t) are nonnegative definite matrices. 

COROLLARY 4.2. Let R(t) > 0 and Q(t) = 0. / / (1.1) is oscillatory then the 
scalar equation 

( ( X i ( # ( 0 ) ) / ) ' + (K(P(t)))y = 0 

is oscillatory. 

We remark that the converse of this theorem is not true as can be seen from 
the example following Corollary 3.5. 
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