A GENERAL HAMILTON-JACOBI EQUATION AND ASSOCIATED PROBLEM OF LAGRANGE

M.A. McKiernan

(received July 15, 1964)

It is well known [1] that the variational problem of minimizing

$$
\begin{equation*}
\lambda=\int F\left\{x^{i}, \dot{x}^{i}\right\} d t \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

where F is positive homogeneous of degree one in \dot{x}^{i} (henceforth abbreviated to "plus-one" in $\dot{\mathbf{x}}^{\mathbf{i}}$) leads to a Hamiltonian $H\left\{x^{i}, p_{i}\right\}$ and corresponding Hamilton-Jacobi equation

$$
\begin{equation*}
H\left\{x^{i}, p_{i}\right\}=1 \quad \text { where } \quad p_{i}=\partial_{i} \lambda=\frac{\partial \lambda}{\partial x^{i}} \tag{2}
\end{equation*}
$$

Here H is also plus-one in P_{i}. The geodesic equations of (1) are characteristic equations for (2) and the Monge cones associated with (2) are given by the integrand in (1); the cone at (x_{0}, λ_{0}) being given by $\lambda-\lambda_{0}=F\left\{x_{0}^{i}, x^{i}-x_{0}^{i}\right\}$. The purpose of this note is simply to point out that the more general equation

$$
\begin{equation*}
H\left\{x^{i}, p_{i}, \lambda\right\}=1 \quad \text { where } p_{i}=\partial_{i} \lambda \tag{3}
\end{equation*}
$$

subject to the condition that H be plus-one in p_{i} and that

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} H^{2}}{\partial p_{j} \partial p_{i}}\right)=\operatorname{det}\left(H^{2} p_{i} p_{j}\right) \neq 0 \tag{4}
\end{equation*}
$$

Canad. Math. Bull. vol. 8, no. 3, April 1965
is always associated with a variational problem which can be put in either of the forms: minimize

$$
\left\{\begin{array}{c}
\int_{{ }_{t_{0}}}^{t_{1}} F\left\{x^{i}, \dot{x}^{i}, \lambda\right\} d t \tag{5}\\
\text { subject to the restraint } \\
\dot{\lambda}-F\left\{x^{i}, \dot{x}^{i}, \lambda\right\}=0, \quad \lambda\left(t_{0}\right)=0
\end{array}\right.
$$

or: minimize

$$
\begin{equation*}
\lambda\left(t_{1}\right)=\int_{t_{0}}^{t_{1}} F\left\{x^{i}, \dot{x}^{i}, \lambda\right\} d t \tag{5*}
\end{equation*}
$$

relative to curves $x^{i}(t)$ joining two given points x_{0}^{i} and x_{1}^{i}. The form (5*) is easily obtained from (5) by integrating the restraining equation. In the form (5) the problem is clearly analogous to a problem of Lagrange.

LEMMA. A necessary condition for an extremal curve for the problem (5) is that the $x^{i}(t)$ satisfy

$$
\begin{equation*}
\frac{d}{d t} F_{\dot{\mathbf{x}}}-F_{x^{i}}=F_{\dot{\mathbf{x}}} F_{\lambda} \tag{6}
\end{equation*}
$$

Proof. Considering $\mu=\mu(t)$ as a Lagrange multiplier, set $G=F+\mu(\lambda-F)$. Then the Euler equations

$$
\frac{d}{d t} G_{\dot{\mathbf{x}}}-G_{\mathrm{x}}=0, \quad \frac{\mathrm{~d}}{\mathrm{dt}} G_{\dot{\lambda}}-G_{\lambda}=0
$$

become

$$
\dot{\mu} F_{\dot{\mathbf{x}}}=(1-\mu)\left(\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~F}_{\dot{\mathbf{x}}} \mathrm{i}^{1}-\mathrm{F}_{\mathrm{x}}\right)^{\prime}, \dot{\mu}=(1-\mu) F_{\lambda} \text {, }
$$

and eliminating $\dot{\mu}$ will yield the lemma.

The Hamiltonian and Hamilton-Jacobi equation were originally derived directly from (5*) by a geometric construction, but the following development is considerably shorter and derives ($5 *$) from the generalized Hamilton-Jacobi equation (3). (The author is indebted to Prof. H. Rund for pointing out this reversed process.)

The partial differential equation (3) has as characteristic equations [2]

$$
\begin{equation*}
\dot{x}^{\dot{i}}=H_{p_{i}} \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{i}}=-\mathrm{H}_{\mathrm{x}}-\mathrm{p}_{\mathrm{i}} \mathrm{H}_{\lambda} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\lambda}=\sum_{i=1}^{N} p_{i} H_{p_{i}}=H \text { by homogeneity. } \tag{7.3}
\end{equation*}
$$

The development consists in constructing a Lagrangian F and showing that (7.3) for H implies ($5 *$) for F while equations (7.1) and (7.2) for H imply (6) for F.

To this end consider the equation

$$
\begin{equation*}
\dot{x}^{i}=\frac{1}{2} H_{p_{i}}^{2} \quad\left(=\frac{1}{2} \frac{\partial H^{2}}{\partial p_{i}}\right) \tag{8}
\end{equation*}
$$

which by (4) may always be solved for P_{i} 。 obtaining say

$$
\begin{equation*}
p_{i}=\psi_{i}\left(x^{j}, \dot{x}, \lambda\right) \tag{9}
\end{equation*}
$$

Define

$$
\begin{equation*}
F\left(x^{i}, \dot{x}^{i}, \lambda\right)=H\left\{\dot{x}^{i}, \psi_{i}\left(x^{j}, \dot{x}^{j}, \lambda\right), \lambda\right\} . \tag{10}
\end{equation*}
$$

It follows that for a set $\left\{\dot{x}^{\dot{i}}\right\}$ satisfying $F\left\{\mathbf{x}^{i}, \dot{x}^{i}, \lambda\right\}=1$ the corresponding p_{i} given by (9) satisfy $H\left\{x^{i}, p_{i}, \lambda\right\}=1$; expanding (8) in the form $\dot{x}^{i}=H_{p_{i}}$, these \dot{x}^{i} and p_{i} also satisfy (7.1). Finally, since $\underset{p_{i}}{H_{i}^{2}}$ is plus-one in p_{i}, equations (8) and (9) imply that ψ_{i}, and hence also F, are plus-one in \dot{x}^{i}.

THEOREM. Let $H\left(x^{i}, p_{i}, \lambda\right)$ be plus-one in p_{i}, assume $\operatorname{det}\left(H_{p_{i}}^{2}\right) \neq 0$, where the second derivatives are continuous, and consider the partial differential equation (3). With H is associated a Lagrangian F defined by (10) satisfying

$$
\begin{equation*}
F_{x}^{i}=-H_{x}^{i} \quad F_{\lambda}=-H_{\lambda}, \tag{11}
\end{equation*}
$$

and such that the curves satisfying the characteristic equations (7.1) are also extremals of ($5 *$) in that they also satisfy (6).

Proof. By (8), since H^{2} has continuous second derivatives, the matrix $\left(\partial \dot{x}^{i} / \partial p_{j}\right)$ is symmetric, and by (4) has a symmetric inverse matrix clearly given by $\left(\partial \mathrm{p}_{\mathrm{i}} / \partial \dot{x}^{j}\right)$. Hence by (8), (10) and the homogeneity of ψ_{i}, (using the summation convention for $j=1, \ldots, N$)

$$
\begin{equation*}
\frac{1}{2} F_{\dot{\mathbf{x}}}^{2}=\frac{1}{2} H_{p_{j}^{2}}^{\partial \dot{x}_{j}^{i}}=\dot{x}^{j} \frac{\partial \psi_{i}}{\partial \dot{x}^{j}}=\psi_{i}=p_{i} \tag{12}
\end{equation*}
$$

It follows from the plus-one homogeneity of F and $F_{x} j$ that

$$
H_{p_{j}} \frac{\partial \psi_{j}}{\partial x^{i}}=\dot{x} \frac{\partial}{\partial x^{i}}\left(F \cdot F_{\dot{x}}^{j}\right)=\dot{x}^{j}\left(F_{\dot{x} j} F_{x^{i}}+F F_{x^{i} \dot{x}^{j}}\right)=2 F F
$$

from which, using a similar argument for λ, one obtains

$$
H_{p_{j}} \frac{\partial \psi_{j}}{\partial x^{i}}=2 F_{x} \quad H_{p_{j}} \frac{\partial \psi_{j}}{\partial \lambda}=2 F_{\lambda}
$$

But differentiating (10) yields

$$
F_{x}=H_{x}+H_{p_{j}} \frac{\partial \psi_{j}}{\partial x^{i}}=H_{x}+2 F_{x},
$$

and a similar argument for λ proves (11). Substituting from (11) and (12) into (7.2) yields

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~F} \cdot \mathrm{~F}_{\dot{\mathrm{x}}}^{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{x}_{\mathrm{i}}}+\left(\mathrm{FF}_{\dot{\mathrm{x}}} \mathrm{i}\right) \mathrm{F}_{\lambda}
$$

Using a parameter consistent with (7.1) so that $H=F=1$, this reduces to (6), proving the theorem.

REFERENCES

1. H. Rund, The Differential Geometry of Finsler Spaces, Springer, 1958.
2. Fritz John, Partial Differential Equations, New York University, 1952-53, p. 36.

University of Waterloo

