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COVARIANT DERIVATIVES ON KAHLER C-SPACES

KOJI TOJO
0. Introduction

Let (M, g) be a Kahler C-space. R and V denote the curvature tensor and
the Levi-Civita connection of (M, g), respectively.
In [6], Takagi have proved that there exists an integer # such that

V"'R+0, V"R+0,

where V denotes the covariant derivative of (1,0)-type induced from V (see Sec-
tion 3 for the defintion). Moreover, Takagi classified Kahler C-spaces with # = 2
(Hermitian symmetric spaces of compact type are characterized as Kahler
C-spaces with n = 1).

However, there is a mistake in deduction to lead a certain formula. The
purpose of this paper is to correct the mistake and to classify Kahler
C-spaces with # = 2. Moreover, in Section 5, we shall classify Kahler C-spaces
with n = 3.

The author would like to thank Prof. R. Takagi for his kind advice and con-
tinuous encouragement.

1. Preliminaries

Let G be a Lie group and K a closed subgroup of G. Let g and ¥ be the Lie
algebras of G and K, respectively. Suppose that Ad(X) is compact. Then there ex-
ist an Ad(K)-invariant decomposition g =t + p of g and an Ad(X)-invariant
scalar product €, > on p. Then

(1.1) £, plcp
(1.2) Mu, 21, > + <lu,yl, > =0 EL x,yEp).

Moreover, under the canonical identification of p with the tangent space T,(G/K)
(0 = {K}) of homogeneous space G /K, the scalar product <, > can be extended to
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a G-invariant metric on G/K.
Let A be the connection function of (G/K, <, ) (cf[5]). Then for x, y € p,

(1.3) Alx) (y) = % x, 9], + Ulx,
where
(1.4) Uz, ), 2 = % Kz, zl,, w + Iz, yl,, ©} (z<€p).

Furthermore the curvature tensor R is given by

(1.5) Rz, y)z=[A), Ap]lz — [z, yl,, 2]
— Alz, 9]z

In the remaining part of this section we describe irreducible Kahler C-spaces
and recall some properties with respect to the connection functions (see [3] for
example).

Let g be a simple Lie algebra over C with rk(g) =/, and § a Cartan sub-
algebra of g, 4 denotes the set of non-zero roots of g with respect to ¥). For some
lexicographic order we denote by II = {al,. . 0(,} the fundamental root system
of A. Moreover let A" be the set of positive roots of 4 with respect to the order.
Since g is simple, we can define H, € § (o € 4) by

B(H, H,) = a(H) (H € Y)

where B is the Killing form of g. We choose root vectors {E,} (o« € 4) so that for
a,pE A

(1.6) B(E, E_) =1,
[Eou EB] = Na,BEa+B’ Na‘B == N

—,~

: €R.
Then [E,, E_,] = H,. Moreover the following hold (cf. [2]).
(1.7) Nyg=Ng, =N, ifa+p+7r=0
(1.8) NysN,s; + Ny N,,+ N, N;;=0,

if a + 8+ v+ 0 =0 (no two of which have sum 0). Let {8 + na;p < n < ¢} be
the a-series containing 3. Then

2 (1 - ) ZCY(H)
1.9) W, = g Patt), Ts =~ 0+ 0.
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As is well-known, the subalgebra g, of g defined in the following is a com-
pact real form of g:

.= 2 R/—1H,+ 2 (RA,+RB,),

aeat aeat

where A, = E, — E_, and B, = +/— 1(E, + E_,).
Consider a non-empty subset ¥ = {a;,..., a;} of II Set

]
(1.10) AT = {a =X no; € A% n;, > 0 for some ; € !If}
j=1

Then we define a subalgebra ¥, as follows:

t,= 2 R/7—1H,+ 2 (RA, +RB,).
aes* aedt-41(W)

Let G, and K, be a simply connected Lie group and its connected closed sub-
group which correspond to g, and f, respectively. Then G,/ K, is an irreducible
C-space.

Put

p= 2 (RA,+ RB).
aedt @)
Then g, = t, + p (direct sum) and the tangent space T,(G,/Ky) of G,/ Ky at
0o = {K,} is identified with p. Then a complex structure I is given at o by

(1.11) IA) =B, IB,) = — A, (@ € AT(W)).
We set
(1.12) p*= X CE..
aedt (@)

Then we have p* = (X € p% I(X) = £ y=—TX}. An element of p* is said to be
of (1,0)-type.
Define a mapping p : AT (W) — 7 as follows:

@ = o (a),..., n () for a =51‘_, n(a, € AN (V).
i=1

Let " and @ “ be the dual forms of E, and E_,, respectively. Then any
G,-invariant Kédhler metric g is given at o by

(1.13) g=—2 X (cp@aa"

aes* ()
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where ¢ = (¢;,..., ¢) (;>0) and ¢ - pl@) = 27 ¢n, (a). Conversely, any
bilinear form —2 2, (c - p(@)w” + @ * on pc X p~ can be extended to a
G,-invariant metric on G,/ K.

In the following we regard the metrics, connections and tensors as ones ex-
tended naturally over C.

In {3] the connection functions of K#hler spaces are determined.

For @, B € 4 we write p(@) > p(B) if n, (@ = n, (B (k=1,...,7 and
n, (@) > n, (8) for some j. Then

Lemva 1.1. Fora € AT (W), identify a with E, and & with E_,. Then

c-p(B)

Aa)(B) = PRICE)) [, Bl
- _|la, Bl pla) < p(B)
A@ @) = {0 otherwise

Al B = [[01, Bl p(a) < p(B

0 otherwise

1@@ = 201w .

2. Covariant derivatives on homogeneous spaces

In this section we shall write the Levi-Civita connections of Riemannian
homogeneous spaces in terms of the Lie algebras.
Let (M, g) be an n-dimensional Riemannian manifold and V the Levi-Civita

connection of (M, g). Let {e,..., ¢,} be local orthonormal frame fields and
{w',..., ®"} their dual 1-forms. Associated with {e,, ..., e,}, there uniquely ex-
ist local 1-forms {w/}(,j=1,..., n), which are called the connection forms,
such that
(2.1) o +o' =0

. n R
(2.2) do' + X w,' N =0.

j=1

Then the following holds.

(2.3) Vo= 2w/ (e)e,
k=1
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(see [4]).

Next, let (G/K, {,?) be a homogeneous space with a G-invariant metric
{, > as stated in Section 1.

Let w : G— G /K be the canonical projection and W an open subset in p such
that 0 € W and the mapping

weexp: W— n(exp W)

is diffeomorphic. Let {e,},cs be a basis of £ and {¢;},.; an orthonormal basis of
(p, <, ). In this section we use the following convention on the range of indices,
unless otherwise stated:

i’j)k’--- Ely a,By T;... EA,
p,q,7,... €I UA.

Let {X,} and {X;} be the left invariant vector fields on G such that (X,), = e,
and (X,), = e; (e is the identity of G). Furthermore we define an orthonormal
frame field {E,} on m(exp W) and the mapping p:m(exp W) — exp W as fol-
lows:

(Et) w(exp x) = Z.(exp .Z') *(ei)

u(rlexpx)) = expx (x € W),

where 7(g) (g € G) denotes the left transformation of G/K. Then since
(X)) = E,, 74(X,) = 0 and m,u, = id, we can put

(2.4) ts(E) = X, + 2 14X,

Let {w*}, {w} and {8} be the dual 1-forms of {X,}, {X;} and {E}, respectively.
Then it is easy to see

(2.5) ) =6

Set [X,, X,] =X, ¢,/ X, Then the following is known as the equation of
Maurer-Cartan (cf. [4]).

1
(2.6) do’ = — o > cq,pwq Ao,
q,r
For the sake of completeness we show the following well-known fact.

LEmMA 2.1 Let {6’;} be the commection forms of (G/K, {,)) associated with
{E}. Then
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t *{Z [N 4 1 Z t_ j_ /1:) k}
0, =—u Cia W +§ - (e —ci —¢y)w .
a

Proof. 1t follows from (1.1) and (1.2) that
(2.7) G =0, € + i =0.
Moreover since t is subalgebra of g, we get
(2.8) Cag = 0.
From equations (2.5), (2.6), (2.7) and (2.8) it follows that
do' = " do'
= — %‘d ﬂ*{§ Caw Ao+ %% (¢ — ¢l — ¢,V A @)

. 1 : ;
=2 ™S ¢ 0" + 7 2 (6 — e — ¢,y N O
j a k

(note that X, ,(c,* + ¢,V 0’ A 0 = 0).

Put 0, = — 1™ (X, ;0 + 1/2) Z.(c; — ¢, — ¢, )"} Then it is easy
to see ;' + 6, = 0.

Consequently, by (2.1) and (2.2), the connection forms coincide with {(9,-'}. U

By (2.3), (2.4) and the above lemma, we have the following.

PROPOSITION 2.2.

_ k 1 k j i
VE,EJ‘ - % {Z Caj Nai + 5 (cu TG T G )}Ek
a
Next we shall rewrite Proposition 2.2 in terms of the bracket operation [, ] of g.

For £ € W, we define zzi(t) € Wand b,/ (1) € K (t € R, | t|: small enough)
by the following:

(2.9) expxr-expte, =expz, (- h ()

with z,'(0) = z and %, (0) = e. Then
d
5 (ED riexp o = g lo (m(exp x - exp te))

= gt— |, u(m(exp z,' (D))
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d i
= (exp*),<gf l 2, (t)).
Here, the differential map exp, of exp has the following form (see [2]).

LEmMMA 2.3. Letx, y € g. Then

(expy), @ = Legp 2 5 ° 0.,

where O, (y) = ZLO% (adx)"(y).
Thus we have
(2.10) s E s = L) s OS2/ 0).
On the other hand, (2.9) and Lemma 2.3 give
2.11) Lo * P10 2/D) = Ly ) ule)

d i
- (Lexpz)*(m |0 hy (t)>
Considering (2.4), (2.10) and (2.11), we obtain
d i
(2.12) i ok (0 = = Zng(exp 2)e,.
Therefore, by (2.12) and Proposition 2.2, we have

213)  (VoE)sewn = clexp @) [Ae) @) — [ 21,110, ¢ ).

Remark. For x € p(| z|: small), the mapping
Py QPP

is an isomorphism (p,:g— p denotes the canonical projection.). So we can assume
that for each x € W the mapping p,° @, is an isomorphism. Therefore we

d
can regard the equation (2.11) as a characterization of E|Ozzl(t) (€ p) and
d ‘
E'ohz (9.

For X € p, we denote by X, the vector field on w(exp W) defined by
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(X*) w(exp ) = z‘(exp .'1)) *(X) .

Then the following theorem is easily derived from the above arguments.

THEOREM 2.4, Letx € Wand X, Y € p, Then
(VX*Y*)n(exp ) = T(eXp x)*{/l(X)(Y) - [hx(X), Y]}

Here h,(X) = — py @, ° (P, D,) “UX) (py: g— T denotes the canonical projection).

3. Covariant derivatives on Kihler C-spaces

In this section we shall write higher covariant derivatives of (1,0)-type on
Kahler C-spaces in terms of the connection functions.

Let (G,/ Ky, <,”) be a Kahlerian C-space as stated in Section 1. For a €
AT (W), since a = (1/2) (A, —v— 1B,) (under the identification E, with a), we

have
1
Ax =9 (Ags — V= 1B
At first we calculate the value of V'(X,; e, ..., a,”) at 0o (X € pc, a, €
AN(D).

Let X, G=1,..., n) be one of {4,, B} (A, =A,, B,=B,). Fors,...,s,
€ R (| s, |: small enough), we define 2'(s,, ..., s) € W(Q < i< n) inductively
as follows:

(3.1) Z'(s) = s, X,

mlexpz'(sy,...,s)) =mlexpz '(s,,..., s;i_)exp s, X,).
Then
(3.2) 2ty Sy 0) =2 sy, sy

Then it follows Lemma 2.3, (3.1) and (3.2) that

0
(3.3) X, =p,° @z,-l(swsl_l,(g o2z (s, .., si)).

From Theorem 2.4 we have
(3.4)
( Vx,,*X*) m(exp 2%(sy,....5y_1,0))

= z(exp 2" (s, . .., S, N {AX)X) — [h,_,(s,,..., s,_0), X]}
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where

By (Syoes Su)) = — bp° D v, .,s,,_1>(Vn—l(sl’ ..

Xn = pp ° (Dz”’l(sl, ..,s,,_l)(Vn—l(Sl’ ey Sn—l))'
Thus, by (3.3) we get

0
(3.5) Voo = Bs,

2"

Similarly, we have by (3.4) and Theorem 2.4

3.6) ( VX,H* VX,,*X*) T(exp 27 2(sy,....Sp-p))
= z(exp 2" (s, . .., Sp_p)) {AX,_ ) AX) (X)

o Spe1)

39

A Uy (s Spgy 0, X = 5l (5 5,20, XD

n—1

= [y (siye ey 5,20, A (X)) — By (sy,. .y 5,5, 0), XT1D

where

0 n—1
Byoy(Syyo oy Sp) = — Dee (Dz"""(sl ,,,,, s,,_z)(as . |0 z >
0

Xy =Pre Donss,,..i5p <5:j lo zn_l>-

Therefore, by induction, we can see

(3.7) (Vxl* t VX,,*X*)o
= AX) - AX) (X)

af
+ {terms containing z——-7— Isl—--'=s,‘_1=0hk—1(sl’ ety Seet)
3! tr

for some k, r}.

Here
0
(3.8) L P N i Do, s,‘_l)<a—sk
0
(3.9) X =y B, sy o35 1o7"):
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Lemma 3.1. Expand 2" (s,,. .., s,) as

n —_
(S0, S) =2 S S
Qe ety
Then there exists a multi- linear function
Cyk C
Fii: () —0p
such that
Aipenn, = Fil,...,,',‘ (Xil’- cey ka)'

Proof. At first we note that z°(0,..., 0) = 0 and

2G5y 5, 0,...,00 =2'(s,. .0, ),
Z2'0,...,0,s,0,...,0 =sX,.

We prove the lemma by induction.

Assume that for any 7-tuple (¢y,...,4,) (1 <r<k, i, <---<4,) there exists

r-linear function F; ..., such that

@iy = Fionny, Xy X))
Then for any (k + 1)-tuple Gy, ..., je Jisd) U1 < -+ <jg) it follows from
(3.9) that
0 s
Xjk-o-l = Pp ° @Zikﬂ(s]m,,sjkﬂ_l,o)(aS]k 1 |0 7' 1).
Considering the (s; *** s;)-term of the above equation, we have

_ 1
0=a Sl

S

weesn V2T, 2, Ll lag, a1

Here, each J,, 1 < p <1+ 1, is a subset of {ji,..., ji,y) such that J, N J, = 0

(pqﬁ(I),]ﬁC {jl""’jk} for]. ﬁpﬁland

]1 U .- U], U]l+1 = {jly""jk+1}'

Therefore, by the inductive assumption, the (Sfl cee S,M)—term of 2" is written as

in the lemma. This completes the proof of the lemma.

Let I/,1 ..... s
proof of Lemma 3.1, we have
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(3.10) W,

it
_ & -1
N I=Zi ]1.~§1+1 (l + 1)! [a]], [ ’ [a]” a]“‘l] ]E.

Thus, by Lemma 3.1 and (3.10), there exists k-linear map
such that

Therefore (3.7) gives

(Vﬂ'l* T Vﬂn*X*)O
= Alay) - Ala,) (X)
+ {terms containing Hr,-1 ; (a]-l,. .., ajk)},
For a, B8 € AT (¥), it is obvious that a + B € A™ (W) if a+ B E

r +
H fl'“-’jk(ail" vy a,-k) S p .

We have thus the following.

PrOPOSITION 3.2. Letar, G =1,...,7m) bein A" (¥) and X € pc. Then

(Vo "V X)o = Al@) +++ Ala,) (X).

A%

Remark 3.3. By similar argument as in the above, we can prove that

(Vs =0 = AA)B)) (- ++)
fora, B, - € AT (D).

Now, we define A"R inductively as follows.

(AR)(X,Y,Z;T)
= A(T)(R(X, YV)Z) —RATX), NZ— RX, AT)(X)Z
— R(X, )A(T) (2),
A'RX,Y,Z;T,...,T,)
=AT)(N'RKX,Y,Z;T,...,T,.))
—UWTRWUWT)X),Y,Z;T,...,T,.) — A" 'R(X, A(T,)(Y),
Z;T,...,T,.) —U'RX, Y, AT)2);T,..., T,)
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S WTR XY, 2T AT, . T,

i=1

Here X,..., T, Epc.

Since

Proposition 3.2 and Remark 3.3 give the following Theorem which is the correc-
tion of (2.11) and (3.11) of [6].

THeoreEM 3.4. Let X, Y, Z € pC and 0,,..., 0, € AY(W). Then

(V'R)Y(X,Y,Z;6,...,0,) = U'RX,Y,Z;0,...,0,).

CoroLLARY 3.5. Let o, 8, and 7 be in A such that E,, E, and E., ave elements
of pC. Moreover, let 0,,. .., 0, be in AT (W), Then

(V'R) (a, B, 7;04...,0,) € CEa+ﬁ+r+61+---+6,,-

We denote by V the covariant derivative in the direction of p+. Then, from
Corollary 3.5, there is a number # such that V"R = 0 and "R # 0. We call
the integer # the degree of (G,/Ky, <,?). It is known that Hermitian symmetric
spaces of compact type are characterized as Kahler C-spaces with degree one.

4. Degree two

In this section, using a similar method as in [6], we shall determine the class
of Kahlerian C-spaces with degree two.
Let a, B, 7, 0 and A be elements of A" (¥). From Theorem 3.4, we have

41) (V'R (a, ,8;7, 0

=A@ AP R, DB — AAG) PR, DB — AQNRUAD a, 1B
— A@R, AGODB — AP R, DAWDB — ABGRUAPa, DB
+ RUAUOGPa, DB+ RUNADa, DB+ RUGD a, AB)DB
+ RAMa, HAG)B — AG)R(a, A(PDB+ RUWB)a, A(PA)B
+ R(a, AAWB) DB + Rla, A(DAD DB + Rla, A(PDHAB)B
— AB)R(a, DA(PB + RA©B) a, DAMNB + R, AGDAB
+ R(a, DA DB + Ra, DA AD)B.
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LEMMA 4.1.  Suppose that a, B (€ A* (W) (a # B) satisfy the following condi-
tions :

() a+BEA QR a—BeEA, 3) 2a+ B4, (4) a+ 28 € A.

Then (V'R (@, a + B, B;a, B) # 0.

Proof. From (4.1) and the conditions in the lemma, we have

(V’R) (e, a + B, B, P)
= —A@RUAPa, a+ BB — A@Ra, AB)a+ p)B
— AP R, Al@a+ BB+ RUABa, Ala+ PB— AP R, a+ PHAWB
+ RUAPa, a+ BA@B+ R, AB)a + B A
=A@ AP a, a+ Bl, Bl + Al AUBa+ P A@B+ [la, ABa+ Bl, A1)
+ AR AU@a + B) Ala) B — AUAB)a, Al@a + B1)B
+ AP A, a+ B)A@B — [[AB)a, a + Bl, A@)f]
+ AMAAPB a + PA@B — [la, AB)a+ B, A@}B].

It follows from (1.6) and Lemma 1.1 that

(V’R)(a, a+B,B;a,B)
 (ep@) ep®)

=T epat gy Ve Pl @t D)

(c-p(®)?
(c-pla+ PB)?

+ —c_.;—&g—%)— Ny sNg —@s0BHy) - (@ + B)

(Na,ﬁ) 2NB,—-(a+B)N—a,a+B (a+p)

3 (c-pl@)) (c-p(B))

(c-pla+ B)?

n (c-p(a)) (c-p(B))
(c-pla+ B)*

pB)
- c_;—(fyéﬁ Na.BNB.—(a+B)a(Ha+,9) (a+P).

(Ngp) 2Na,—(a+ﬂ)N—ﬁ,a+ﬁ (a+ P

(N '@+ B)(H,yp) (@ + p)

It follows from (1.7) that

Nyt = = No—taspy = Nops
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form which we have

42)  (VR)a,a+pB,B;a,pB)

___cpB o[ cpl@)
= (C.p(a +‘B)) (Na,B) { (C'p(a +‘8)) AB(Ha+B)
(c-p(B 2 c-pla) ,
+ 2 Cpla+ B (N,g)" + BH) — 3 Teplat Py (Ngyp)
¢-pla)
t rlat gy @t B UL — o)) @t B,

From the conditions of Lemma 4.1, the a-series containing B8 is given by
{8, B+ a}. Hence, by (1.9) we have

alHy) = — 5, (N,9" =4,

where ¢ = a(H,) = (H,). Therefore we have from (4.2)

e’ (c-p(a) (c-p(B))
(c-pla+ P)?

We have thus proved the lemma. O

(43) (VR(a,a+B, B;a,p) =— “a+ p).

Now, we prove the following theorem.

THEOREM 4.2. The only Kihlerian C-spaces of which degrees are at most two ave
Hermitian symmetric spaces of compact type.

In the following we denote by M(g, ¥, g) the Kahlerian C-space correspond-
ing to ¥. We show the theorem by case by case check.

The case where g is of type A, (I = 2).
We identify 4 with

{e,—e;1<i#;<I+1}

7

(for example, see [2]), where {el, ey e,H} is an orthonormal basis. Moreover, set
a,=e — ¢, Then Mig, {a}, 9 (G=1,...,1) are Hermitian symmetric
spaces.

Suppose that ¥ contains @; and a; (1 < 7). Thena=a, + -+ + a; and B =
a;,, + -+ + a, are contained in A" (¥). Furthermore, it is easy to see that a and
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B satisfy the conditions (1), (2), (3) and (4) of Lemma 4.1. Thus the degree of
M(g, ¥, g) is not equal to two.
The case where g is of type B, (I = 3).
A={te¢, e te;1<i+;< 1.
Set
a

= —e, 1 iZ]-1),a =e,.

In this case Hermitian symmetric spaces are M(g, {a;}, g (¢ =1, D).
Put

a=e¢—e¢=a,+ - ta_, e te, ma,t o Fa, T 2a,.

Then we can easily see that o and B satisfy the conditions of Lemma 4.1. Then
Kahlerian C-spaces of which degrees are at most two are only Hermitian symmet-
ric spaces. In fact, if ¥ contains some o, 2 < i< [—1), then @, B € A" (V).
Moreover, a, B € A"(a,, a)}).
The case where g is of type C, (I = 3).

A={L£2e, e, te;1<i#j< 1},
Set

a,=e¢— ¢, 1<i<]—1), a =2e,.

In this case Hermitian symmetric spaces are M(g, {a,;}, 8) (G =1, D).
If @, € ¥for some ¢ (2 <47 =<[— 1), then

a=e+e=a,+ - tao,f=e—¢g=a,+ - +a_
1 1 1 1 i l i -1

are elements of A" (¥) and satisfy the conditions of Lemma 4.1. Therefore the
degree of M(g, ¥, g is not equal to two.
Let ¥ = {a,, a}. Then set « = @, and § = &, + * -+ + @, As above, we see
that the degree of M(g, ¥, £) is not equal to two.
The case where g 1is of type D,(I = 4).
A={xete;1<i#Fj< 1.
ai = ei - ei+1 (l = 1,..., l_ 1), a’, = e,_l + el.

In this case Hermitian symmetric spaces are M(g, {o;}, @ G=1,1-1, D).
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Ifa, € Uior some ¢ (2 <1< [ — 2), then

a=e—e¢=a,+ - FTa_,f=ete=a+ - t+aq

are in 47(¥) and satisfy the conditions of Lemma 4.1.

Next we check M(g, {a,, o}, g and M(g, {a,_,, o/}, 9.
Set

a=a,+ - +a_,B=0,+ - ta_,+a,.
Then @ and B satisfy the conditions of Lemma 4.1 and are elements of 47 (¥), re-

gardless of whether ¥ = {a,, @} or ¥ = {a,_,, a,}.

The case wheve g is of type Es.
In this case 4 consists of the following.

. . 1 8 .
tete(1<i#;<8), 5 X v@e (Xv():even).
i=1
Set

1
a1=§(e1+e8—e2—-e3—e4—es—ee-—e7)
o, =e t+e, o, =¢_, —e_,3Li<8).
— 8
We denote a root @ = 23;_, m;&t; by
(ns N, Ng Ny Ny My n1>
nZ

Then there is no M(g, ¥, g) with degree two. In fact, the following «, 3 satisfy
the conditions (1)~(4) of Lemma 4.1 (cf. [1]).

1111111 1234531
a= )=l 2 )

The case where g is of type E,.
We use the same notation as in the case E;. Then {ay, ..., @) is a
fundamental root system and 4 consists of the following.

tote(1<i#j<6), £(e,— e

1

t5 (e, — et é v(i)ei) (g v(2) :odd).
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In this case Hermitian symmetric space is only M(g, {a,}, 2). We denote a root
7
a= Z:1=1 na; by

<n7 Ng Mg N, Ny n1>
ny

Then

011211 112221
a=(CPITT ) =000

satisfy (1)~(4) of Lemma 4.1.

The case where g is of type E,.
A consists of

teo e (1<i#j<5)

1

t3 (es — e — e+ é v(i)ei> (i v(7) :even).

i=1

In this case Hermitian symmetric spaces are M(g, {a;}, g) (i = 1,6). We identify
a= X% ma, with

(”6”5 ny Ny "1)
ny ’

Then

a:(01i11>, B:<11110>

satisfy (1)~(4) of Lemma 4.1.
The case where g is of type F,.
., 1
A={te, totq0<i#j<a),;Eo oo te)
1
al=e2—e3,a2=e3—e4,a3=e4,a4=§(el—e2—e3—e4).

We identify & = Xi_, n,a; with (n,, n,, n5, n,).
If ¥ contains a; for some i (1 < ¢ < 3), then

a=(1,1,2,2) and = (1, 2,2,0)
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are elements of 4% (¥) and satisfy (1)~(4) of Lemma 4.1.
Let ©={a},a=1(0,0,0,1) and B=(1,2,3,1). Then the degree of
M(g, {a,}, @ is not equal to two.

The case where g is of type G,.
A consists of the following.
* (e, —ey), T (e;—¢), £ (e, — ey
T (2¢, —e,— ), £ (2¢,~ ¢, — ), £ (2e;— ¢, — ¢,).
Let o, = ¢, — ¢, and o, = — 2¢; + ¢, + ¢,. Then M(g, {a,}, g is a Hermitian
symmetric space.

Suppose that a, € ¥. Then a=3a; +a, and B = a, is contained in
AT () and satisfy (1)~ (4).

Finally we check M(B,, {a, B}, 8 (@ = ¢, — ¢,, B = ¢,).
We compute (V°R) (o, @ + 3, B; @, B). Since

(4.4) a+B,at+2€EA and a—f,2a+ B €A,

we have

(V'R (a,a+B,B;a,P

= - ARUAPa,a+pB— AR, ABa+ BB — AP R(a, Al@a+ pB)B

+ RUAPa, Ma)a+ BB — AP R(a, a+ B A@B+ RAPa, a+ PA@S
+ R(a, AP a+ PHA@B+ R, a + BAUAPB a)S.

Comparing the above equation with the right hand side of (4.2), we get
(V’R) (a, a+ B, B2, p)
=R(a, a+PAURB Q)L+ A@Ala+ PAAB B — AA@a+ PAUR )L
=+ the right hand side of (4.2).
Thus
(V'R (a,a+ B, B;a, P

-, (c.p(a))z(ap(ﬁ)) (N, )P (N (a+ B)
(c-pla+ ) (c-p2B+ @)

+ the right hand side of (4.2).

https://doi.org/10.1017/50027763000005912 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005912

DERIVATIVES ON KAHLER C-SPACES 49

From (4.4), we have
(Np)" = (Npaip)* = ¢, alH) = — ¢,
where e = B(H,) = (1/2)a(H,). Therefore

(V'R (@, a+ B, 8;, B)

___cp® N )2{_ 2¢(c-p(@)) (c-p(B) L 2elcp(B)
T cplat+p Vs (cpla+P)c-pla+2B) " cpla+Pp)

Belc-p(@) | elc-p(@) ).
cpla+ P + c-pla+ ,B)} @+ p)

2 (c-pB) (c-p(B)
=—-2 (c-pla) + 4c-p(B) - (a + B).
Cen@t B pap +ay PO T Acp@) et s
Therefore the degree of M(B,, {a, 8}, g) is not equal to two.
We have thus proved the theorem.

__2e__

5. Degree three

For a, € IT, set A, (k) = {a = X, ma, € 4" ; m, = k).
We devote this section to proving the following theorem.

TuroreM 5.1. Let @;, @, and «, be elements of II such that A (k) = @,
A, (m) = B and A, (n) = O for k =3, m, n = 2. Then Kahler C-space with de-
gree three is one of M(g, {a;}, & and M(g, {a,, @,}, &)

At first we show that the degrees of M(g, {a;}, &) and M(g, {a,, a,}, g) are
at most three.

In the following we suppose that a, 8, 7, 0, w and A are elements of A* (¥).
Suppose ¥ = {a,}. Since

AE9p* < p*, RS, pOp* C p*,
we can see
(V'R (a, 2, 857,0, w) €p*
(V'R (@, 4, B; 7,0, w) €p.

Therefore, If (V’R)(at, A,B8;7, 0, w) #0, then a + B+ 7+ 0 + w — A must
be in A*(¥). Similarly, if (V’R)(a&, A, B;7,0,w) #0, thena+B8—7— 0 —
— A must be in A7 (¥).
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Each @ € 4"(¥) has 1 < p(a) < 2 so that
pa+B+r+o+tw—AN=21+1+1+1+1-2=3.
However, this is impossible, since 4, (k) = @ for k = 3. Similarly we have
pla+B—r—6—-w—-AN<2+2-1—-1—-1-1=0.

Thus the degree of M(g, {a,}, g is not more than three.
Next, suppose ¥ = {a,, a,} (¢ < 7). Since 4,"(m) = @ and 4,"(n) = @ for
m, n = 2, it is easy to see that the possibilities of p(a) are only (1,0),(0,1) and
(1,1). Therefore
pla+B+r+o+w—2) #Q,0, (0,1, 1,1)
pat+tB—r—0d—w— A # (1,0, 0,1), (1,1).
Thus the degree of M(g, {a,, ,}, g is not more than three.
Next, we prove that Hermitian symmetric spaces, M(g, {a,}, g) and M(g,

{aq, a,}, g are only Kahler C-spaces of which degrees are at most three.
As in Section 4, we shall prove the following lemmas.

LEMMA 5.2, Suppose that there are a, B, T € AT(W) (@ # B, B+ 7,7+ a)
satisfying the following :

(1) a+Bed, (2) at+tred, (3)a+p+7re4,

(4) a—pB&4, (5)B+7red, (6)B—r&d (7)2a+p&4
(8) 28+a€d, (9)2a+7ed, (10) a+r—BeA

1) 2a+B+71¢4, (12) 28+a+7r€4, (13) 2a+28+ 7 &4
(14) a—7r€4, (15) 27y + a € A.

Then the degree of M(g, ¥, @) is more than three.

LEMMA 5.3. Let o and B be in A* (W) (a0 # B). If the following conditions are
satisfied, then the degree of M(g, ¥, g) is more than three:
MWD at+ped, @ a—p<&4, B 2aa+p€A4
4) 2B+a€ 4, (B) 38+a€¢A.
Proof of Lemma 5.2. We shall show
(VR (a, 4, B;0,8,P#0 A=a+B+7).

By Theorem 3.4 and (10) of Lemma 5.2, we have
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(V'R (a, 2,852, B, 7)

= - U'RUWa, 1, B;a,p)
— (A*R) (o, A, B, P)
— AR (a, 2, B; AP a, B).

By (4.1) and the conditions of the lemma, we have

(V’RY(AWPa, 1, B;a, B
=~ AM@WRUPBADa, DB — A@RUADa, AB)DB+ RAPa, AAB ) DB
+ RAMa, A@APB) DB — ABRAUM a, DA
+ RAPB AP a, DA@B + RAPa, ABDA@)B
= A [[AB)A(pa, A1, B]
+ M) {AABDAU@P a)B + [[APD a, AB)AT}
— {AAUB ) DAAD @) B+ ATAD a, AAB o) 118}
— {AUA@ABDAAPD B+ AAP a, A AB) AP
+ A@AAPD a, DA B — [[AB AP a, AT, Ala)B]
— A a, A@ ], Al@)B].

Now, put ¢, = ¢-pa) (@ € A™(¥)). Then, by Lemma 1.1 and (1.7), we have

(5.1)
(V’RYAMDa, A, B;a, B
= _ SaCCasr _
T CassCairC N, N, ,B(H) - [a, Bl
o S (v y?
" Carplarr Nr’aNB’_z{Cx (N‘g'—’l) + B(Hr+a)} [as B]
(e’ [ 1 , ) 2
- m [Ca+5 (Nm) NoalNr = ~c; N, oNg, 1 (N,’_A) }[CY, Bl

a 1 1
+ - [_ (Nr,aNB,—r)er,—/l' (a + .8) + C—B (NT‘Q):;NB.—X. e, B]}
o+

Ca+r CT

(c)’c CaCsC
— N, Ny (N, p)* [a, Bl + 222N N, ,A(H,.p)[a, Bl
(Cuig) Canr Ca+8Ca+rCa
CaCy

— o NNy (at B(H,,,) [a, Bl

Ca+Bca+r

For simplicity, put e = a(H,). Then, by (1.9) and the conditions of the
lemma, we get the following.
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B(Hy = y(H) = e, a(Hy) = a(H) = _%
B(H7) =0, (Na,ﬁ)z = (Na,r)z = %
Moreover it follows from (1.8) that
Na,BNT,—/I + NT,C!NB,—/I = 0‘

Therefore (5.1) gives

e’N, _;(c)’c

(5.2) AR UMD a, A, B8;a,B = 22 (a+P.
2(6a+ﬁ) Ca+r
Similarly, we have
(5.3) ARV (a, 1, B; Aa, B) = % N, - a+p).
a+B
From (4.3) we get
(5.4) (AR (@, ADA, B;a, B

=N,_,(A’R(a,a+B,B;a, P

2
e CyC
= - (—BZN,,_A- (a+P).
Ca+p

Therefore it follows from (5.2), (5.3) and (5.4) that
(VR (a, 1, B;a, 8,7

0’cqts N, {_C_a_ +1-— 2} (a+pB)

B Z(Ca+ﬁ)2 Catr
2
€ CoCpC
=—-—2F N _,(ath.
Z(Ca+ﬂ) Catr

This completes the proof of Lemma 5.2.

Proof of Lemma 5.3. We shall show that
LR (e, A, a;B,B,8) #0 Q=28+ ).
In fact

(A’R)(a, A, a; B, B, B
= AR (A°R) (a, X, a; B, B)
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(AR AP a, A, a; B, P
— (A’R)(a, ABA, a; B, B)
— (A’R)(a, 2, AB)a; B, P

=34 {RUP APV a, Da + Rla, AR AP N)a

+ Rla, DABR AP a + 2RAB a, AB) Do
+ 2RUAPB a, DAP a + 2R(a, AB)A)ARB)a}
—3{RUPBAP a, ABDNa+ RAB AP a, VAP«
+ RUAPB a, ARAPDa + Rla, ARABDAPB
+ RUAWBa, DAP AP a + Rla, ABDAP AP a}
— 6R(AP a, AR NAP .

As before, we set e = a(H,). Then we obtain

BUH) = (N,p' = N, )’ =5, all) = — 3.
Thus, by a straightforward computation we have
AR (a, 2, a;B, 8, P = %NB,}-M + 5.
a+B
We have thus proved the lemma. ]

Suppose that g is not of G, type. For Kahler C-spaces except for those stated
in Theorem 5.1, we take examples of {a, B, 7} satisfying the conditions of Lemma
5.2 or of {a, B} satisfying the conditions of Lemma 5.3.

The case where g is of type A, (I = 3).
Suppose that @,, @, and a, are elements of ¥ (i < j < k). Then set
a=at - ta,B=a,r=a,t  ta.
Then a, B and 7 satisfy (1)~(15) of Lemma 5.2.
The case where g is of type B, (I = 2).

We use the notation in Section 4.
Suppose that ¥ contains @; and ; (¢ < 7). Put

a=o;=e¢ e, BT e =a T ta.

Then « and B satisfy (1)~(5) of Lemma 5.3.
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The case where g 1is of type C, (I = 3).

Suppose that ¥ contains @; and @; ¢ <j). Pt f=a; + - + a,_, = ¢, —
¢; and
a, ifj=1,

a=2e,-:{2aj+...+2a,_l+a, ifj <1

Then a and B satisfy (1)~(5) of Lemma 5.3.

The case where g is of type D, (I = 4) .
Suppose that ¥ contains {a;, &} (2 < ¢ <[ — 2). Then put

a=o,=¢_te,f=a,+ - tao_=e—e¢,r=0y+ - ta_,=e—e_.

Then «, B and 7 are contained in 4" (¥) and satisfy (1)~(15) in Lemma 5.2.
Next, we assume that ¥ cotains {e;, @} (1 <1 <j<1—2). Set

a=a,+ " +a_,f=a,+ - tao,ta,r=a+ " +a_,ta.

Then a, 8 and 7 are contained in A" (¥) and satisfy (1)~(15) in Lemma 5.2.

The case where g is of type E,.
Set

0112211 1111210
a= L) el L)

/1122221
T= 1 :

Then a, B and 7 satisfy (1)~(15) in Lemma 5.2.

The case where g is of type E,.
Put

az(lllllO) B:(Olllll)
0 ’ 1 '
001211
TZ( 1 )

Then «, 8 and 7 satisfy (1)~(15) in Lemma 5.2. Therefore, if ¥ contains a; (i =
3,4 or 5), the degree of M(g, ¥, g is more than three. Moreover, if ¥ contains
{a,, ag}, {ay, a}, {a,, agt or {a,, a;}, the degree of M(g, ¥, g) is more than
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three.
Next, set

a=<011110>’3=<111(1)11)'

r=(001?11>.

Then the degree of M(g, {a;, @,}, g) is more than three.
Finally, suppose that ¥ = {a;, a;}. Set

a=<100000) B=<011111>
0 ’ 1 ’
013321
T=< 1 )

Then a, B8 and 7 are contained in 4" (¥) and satisfy (1)~(15) in Lemma 5.2.

The case where g is of type E,.
Set

a=(11(1)00>, B=(00111),

=(01 110)
T 1 N

Thus we can see that the degree of M(g, ¥, g is more than three if ¥ contains
one of the following:

{a), {a,, ag, {a,, ag}, {a, a5}, {a,, ay).

Finally, we check the case where ¥ = {a;, a;}. Then the following roots «,
and 7 are contained in A”(¥) and satisfy the conditions in Lemma 5.2:

a=(0 1800)’ BZ(O 1 i 1 1)7

=(01210)
T 1 *

The case where g is of type F,.
Set « = (1,1,2,2) and B = (0,1,1,0). Then « and B satisfy (1)~ (5) of Lem-
ma 5.3. Thus, if @, € AT(¥) (i = 2 or 3), than the degree of M(g, ¥, g) is more
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than three.
Next, let ¥ = {e;, a,}. Then put ¢ = (1,1,0,0) and 8 = (0,0,1,1). Then «
and 3 satisfy (1)~(5) of Lemma 5.3.

Finally we shall prove that the degree of M(G,, {a,, a,}, & is more than
three. Set &« = a, and 8 = «,. Then A" consists of the following:
a,B,a+ B, a+ 28, a+ 38, 2a + 386.

Therefore we have from (1.9)
(65  Now' =5 BUL), (Hyyu) = 28(H),
(N.pared) = 5 BUH, alH,) = 36(Hy), alHy) = — 5 B(H)).

We show that
(V’R) (e, « +3B8,B8;8, 8,8 #0.
From Theorem 3.4 we have
(V’R) (@, a+3B,B8;8, 8,8
= - (AZR) (A(B)a; 24 + 318’ ‘8 ’189 18)
— (A*R) (o, A(®a+ 38, B; 8, B
= —=3{RUAPBa, ARAPB a+ 3B)B + RUAPBP AP a, AB)a + 36)5}
— Rla, AAPBAPBR o+ 38— RUABPABAB) a, o + 36)B

(e W) + BH,)

= NgoN_g0435N5 045 {3

Co+28

=3 (L Wopasd) + BHo)

Cat28 \Ca+3p

— (S P+ pay) +

Ca+;9

Caq

BlH,..p) B

Ca+3p
12¢,(c,)”

Ca+Bca+zﬂca+3,9
# 0.

Nﬂ.aN-ﬁ,a+3ﬂNﬂ,a+BnB(HB) ‘B

Therefore the degree of M(G,, {a, B}, g is more than three.
We have thus proved Theorem 5.1.
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