A GENERAL HAMILTON-JACOBI EQUATION AND ASSOCIATED PROBLEM OF LAGRANGE

M.A. McKiernan

(received July 15, 1964)

It is well known [1] that the variational problem of minimizing

(1)
$$\lambda = \int F \{x^{i}, \dot{x}^{i}\} dt \qquad i = 1, \dots, n,$$

where F is positive homogeneous of degree one in \dot{x}^{i} (henceforth abbreviated to "plus-one" in \dot{x}^{i}) leads to a Hamiltonian $H\{x^{i}, p_{i}\}$ and corresponding Hamilton-Jacobi equation

(2)
$$H\{x^i, p_i\} = 1$$
 where $p_i = \partial_i \lambda = \frac{\partial \lambda}{\partial x^i}$.

Here H is also plus-one in p_i . The geodesic equations of (1) are characteristic equations for (2) and the Monge cones associated with (2) are given by the integrand in (1); the cone at (x_0^i, λ_0) being given by $\lambda - \lambda_0 = F\{x_0^i, x - x_0^i\}$. The purpose of this note is simply to point out that the more general equation

(3)
$$H\{x^{i}, p_{i}, \lambda\} = 1$$
 where $p_{i} = \partial_{i}\lambda$,

subject to the condition that H be plus-one in p; and that

(4)
$$\det \left(\frac{\partial^2 H^2}{\partial p_j \partial p_i}\right) = \det \left(H^2 p_i p_j\right) \neq 0,$$

Canad. Math. Bull. vol. 8, no. 3, April 1965

317

is always associated with a variational problem which can be put in either of the forms: minimize

(5)
$$\begin{cases} t_{1} \\ \int_{0}^{t} F\{x^{i}, x^{i}, \lambda\} dt \\ t_{0} \\ \text{subject to the restraint} \\ \lambda^{\lambda} - F\{x^{i}, x^{i}, \lambda\} = 0, \quad \lambda(t_{0}) = 0 \end{cases}$$

or: minimize

(5*)
$$\lambda(t_1) = \int_{t_0}^{t_1} F\{x^i, \dot{x}^i, \lambda\} dt$$

relative to curves $x^{i}(t)$ joining two given points x_{0}^{i} and x_{1}^{i} . The form (5*) is easily obtained from (5) by integrating the restraining equation. In the form (5) the problem is clearly analogous to a problem of Lagrange.

LEMMA. A necessary condition for an extremal curve for the problem (5) is that the $x^{i}(t)$ satisfy

(6)
$$\frac{d}{dt} F_{\mathbf{x}^{i}} - F_{\mathbf{x}^{i}} = F_{\mathbf{x}^{i}} F_{\lambda}$$

Proof. Considering $\mu = \mu(t)$ as a Lagrange multiplier, set $G = F + \mu(\lambda - F)$. Then the Euler equations

$$\frac{d}{dt} G_{i} - G_{i} = 0, \qquad \frac{d}{dt} G_{\lambda} - G_{\lambda} = 0$$

become

$$\hat{\mu} F_{i} = (1-\mu) \left(\frac{d}{dt} F_{i} - F_{i} \right), \quad \hat{\mu} = (1-\mu) F_{\lambda},$$

318

and eliminating μ will yield the lemma.

The Hamiltonian and Hamilton-Jacobi equation were originally derived directly from (5*) by a geometric construction, but the following development is considerably shorter and derives (5*) from the generalized Hamilton-Jacobi equation (3). (The author is indebted to Prof. H. Rund for pointing out this reversed process.)

The partial differential equation (3) has as characteristic equations [2]

$$(7.1) \qquad \dot{x}^{i} = H_{p_{i}}$$

(7.2)
$$\dot{\mathbf{p}}_{\mathbf{i}} = -\mathbf{H}_{\mathbf{i}} - \mathbf{p}_{\mathbf{i}}\mathbf{H}_{\lambda}$$

(7.3)
$$\dot{\lambda} = \sum_{i=1}^{N} p_{i}H = H \text{ by homogeneity.}$$

The development consists in constructing a Lagrangian F and showing that (7.3) for H implies (5*) for F while equations (7.1) and (7.2) for H imply (6) for F.

To this end consider the equation

(8)
$$\dot{x}^{i} = \frac{1}{2} H_{p_{i}}^{2} \quad \left(=\frac{1}{2} \frac{\partial H^{2}}{\partial p_{i}}\right)$$

which by (4) may always be solved for p_i, obtaining say

(9)
$$p_i = \psi_i (\mathbf{x}^j, \mathbf{\dot{x}}^j, \lambda) .$$

Define

(10)
$$F(x^{i}, \dot{x}^{i}, \lambda) = H\{x^{i}, \psi_{i}(x^{j}, \dot{x}^{j}, \lambda), \lambda\}$$

319

It follows that for a set $\{\dot{x}^i\}$ satisfying $F\{\dot{x}, \dot{x}^i, \lambda\} = 1$ the corresponding p_i given by (9) satisfy $H\{\dot{x}, p_i, \lambda\} = 1$; expanding (8) in the form $\dot{x}^i = H H_{p_i}$, these \dot{x}^i and p_i also p_i satisfy (7.1). Finally, since H^2 is plus-one in p_i , equations p_i (8) and (9) imply that ψ_i , and hence also F, are plus-one in \dot{x}^i .

THEOREM. Let $H(\mathbf{x}^{i}, \mathbf{p}_{i}, \lambda)$ be plus-one in \mathbf{p}_{i} , assume $det(H_{p_{i}p_{j}}^{2}) \neq 0$, where the second derivatives are continuous,

and consider the partial differential equation (3). With H is associated a Lagrangian F defined by (10) satisfying

(11)
$$F_{i} = -H_{i} \qquad F_{\lambda} = -H_{\lambda},$$

and such that the curves satisfying the characteristic equations (7.1) are also extremals of (5*) in that they also satisfy (6).

<u>Proof.</u> By (8), since H^2 has continuous second derivatives, the matrix $(\partial \dot{x}^i / \partial p_j)$ is symmetric, and by (4) has a symmetric inverse matrix clearly given by $(\partial p_i / \partial \dot{x}^j)$. Hence by (8), (10) and the homogeneity of ψ_i , (using the summation convention for j = 1, ..., N)

(12)
$$\frac{1}{2} F_{\dot{x}^{i}}^{2} = \frac{1}{2} H_{p_{j}}^{2} \frac{\partial \psi_{j}}{\partial \dot{x}^{i}} = \dot{x}^{j} \frac{\partial \psi_{i}}{\partial \dot{x}^{j}} = \psi_{i} = p_{i}$$

It follows from the plus-one homogeneity of F and F that x^{j}

$$HH_{p_{j}\partial x^{i}}^{\partial \psi} = \dot{x}^{j} \frac{\partial}{\partial x^{i}} (F, F_{j}) = \dot{x}^{j} (F, F_{j} + FF_{j}) = 2 FF_{j}$$

from which, using a similar argument for λ , one obtains

$$H_{p_{j}\frac{\partial \psi_{j}}{\partial x^{i}}} = 2 F_{i} \qquad H_{p_{j}\frac{\partial \psi_{j}}{\partial \lambda}} = 2 F_{\lambda}.$$

But differentiating (10) yields

$$F_{i} = H_{i} + H_{j\partial x} - \frac{\partial \psi}{\partial i} = H_{i} + 2 F_{i},$$

and a similar argument for λ proves (11). Substituting from (11) and (12) into (7.2) yields

$$\frac{\mathrm{d}}{\mathrm{dt}}(\mathbf{F},\mathbf{F}_{i}) = \mathbf{F}_{i} + (\mathbf{F}\mathbf{F}_{i})\mathbf{F}_{\lambda}.$$

Using a parameter consistent with (7.1) so that H = F = 1, this reduces to (6), proving the theorem.

REFERENCES

- 1. H. Rund, The Differential Geometry of Finsler Spaces, Springer, 1958.
- Fritz John, Partial Differential Equations, New York University, 1952-53, p. 36.

University of Waterloo