Canad. Math. Bull. Vol. 15 (1), 1972

A LEBESGUE DECOMPOSITION THEOREM FOR C* ALGEBRAS

BY MICHAEL HENLE

1. Introduction. This paper, by generalizing von Neumann's proof of the Radon-Nikodym and Lebesgue decomposition theorems [3], obtains analogous results for positive linear functionals on a C^* algebra. The concept of "absolute continuity" used and the Radon-Nikodym portion of the resulting theorem are due to Dye [2].

2. Definitions and notation. (i) Let **B** be a fixed C^* algebra. (For basic facts regarding C^* algebras one may consult Dixmier's book [1].) Let **P** be the positive cone of **B**^{*}. To each $p \in \mathbf{P}$ there corresponds (a) a Hilbert space $L^2(p)$ which is the completion of **B** in the norm $||T||_p = p(T^*T)^{1/2}$, (b) a representation π_p of **B** on $L^2(p)$ which is the extension of left multiplication from **B** to $L^2(p)$, and (c) a distinguished element l_p of $L^2(p)$, cyclic with respect to the representation π_p , such that for $T \in \mathbf{B}$, $p(T) = \langle \pi_p(T) l_p, l_p \rangle_p$. This triple is uniquely determined by p in the sense that if **H** is any Hilbert space, π a representation of **B** on **H**, and $x \in \mathbf{H}$ a cyclic vector for π such that for $T \in \mathbf{B}$, $\langle \pi(T)x, x \rangle_{\mathbf{H}} = p(T)$; then there is a unique unitary operator $U: \mathbf{H} \to L^2(p)$ such that $Ux = l_p$, and for $T \in \mathbf{B}$, $U\pi(T)U^* = \pi_p(T)$. For $T \in \mathbf{B}$ we use the notation T^p for the element $\pi_p(T)l_p \in L^2(p)$.

(ii) Let $f, p \in \mathbf{P}$. f is dominated by p if there exists a constant K>0 such that $Kp-f \in \mathbf{P}$. For such f the bilinear form $f(S^*T)$, at first defined only for $S, T \in \mathbf{B}$, may be transferred to the subspace $\mathbf{B}^p = \{T^p \mid T \in \mathbf{B}\}$ of $L^2(p)$, and then extended to all $L^2(p)$. This extended form is written $[x, y]_f^p$, $x, y \in L^2(p)$, to distinguish it from the usual inner product on $L^2(p)$. It is uniquely determined by the equation

$$[T^p, S^p]_f^p = f(S^*T) \text{ for } T, S \in \mathbf{B}.$$

There is a unique bounded operator H on $L^2(p)$ such that $[x, y]_f^p = \langle x, Hy \rangle_p$. H is positive and commutes with all operators $\pi_p(\mathbf{B})$. Conversely any positive operator H on $L^2(p)$, commuting with $\pi_p(\mathbf{B})$, defines by $f(T) = \langle T^p, Hl_p \rangle_p$ an element f of \mathbf{P} dominated by p. Consider the range subspace: $\mathbf{R}(H) = \text{closed}$ linear span in $L^2(p)$ of $H\mathbf{B}^p = \text{closed}$ linear span of $\pi_p(\mathbf{B})Hl_p$. It is well known that $\mathbf{R}(H) = \mathbf{R}(H^{1/2})$, therefore $H^{1/2}l_p$ is a cyclic vector for the representation $\pi_p \mid \mathbf{R}(H)$. Furthermore

$$\langle \pi_p(T)H^{1/2}l_p, H^{1/2}l_p \rangle_p = f(T), \quad T \in \mathbf{B}$$

therefore $(\mathbf{R}(H), \pi_p \mid \mathbf{R}(H), H^{1/2}l_p)$ may be identified with $(L^2(f), \pi_f, l_f)$.

Received by the editors September 2, 1970 and, in revised form, June 21, 1971.

MICHAEL HENLE

(iii) Now let H be a positive operator on $L^2(p)$, not necessarily bounded, but such that (a) H commutes, in the sense appropriate to unbounded operators, with $\pi_p(\mathbf{B})$; and (b) l_p is in the domain of $H^{1/2}$. Consider the functional

(1)
$$f(T) = \langle \pi_p(T) H^{1/2} l_p, H^{1/2} l_p \rangle_p, \quad T \in \mathbf{B}.$$

Clearly $f \in \mathbf{P}$. In view of (a) we may identify $(L^2(f), \pi_f, l_f)$ with $(\mathbf{R}(H), \pi_p | \mathbf{R}(H), H^{1/2}l_p)$ just as in (ii). In general for $f, p \in \mathbf{P}$ we call f almost dominated by p if for any sequence $\{T_n\} \subseteq \mathbf{B}$ such that T_n^p converges to zero (in $L^2(p)$) and $\{T_n^f\}$ is Cauchy (in $L^2(f)$), then $T_n^f \to 0$. This is abbreviated $f \ll p$. The functional f defined by (1) is almost dominated by p. For suppose that $\{T_n\} \subseteq \mathbf{B}$ with $T_n^p \to 0$ and $\{T_n^f\}$ Cauchy. Since T_n^f may be identified with $\pi_p(T_n)H^{1/2}l_p = H^{1/2}T_n^p, T_n^f \to 0$ follows from the fact that $H^{1/2}$ is a closed operator. It turns out that the functionals f of this form are all the functionals almost dominated by p. This is the Radon–Nikodym part of the theorem to follow. (See Dye [2].)

(iv) Let $f, p \in \mathbf{P}$, and let H be the unique bounded operator on $L^2(p+f)$ such that,

(2)
$$[x, y]_{f}^{p+f} = \langle x, Hy \rangle_{p+f}, \quad x, y \in L^{2}(p+f).$$

Then also $[x, y]_p^{p+f} = \langle x, (I-H)y \rangle_{p+f}$. We may identify $L^2(f)$ with $\mathbf{R}(H)$ and $L^2(p)$ with $\mathbf{R}(I-H)$. With this identification $L^2(p+f) = L^2(p) + L^2(f)$. Clearly $L^2(p+f) = L^2(p) \oplus L^2(f)$ iff $\mathbf{R}(H)$ is orthogonal to $\mathbf{R}(I-H)$. This occurs iff $\mathbf{K}(H)^{\perp} = \mathbf{R}(H) = \mathbf{R}(I-H)^{\perp} = \mathbf{K}(I-H)$, or iff H is the projection of $L^2(p+f)$ onto $L^2(f)$. In this case we say that f is singular to p, abbreviated $f \perp p$.

3. Existence of the Lebesgue decomposition.

THEOREM 1. Let $p, f \in \mathbf{P}$. Then there exist $f_1, f_2 \in \mathbf{P}$ such that $f=f_1+f_2$ and (a) $f_1 \ll p$ and (b) $f_2 \perp p$.

Proof. The Set Up. Consider $L^2(p+f)$. Let *H* satisfy (2) and identify $L^2(f)$ with $\mathbf{R}(H)$ and $L^2(p)$ with $\mathbf{R}(I-H)$. Let *P* be the projection of $L^2(p+f)$ onto $L^2(p)$. Since $\mathbf{R}(I-H) = \mathbf{K}(I-H)^{\perp} =$ (the fixed points of $H)^{\perp}$, *P* is the support projection of I-H, in particular a spectral projection of *H*.

Define for $T \in \mathbf{B}$,

$$f_1(T) = [T^{p+f}, Pl_{p+f}]_f^{p+f} = \langle T^{p+f}, PHl_{p+f} \rangle_{p+f}$$
$$= \langle \pi_{p+f}(T)H^{1/2}Pl_{p+f}, H^{1/2}Pl_{p+f} \rangle_{p+f},$$

and

$$f_{2}(T) = [T^{p+f}, (I-P)l_{p+f}]_{f}^{p+f} = \langle T^{p+f}, H(I-P)l_{p+f} \rangle_{p+f}$$

= $\langle \pi_{p+f}(T)(I-P)l_{p+f}, (I-P)l_{p+f} \rangle_{p+f}.$

Clearly $f_1, f_2 \in \mathbf{P}$, and $f=f_1+f_2$.

Since P is a spectral projection of H, H leaves invariant $L^2(p) = PL^2(p+f)$. Let $\overline{H} = H \mid L^2(p)$. 1 is not in the point spectrum of \overline{H} , therefore $\overline{H}(I-\overline{H})^{-1}$ exists as a possibly unbounded, positive operator on $L^2(p)$. Clearly the domain of $\overline{H}^{1/2}(I-\overline{H})^{-1/2}$ contains $(I-H)^{1/2}l_{p+f}=l_p$. And as a function of \overline{H} , $\overline{H}(I-\overline{H})^{-1}$ commutes with all operators with which \overline{H} commutes, including therefore $\pi_p(\mathbf{B})$. We have

$$(\overline{H}^{1/2}(I-\overline{H})^{-1/2})l_p = PH^{1/2}(I-H)^{-1/2}P(I-H)^{1/2}l_{p+f} = H^{1/2}Pl_{p+f}$$

therefore f_1 is of the form (1). By §2(iii), f_1 is almost dominated by p. This proves (a).

From the definition of f_2 , $L^2(f_2)$ may be identified with $\mathbf{R}(I-P)$. Since this is orthogonal to $\mathbf{R}(P(I-H)) = \mathbf{R}(I-H) = L^2(p)$, $L^2(p+f_2)$ may be identified with $\mathbf{R}(P(I-H)+(I-P))$. From this it is clear that $L^2(p+f) = L^2(p) \oplus L^2(f)$. This proves (b).

COROLLARY. (Dye [2]). If f is almost dominated by p, then f is of the form (1).

Proof. It suffices to prove, in the set up of Theorem 1, that P=I. Let $x \in L^2(p+f)$, and take a sequence $\{T_n\} \subseteq \mathbf{B}$ such that $T_n^{p+f} \to x$. Suppose that Px=0. Then $x \in \mathbf{K}(I-H)$ and

$$T_n^p = \pi_p(T_n)l_p = \pi_{p+f}(T_n)(I-H)^{1/2}l_{p+f} = (I-H)^{1/2}T_n^{p+f}$$

$$\to (I-H)^{1/2}x = 0.$$

Since $f \ll p$, and $\{T_n^f\}$ is clearly Cauchy, it follows that $T_n^f \to 0$. Therefore,

$$\|x\|_{p+f}^{2} = \lim \|T_{n}^{p+f}\|_{p+f}^{2} = \lim \|T_{n}^{p}\|_{p}^{2} + \lim \|T_{n}^{f}\|_{f}^{2}$$

= 0.

This proves that P = I, hence $f_2 = 0$.

4. Uniqueness of the decomposition.

THEOREM 2. Let p, f be elements of \mathbf{P} , and let $f=f_1+f_2$ be the decomposition of Theorem 1. Let $f=g_1+g_2$ be a second decomposition of f such that $g_1 \ll p$ and $g_2 \perp p$. Then $f_1=g_1$ and $f_2=g_2$. To prove this we require the following:

LEMMA. Let $f, p, h \in \mathbf{P}$. (a) If $f \ll p$ and $p \perp h$, then $f \perp h$. (b) If $f \ll p$ and $f \perp p$, then f=0.

Proof of the lemma. (a) Let P be the projection of $L^2(p+h)$ onto $L^2(p)$. Since $p \perp h$, $L^2(h) = \mathbb{R}(I-P)$. By the corollary to Theorem 1, there is a (possibly unbounded) operator H on $L^2(p)$ such that

$$f(T) = \langle \pi_p(T) H^{1/2} l_p, H^{1/2} l_p \rangle_p = \langle \pi_{p+h}(T) H^{1/2} P l_{p+h}, H^{1/2} P l_{p+h} \rangle_{p+h}.$$

Then in $L^2(p+h)$, $L^2(f+h) = \mathbb{R}(H^{1/2}P + (I-P)) = \mathbb{R}(PHP + (I-P))$. From this realization of $L^2(f+h)$ it is clear that $f \perp h$.

(b) Let P be the projection on $L^2(p+f)$ such that $L^2(p) = \mathbf{R}(P)$ and $L^2(f) = \mathbf{R}(I-P)$. Let $x \in L^2(p+f)$, and suppose that Px=0. Exactly as in the proof of the corollary to Theorem 1 one shows that x=0. (In this case P plays the roles of P and H.) Thus P=I, and f=0.

MICHAEL HENLE

Proof of Theorem 2. By our lemma (a), $f_1 \perp f_2$ and $g_1 \perp g_2$. Let *P* and *Q* be the projections of $L^2(f)$ onto $L^2(f_1)$ and $L^2(g_1)$ respectively. It suffices to prove that P = Q. Identifying $L^2(f)$ with $\mathbf{R}(H) \subseteq L^2(p+f)$, referring to the set up in the proof of Theorem 1, it is clear that the projection *P* just defined is the restriction of the projection *P* occurring in the proof of Theorem 1 from $L^2(p+f)$ to $L^2(f)$. *Q*, however, is only defined on $L^2(f)$. Let $x \in L^2(f)$ and let $\{T_n\}$ be a sequence in **B** such that $T_n^{p+f} \to x$. Suppose Px = 0. As in the proof of the corollary to Theorem 1, this implies $x \in \mathbf{K}(I-H)$, and that $T_n^p \to 0$. Therefore $T_n^{p_1} \to 0$, since $g_1 \ll p$.

We also observe that

$$\lim T_n^f = \lim H^{1/2} T_n^{p+f} = H^{1/2} x = x,$$

so that

$$\|Qx\|_{f}^{2} = \lim \|QT_{n}^{f}\|_{f}^{2} = \lim \|T_{n}^{g_{1}}\|_{g_{1}}^{2} = 0.$$

Thus $Q \leq P$. What we have proved is that f_1 is in some sense the maximal part of f almost dominated by p.

Now consider the functional $h \in \mathbf{P}$ defined by

$$h(T) = \langle \pi_f(T)l_f, (P-Q)l_f \rangle_f.$$

h is clearly almost dominated by f_1 and g_2 . Two applications of the lemma (a) show that also $h \perp f_1$. Therefore by the lemma (b) h=0. Thus P=Q, and the decomposition is unique.

5. Remarks. (a) Dye [2] has proven that if, in a sequence $\{f_n\} \subseteq \mathbf{P}$, all f_n are almost dominated by p, and $\sum ||f_n|| < \infty$, then $\sum f_n \ll p$. In particular $\{f \mid f \ll p\}$ is closed under addition.

(b) This same statement with "singular to" replacing "almost dominated by" is true for Abelian algebras, but far from true in general. A counter-example appears in the simplest of non-Abelian C^* algebras. Let \mathbf{M}_2 be the algebra of 2×2 complex matrices and consider the functionals

$$f_1\begin{pmatrix}a&b\\c&d\end{pmatrix}=a, f_2\begin{pmatrix}a&b\\c&d\end{pmatrix}=d, \text{ and } g\begin{pmatrix}a&b\\c&d\end{pmatrix}=\frac{1}{2}(a+b+c+d).$$

All three are pure states of M_2 ; their corresponding representations are irreducible. Therefore any two of them must be either mutually singular or mutually almost dominating, since none can be decomposed into mutually singular parts.

The matrix

$$T = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}^* \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \ge 0$$

satisfies $f_1(T) = f_2(T) = 1$, g(T) = 0. Therefore $f_1 \perp g$, and $f_2 \perp g$. But not only is $f_1 + f_2$ not singular to g, but actually g is almost dominated by $f_1 + f_2$, since the

[March

1972] A DECOMPOSITION THEOREM

latter is a faithful trace on M_2 . It is worth mentioning in this context (as suggested by the referee) that $\{f | f \perp p\}$ is closed under increasing suprema.

(c) If **B** is a von Neumann algebra and f is a normal positive linear functional, then f_1 and f_2 of the Lebesgue decomposition of f are also normal, whether p is normal or not. This follows from the fact that π_f is normal when f is normal.

BIBLIOGRAPHY

1. J. Dixmier, Les C*-Algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

2. H. Dye, "The Radon-Nikodym theorem for finite rings of operators", Trans. Amer. Math. Soc. 72 (1952), 243–280.

3. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York (1955), 137-140.

OBERLIN COLLEGE, OBERLIN, OHIO