
Geometric Langlands correspondence for SL(2),
PGL(2) over the pair of pants

David Nadler and Zhiwei Yun

Compositio Math. 155 (2019), 324–371.

doi:10.1112/S0010437X18007893

https://doi.org/10.1112/S0010437X18007893 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007893
https://doi.org/10.1112/S0010437X18007893


Compositio Math. 155 (2019) 324–371

doi:10.1112/S0010437X18007893

Geometric Langlands correspondence for SL(2),
PGL(2) over the pair of pants
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Abstract

We establish the geometric Langlands correspondence for rank-one groups over the
projective line with three points of tame ramification.

1. Introduction

1.1 Main result
Let P1 denote the complex projective line, and fix the three-element subset S = {0, 1,∞} ⊂
P1(C).

Let BunPGL(2)(P1, S) denote the moduli stack (over C) of G = PGL(2)-bundles on P1 with
Borel reductions along S. In more classical language, it classifies rank-two vector bundles E with
lines in the fibers `s ⊂ E|s, s ∈ S, all up to tensoring with line bundles. It is locally of finite type
with discretely many isomorphism classes of objects.

Let Sh !(BunPGL(2)(P1, S)) be the Q-linear dg category of constructible complexes of Q-
modules on BunPGL(2)(P1, S) that are extensions by zero off of finite type substacks.

Let LocSL(2)(P1, S) denote the moduli stack (over Q) of SL(2)-local systems on P1\S equipped
near S with a Borel reduction with unipotent monodromy. Thus a point of LocSL(2)(P1, S) consists
of triples of pairs (As, `s), s ∈ S, consisting of a matrix As ∈ SL(2) and an eigenline As(`s) ⊂ `s
with trivial eigenvalue As|`s = 1, and the matrices satisfy the equation A0A1A∞ = 1 inside of
SL(2). It admits the presentation

LocSL(2)(P1, S) ' (Ñ∨)S,
∏

=1/SL(2),

where Ñ∨ ' T ∗P1 denotes the Springer resolution of the unipotent variety N∨ of G∨ = SL(2),
and (Ñ∨)S,

∏
=1 denotes the product of S copies of Ñ∨ with the equation on the group elements∏

= 1 imposed inside of SL(2). Alternatively, it can be shown that LocSL(2)(P1, S) also admits
a linear presentation

LocSL(2)(P1, S) ' T ∗((P1)S/SL(2)),

where the equation
∏

= 1 is replaced by the zero-fiber of the moment map µ : T ∗((P1)S) → sl(2)∗.
Let Coh(LocSL(2)(P1, S)) be the Q-linear dg category of coherent complexes on LocSL(2)

(P1, S).
One can similarly introduce the above objects with the roles of PGL(2) and SL(2) swapped.

We will also need the slight variation where we write CohSL(2)−alt(LocPGL(2)(P1, S)) for the
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Q-linear dg category of SL(2)-equivariant coherent complexes on (Ñ∨)S,
∏

=1, where the equation∏
= 1 is imposed inside of PGL(2), and the center µ2 ' Z(SL(2)) ⊂ SL(2) acts on coherent

complexes by the alternating representation.
Our main theorem is the following geometric Langlands correspondence with tame

ramification.

Theorem 1.1.1. There are equivalences of dg categories

Coh(LocSL(2)(P1, S))
∼ // Sh !(BunPGL(2)(P1, S)), (1.1)

CohSL(2)−alt(LocPGL(2)(P1, S))
∼ // Sh !(BunSL(2)(P1, S)) (1.2)

compatible with Hecke modifications and parabolic induction.

Remark 1.1.2. One can choose an equivalence

CohSL(2)−alt(LocPGL(2)(P1, S)) ' Coh(LocPGL(2)(P1, S)),

for example, by tensoring with a line bundle with an odd total twist, and thus reformulate the
second assertion of the theorem in a more traditional form, but the formulation given in the
theorem is more canonical and independent of choices.

Remark 1.1.3. It is also straightforward to use the theorem to deduce a similar result for GL(2).

Remark 1.1.4. One can view the theorem as an instance of the traditional de Rham geometric
Langlands correspondence (see, for example, [BD]) or alternatively of the topological Betti
geometric Langlands correspondence (see [BN18] for an outline of expectations).

On the automorphic side, the moduli BunPGL(2)(P1, S) has discretely many isomorphism
classes of objects, hence all of their codirections are nilpotent. Thus, if we work specifically with
C-coefficients, via the Riemann–Hilbert correspondence, there is no difference in considering
D-modules or complexes of C-modules (with nilpotent singular support).

Similarly, on the spectral side, the Betti moduli LocSL(2)(P1, S) is algebraically isomorphic to
the analogous de Rham moduli ConnSL(2)(P1, S) of parabolic connections (see Corollary 4.2.4).
Thus their coherent complexes coincide.

Remark 1.1.5. One can further impose nilpotent singular support (in the sense of [AG15])
on the coherent complexes on the spectral side. Under the equivalences of the theorem, this
will correspond to requiring the stalks of the automorphic complexes to be torsion over the
equivariant cohomology of automorphism groups. If one then passes to the ind-completions
of these categories, what results are equivalences for all automorphic complexes without any
constructibility or support restrictions

IndCohN (LocSL(2)(P1, S))
∼ // Sh(BunPGL(2)(P1, S)),

IndCoh
SL(2)−alt
N (LocPGL(2)(P1, S))

∼ // Sh(BunSL(2)(P1, S)).

Remark 1.1.6. One can also pass on the automorphic side to monodromic complexes of any
specified monodromy at the three ramification points. It is possible to find an equivalence with
coherent complexes on the corresponding spectral stack of local systems with the same specified
monodromy around the three ramification points. In the final section, we sketch the form this
takes in the case of unipotent monodromy at all three ramification points. For monodromy with
a more general semisimple part, the geometry only simplifies.
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1.2 Sketch of proof
We highlight here some of the key structures in the proof of Theorem 1.1.1. The second
equivalence (1.2) follows closely from the first (1.1) so we will focus on the first.

1.2.1 Spectral action. The category Sh !(BunPGL(2)(P1, S)) is naturally acted upon by a large
collection of commuting Hecke operators.

First, at each unramified point x ∈ P1\S, the symmetric monoidal Satake category
SatPGL(2) ' Rep(SL(2)) of spherical perverse sheaves on the affine Grassmannian GrPGL(2) acts
via bundle modifications. It is a simple verification that the action is locally constant in x ∈ P1\S,
and hence factors through the chiral homology∫

P1\S
Rep(SL(2)) ' Perf(LocSL(2)(P1\S)).

Second, at each point s ∈ S, the monoidal affine Hecke category of Iwahori-equivariant
constructible complexes on the affine flag variety FlPGL(2) acts via modifications of bundles
with flags. In particular, its symmetric monoidal subcategory of Wakimoto operators acts, and
hence via Bezrukavnikov’s tame local Langlands correspondence [Bez16], the tensor category
Perf(Ñ∨/SL(2)) of equivariant perfect complexes on the Springer resolution acts at each point
s ∈ S.

Thanks to the compatibility of Gaitsgory’s central functor [Gai01], the above actions assemble
into an action of the tensor category of perfect complexes on the spectral stack

Perf(LocSL(2)(P1, S))⊗ Sh !(BunPGL(2)(P1, S)) // Sh !(BunPGL(2)(P1, S)). (1.3)

By continuity, this can be extended to an action of quasi-coherent complexes on all automorphic
complexes and then further restricted to coherent complexes.

Remark 1.2.2. In the de Rham geometric Langlands program, the construction of such an action
is a deep ‘vanishing theorem’ [Gai]. In the Betti geometric Langlands program, it is a geometric
consequence of requiring automorphic complexes to have nilpotent singular support, see [NY16].

1.2.3 Whittaker sheaf. To construct the functor (1.1) from the action (1.3), we must choose
an automorphic complex to act upon. It will be the object that the spectral structure sheaf
O ∈ Perf(LocSL(2)(P1, S)) maps to, and there is a well-known candidate given by the Whittaker
sheaf WhS ∈ Sh !(BunPGL(2)(P1, S)).

In the situation at hand, the Whittaker sheaf takes the following simple form. Consider the
open substack of BunPGL(2)(P1, S), where the underlying bundle is E ' OP1(1)⊕OP1 . Consider
the further open substack, where the lines take the form

{`s, s ∈ S, generic} �
� j // {`s 6⊂ OP1(1), s ∈ S} �

� i // BunPGL(2)(P1, S).

Here ‘generic’ in the first item means that, in addition to `s 6⊂ OP1(1) for all s ∈ S, the three
lines do not simultaneously lie in the image of any map OP1 → E . Then the Whittaker sheaf is
given by the simple topological construction

WhS ' i!j∗Q ∈ Sh !(BunPGL(2)(P1, S)).

Remark 1.2.4. The most salient property of the Whittaker sheaf WhS , and indeed the only
property we use, is that it corepresents the functor of vanishing cycles for a non-zero covector at
the point given by the image of the natural induction map

Bun−1
B (P1)

∼ // {E ' OP1(1)⊕OP1 , `s ⊂ OP1 , s ∈ S} ⊂ BunG(P1, S).
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1.2.5 Compatibilities. With the functor (1.1) in hand, to prove it is an equivalence, we first

check that it behaves as expected with respect to certain distinguished objects.

First, we check that the functor (1.1) is compatible with induction from two points of tame

ramification. (In fact, we check that it is equivariant for all affine Hecke symmetries at the

ramification points.) Namely, for s ∈ S, we show that the functor (1.1) fits as the top arrow in

the following commutative diagram.

Coh(LocSL(2)(P1, S)) // Sh !(BunPGL(2)(P1, S))

Coh(LocSL(2)(P1, S\s))

η`s

OO

∼ // Sh !(BunPGL(2)(P1, S\s))

π∗s

OO

(1.4)

Here the bottom arrow is the geometric Langlands correspondence for two points of tame

ramification. A form of the Radon transform identifies it with Bezrukavnikov’s tame local

Langlands correspondence. The automorphic induction π∗s is pullback along the natural P1-

fibration

πs : BunPGL(2)(P1, S) // BunPGL(2)(P1, S\s),

where we forget the line at s ∈ S. The spectral induction η∗s is the twisted integral transform

η`s(F) = qs∗(p
∗
s(F)⊗OP1

s
(−1)[−1])

associated to the correspondence

LocSL(2)(P1, S\s) LocSL(2)(P1, S\s)×{s}/SL(2) P1
s/SL(2)

psoo qs // LocSL(2)(P1, S).

Alternatively, under the identification LocSL(2)(P1, S) ' T ∗((P1)S/SL(2)), the correspondence is

simply the Lagrangian correspondence associated to the projection (P1)S → (P1)S\s.

Next, we check that the functor (1.1) is compatible with parabolic induction in the form of

Eisenstein series. Namely, on the spectral side, consider the natural induction map

LocB∨(P1, S)
∼ // Ñ∨∆/SL(2) ⊂ LocSL(2)(P1, S)

with the image the reduced total diagonal where all lines coincide. On the automorphic side,

consider the natural induction map

q−1 : Bun−1
B (P1)

∼ // {E ' OP1(1)⊕OP1 , `s ⊂ OP1 , s ∈ S} ⊂ BunPGL(2)(P1, S).

Then we show the functor (1.1) matches the objects

OÑ∨∆/SL(2)
� // Eis−1 := q−1!QBun−1

B (P1)
[−1].

By applying Wakimoto operators on both sides, it follows that the functor (1.1) matches all

Eisenstein objects OÑ∨∆/SL(2)
(n+ 1) 7→ Eisn, for all n ∈ Z.
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1.2.6 New forms. With the preceding compatibilities in hand, we are able to readily deduce
that the functor (1.1) is an equivalence. The key idea is to focus on objects that are ‘new forms’
in that they do not come via induction from two points of tame ramification.

We introduce the full subcategories of ‘old forms’ as the images

Cold = 〈Im(η`s), s ∈ S〉 ⊂ Coh(LocSL(2)(P1, S)),

Shold = 〈Im(π∗s), s ∈ S〉 ⊂ Sh !(BunPGL(2)(P1, S))

and note that the compatibility (1.4) implies the functor (1.1) maps Cold essentially surjectively
to Shold.

Thus to show that (1.1) is essentially surjective, it suffices to show it induces an essentially
surjective functor on the quotient categories of new forms

Cnew = Coh(LocSL(2)(P1, S))/Cold,

Shnew = Sh !(BunPGL(2)(P1, S))/Shold.

To achieve this, we first check that Cnew and Shnew are generated respectively by the
Eisenstein objects OÑ∨/SL(2)

(n + 1) and Eisn for n > −1. We do this by an explicit

parameterization of objects on both sides.
Finally, to show the functor (1.1) is fully faithful, it suffices by evident Wakimoto symmetries

and continuity to check it induces isomorphisms

Hom•Coh(LocSL(2)(P1,S))(O,OÑ∨∆/SL(2)
(n+ 1))

∼ // Hom•Sh !(BunPGL(2)(P1,S))(WhS ,Eisn), n > −1.

For n > 0, we observe that both sides vanish, and for n = −1, both sides are scalars in degree 0
and the induced map is indeed an isomorphism.

1.3 Motivations
While the results of this paper can be viewed as an instance of the traditional de Rham geometric
Langlands correspondence, our initial motivations grew out of our interest in the topological Betti
geometric Langlands correspondence.

To recall the rough form of the Betti Geometric Langlands correspondence, let X be a smooth
projective curve, and S ⊂ X be a finite collection of points.

Let BunG(X,S) denote the moduli of G-bundles on X with a B-reduction along S.
Let ShN (BunG(X,S)) denote the dg category of complexes of sheaves with nilpotent singular

support on BunG(P1, S).
Let LocG∨(X,S) denote the moduli of G∨-local systems on X\S equipped near S with a

B∨-reduction with unipotent monodromy.
Let IndCohN (LocG∨(X,S)) denote the dg category of ind-coherent sheaves with nilpotent

singular support on LocG∨(X,S).

Conjecture 1.3.1 (Rough form of Betti geometric Langlands correspondence). There is an
equivalence

IndCohN (LocG∨(X,S))
∼ // ShN (BunG(X,S)) (1.5)

compatible with Hecke modifications and parabolic induction.
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Note that LocG∨(X,S) and hence the spectral side (1.5) depends only on the topological

structure of the curve X and not its algebraic structure. Thus the automorphic side of (1.5) is

also conjecturally a topological invariant, and hence the fiber at X of a locally constant family of

categories over the moduli of curves. In particular, it makes sense to try to produce a ‘Verlinde

formula’ calculating the automorphic side of (1.5) by degenerating to the boundary of the moduli

of curves and replacing X with a nodal graph of genus zero curves. Such a gluing paradigm for

the spectral side of (1.5) was established in [BN16].

Thus the Betti geometric Langlands correspondence admits the following two-step strategy.

(i) Produce a ‘Verlinde formula’ describing the automorphic category ShN (BunG(X,S)) in

terms of the atomic building blocks, where X = P1, and S comprises 0, 1, 2, or 3 points.

(ii) Establish the Betti geometric Langlands correspondence for the atomic building blocks,

where X = P1, and S comprises 0, 1, 2, or 3 points.1

For X = P1, and S comprising 0, 1, and 2, the Betti geometric Langlands correspondence is

equivalent via Radon transforms with the derived Satake correspondence and Bezrukavnikov’s

tame local Langlands correspondence. Thus the remaining challenge for step (ii) is to establish

the Betti geometric Langlands correspondence for the ‘pair of pants’, where X = P1, and S

comprises three points. This was our original motivation for pursuing the results of this paper.

Independently of the above considerations, the techniques of this paper also have immediate

consequences for the geometric Langlands correspondence when G = PGL(2), X = P1, and S

comprises four or more points. Note that BunPGL(2)(P1, S) and LocSL(2)(P1, S) are of dimension

#S − 3 and 2(#S − 3) respectively, and when #S > 4, there are continuous moduli of objects

within BunPGL(2)(P1, S) and non-trivial global functions on LocSL(2)(P1, S). The techniques of

this paper most directly apply to the expected correspondence between the full subcategory

of ShN (BunPGL(2)(P1, S)) generated by complexes with unipotent monodromies, and the full

subcategory of CohN (LocSL(2)(P1, S)) of coherent complexes supported on local systems with

global unipotent reductions. We hope to expand upon this in a subsequent paper.

1.4 Conventions

On the automorphic side, we will work with moduli stacks defined over the complex numbers C
and sheaves of Q-modules on them with respect to the classical topology.

Given a stack X over C, we write Sh(X), respectively Shc(X), for the Q-linear dg category of

complexes, respectively constructible complexes, of Q-modules on X. When X is locally of finite

type, we write Sh !(X) for the Q-linear dg category of constructible complexes of Q-modules on

X that are extensions by zero off of finite type substacks. Given an ind-stack X, we write Shc(X)

for the Q-linear dg category of constructible complexes of Q-modules on X that are extensions

by zero off of substacks. (For dg categories of complexes of sheaves, in particular the extension

of the standard six functor formalism, see [Sch18].)

On the spectral side, we will work with coherent sheaves over moduli stacks defined over Q.

All of our categories will be stable (= pretriangluated) Q-linear dg categories, and all of our

functors will be derived.

1 There is also a non-orientable version for real reductive groups, which leads to the additional atomic building
blocks, where ‘X = RP2’, and S comprises 0 or 1 point.
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2. General constructions

In this section, we collect standard structures from the geometric Langlands program. Most of
the materials in this section are known to experts.

2.1 Group theory
Let G be a reductive group, B ⊂ G a Borel subgroup, N ⊂ B its unipotent radical, and T = B/N
the universal Cartan. Let B ' G/B be the flag variety of G.

Let (ΛT , R
∨
+,Λ

∨
T , R+) be the associated based root datum, where ΛT = Hom(Gm, T ) is the

coweight lattice, R∨+ ⊂ ΛT the positive coroots, Λ∨T = Hom(T,Gm) the weight lattice, and R+ ⊂
Λ∨T the positive roots. Let Wf denote the Weyl group of G, and W aff 'Wf nΛT its affine Weyl
group. Let ρ ∈ Λ∨T (respectively ρ∨ ∈ ΛT ) be half of the sum of elements in R+ (respectively
R∨+).

Form the dual based root datum (Λ∨T , R+,ΛT , R
∨
+), and construct the Langlands dual group

G∨, with Borel subgroup B∨ ⊂ G∨, unipotent radical N∨ ⊂ B∨, and dual universal Cartan
T∨ = B∨/N∨. Let B∨ ' G∨/B∨ be the flag variety of G∨.

Let N∨ be the nilpotent cone in the Lie algebra g∨. We identify N∨ with the unipotent
elements in G∨ via the exponential map.

Let µ : Ñ∨ → N∨ be the Springer resolution. Recall that Ñ∨ ⊂ G∨ × B∨ classifies pairs
(g,B∨1 ) such that the class g lies in the unipotent radical of B∨1 . Note the isomorphism of adjoint

quotients N∨/B∨ ' Ñ∨/G∨.

2.2 Hecke kernels
2.2.1 Satake category. Let D = D− = D+ = Spec k[[t]] be copies of the formal disk, D× =

Spec k((t)) ⊂ D,D−, D+ the punctured formal disk, and D = D−
∐
D× D+ the non-separated

disk with two zeros 0− ∈ D−, 0+ ∈ D+.
Let BunG(D) be the moduli of G-bundles on D.
Introduce the Laurent series loop group G((t)) = Maps(D×, G), with its parahoric arc

subgroup G[[t]] = Maps(D,G), and affine Grassmannian GrG = G((t))/G[[t]]. The gluing
presentation D = D−

∐
D× D+ induces a double-coset presentation

BunG(D) ' G[[t]]\G((t))/G[[t]] ' G[[t]]\GrG.

Let Hsph
G = Shc(BunG(D)) be the dg spherical Hecke category of constructible complexes on

BunG(D) with proper support, or equivalently G[[t]]-equivariant constructible complexes on GrG
with proper support. Convolution and fusion equips Hsph

G with an E3-monoidal structure, which

preserves the heart Hsph
G,♥ ⊂ H

sph
G with respect to the perverse t-structure. The E3-monoidal

structure on Hsph
G,♥ naturally lifts to a symmetric monoidal structure. Though we mention it for

clarity, we will not need the E3-monoidal structure on Hsph
G but only the symmetric monoidal

structure on Hsph
G,♥.

The geometric Satake correspondence [MV07, Gin95] provides a symmetric monoidal
equivalence

Φsph : Rep(G∨) ' Hsph
G,♥,ρ∨ , (2.1)

where Hsph
G,♥,ρ∨ denotes the same monoidal category Hsph

G,♥ but with its twisted commutativity
constraint. There is also a derived geometric Satake correspondence but we will not need it.
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2.2.2 Affine Hecke category. Let BunG(D, {0−, 0+}) be the moduli of G-bundles on D with
B-reductions at the points 0−, 0+ ∈ D. The natural projection BunG(D, {0−, 0+}) → BunG(D)
is a B × B-fibration.

Let I ⊂ G[[t]] be the Iwahori subgroup given by the inverse image of B ⊂ G under the
evaluation map at 0 ∈ D, and FlG = G((t))/I the corresponding affine flag variety. The gluing
presentation D = D−

∐
D× D+ induces a double-coset presentation

BunG(D, {0−, 0+}) ' I\G((t))/I ' I\FlG.

LetHaff
G = Shc(BunG(D, {0−, 0+})) be the dg affine Hecke category of constructible complexes

on BunG(D, {0−, 0+}) with proper support, or equivalently I-equivariant constructible complexes
on FlG with proper support. Convolution equips Haff

G with a monoidal structure.

Recall we write µ : Ñ∨ →N∨ for the Springer resolution, and identify N∨ with the unipotent
elements in G∨ via the exponential map. The Steinberg variety StG∨ is the derived scheme given
by the derived fiber product

StG∨ = Ñ∨ ×G∨ Ñ∨.

Passing to adjoint quotients, we have

StG∨/G
∨ = (Ñ∨ ×G∨ Ñ∨)/G∨ ' Ñ∨/G∨ ×G∨/G∨ Ñ∨/G∨.

Let CohG
∨
(StG∨) be the dg derived category of coherent complexes on StG∨/G

∨, or
equivalently G∨-equivariant coherent complexes on StG∨ . Convolution equips it with a monoidal
structure.

Bezrukavnikov’s theorem [Bez16, Theorem 1] provides a monoidal equivalence

Φaff : CohG
∨
(StG∨)

∼ // Haff
G . (2.2)

Example 2.2.3 (Wakimoto sheaves, see [Bez16, § 3.3]). For λ ∈ ΛT = {1} n ΛT ⊂ Wf n ΛT =
W aff , we have the G∨-equivariant line bundle OB∨(λ) on the flag variety B∨ = G∨/B∨. It pulls
back under the natural projection π : Ñ∨ → B∨ to a G∨-equivariant line bundle OÑ∨(λ) =
π∗OB∨(λ).

Let ∆ : Ñ∨ → StG∨ be the diagonal map. Under the equivalence Φaff , the coherent sheaf
∆∗OÑ∨(λ) corresponds to the Wakimoto sheaf Jλ, which can be explicitly constructed as follows.

Let jλ : FlλG ↪→ FlG be the I-orbit indexed by λ regarded in W aff . When λ is dominant, Jλ '
jλ∗Q[〈2ρ, λ〉]; when λ is anti-dominant, Jλ ' jλ!Q[〈2ρ,−λ〉] ' DFlGιJ−λ, where ι denotes the
involution of I\FlG induced by the inverse of G. In general, writing λ as λ1 − λ2, where λ1 and
λ2 are both dominant, we have Jλ ' Jλ1J−λ2 independently of the expression of λ as λ1 − λ2.
One can check geometrically that the assignment λ 7→ Jλ gives a map of monoids ΛT → Haff

G .

Example 2.2.4 (G = SL(2)). The affine Weyl group W aff can be identified with the infinite
dihedral group acting on the real line R with fundamental domain [0, 1]. For x ∈ Z, let rx ∈W aff

be the reflection with center x, then W aff = 〈r0, r1〉. Note that under the usual indexing scheme
for affine Coxeter groups, r0 (respectively r1) corresponds to the simple reflection s1 (respectively
s0) with respect to the simple root α1 (respectively α1) of the affine sl(2).

Correspondingly there are two standard monoidal generators T0∗, T1∗ for Haff given by the
∗-extensions of Q

Flr0
[1] and Q

Flr1
[1]. Similarly define T0! and T1! using !-extensions instead of

∗-extensions. Then we have monoidal inverses T−1
0∗ ' T0!, T

−1
1∗ ' T1!.
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For k ∈ Z, the Wakimoto sheaf can be expressed as J2k ' (T0∗T1∗)
k, which corresponds under

Φaff to the twist of the structure sheaf of the relative diagonal OÑ∨(2k). This follows from the

construction of the functor Φaff , see [Bez16, § 4.1].
The finite braid operator T0∗ corresponds under Φaff to the classical (namely underived)

structure sheaf Ocl
StG∨

. Its inverse T−1
0∗ ' T0! corresponds to the twist Ocl

StG∨
(−1,−1). We briefly

indicate how to deduce Φaff(T0∗) ∼= Ocl
StG∨

from the results of [Bez16]. By [Bez16, Theorem 1],
there is an equivalence

ΦI0I : Shc(I
0\FlG)

∼ // CohG
∨
(St ′),

where I0 = I ×B N ⊂ I, and St ′ = g̃∨ ×g∨ Ñ∨ (g̃∨ → g∨ is the Grothendieck alteration). By
[Bez16, Example 57], the object T0∗, viewed as an object in Shc(I

0\FlG), corresponds to the
structure sheaf of Γ′s = Γs ∩ St ′ (where Γs is the closure of the graph of the non-trivial element

s ∈ W on the regular locus of g̃∨ ×g∨ g̃∨, and Γ′s is the scheme-theoretic intersection of Γs
with St ′). Under the natural embedding i : StG∨ ↪→ St ′, one checks that i∗Ocl

StG∨
∼= OΓ′s . Since

the forgetful functor Haff
G = Shc(I\FlG) → Shc(I

0\FlG) corresponds to i∗ : CohG
∨
(StG∨) →

CohG
∨
(St ′), we see that i∗Φ

aff(T0∗) ∼= i∗Ocl
StG∨

. Using the right exactness of i∗, we conclude that

Φaff(T0∗) ∼= Ocl
StG∨

.
Below we will give more examples of how objects correspond to each other under the

equivalence Φaff . The proof of the matchings follow from the two paragraphs above by easy
calculations, which we omit here.

The affine braid operator T1∗ corresponds under Φaff to the twisted classical structure
sheaf Ocl

StG∨
(−1, 1). This follows from the fact that J2 = T0∗T1∗ corresponds to OÑ∨(2), and

that T0∗ corresponds to Ocl
StG∨

. Similarly T−1
1∗ ' T1! corresponds to the twist Ocl

StG∨
(−2, 0).

The conjugate T0∗T1∗T
−1
0∗ ' J2T1∗J

−1
2 corresponds to the twist Ocl

StG∨
(1,−1), and its inverse

T0∗T1!T
−1
0∗ ' J2T1!J

−1
2 to the twist Ocl

StG∨
(0,−2).

Let Avg be the IC-sheaf of the closure of Flr0 . Then Avg corresponds to OP1×P1(−1,−1)
under Φaff . The natural distinguished triangles

Avg // T0∗ // δ, δ // T0!
// Avg

correspond to the natural distinguished triangles

OP1×P1(−1,−1) // Ocl
StG∨

// OÑ∨ , OÑ∨ // Ocl
StG∨

(−1,−1) // OP1×P1(−1,−1).

Example 2.2.5 (G = PGL(2)). The morphism SL(2) → PGL(2) induces a canonical monoidal
functor Haff

SL(2) → Haff
PGL(2). We use the same notation introduced in Example 2.2.4 for objects

in Haff
SL(2) to denote their images in Haff

PGL(2). The description of Φaff(F) for F ∈ Haff
SL(2) given in

Example 2.2.4 is still valid in the case of PGL(2) for the same-named sheaf F but viewed as in
Haff

PGL(2) (note that the Steinberg variety is the same for SL(2) and PGL(2)).

Now W aff can be identified with the infinite dihedral group generated by r0 and r1/2

(reflection with center 1/2). Correspondingly, Haff
G two standard monoidal generators T0∗ and

T1/2, where T1/2, the Atkin–Lehner involution, is the skyscraper sheaf of the point I-orbit Flr1/2 ,

and T−1
1/2 ' T1/2.

For k ∈ Z, the Wakimoto sheaf can be expressed as Jk ' (T0∗T1/2)k, which corresponds to
the twist of the structure sheaf of the relative diagonal OÑ∨(k). This again follows from the

construction of Φaff , see [Bez16, § 4.1].
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The Atkin–Lehner involution T1/2 corresponds under Φaff to the twisted classical structure

sheaf Ocl
StG∨

(−1, 0). This follows from the fact that J1 = T0∗T1/2 corresponds to OÑ∨(1) and

that T0∗ corresponds to Ocl
StG∨

. The conjugate T0∗T1/2T
−1
0∗ ' J1T1/2J

−1
1 corresponds to the twist

Ocl
StG∨

(0,−1).

2.2.6 Compatibilty. Gaitsgory’s nearby cycles construction [Gai01] provides a central functor

Z : Hsph
G

// Haff
G .

Under the Satake equivalence (2.1) and Bezrukavnikov’s equivalence Φaff , the central functor
becomes the natural functor

Rep(G∨) // CohG
∨
(Ñ∨)

∆∗ // CohG
∨
(StG∨),

where the first functor is the pullback along the projection Ñ∨/G∨ → pt/G∨. Its monodromy
automorphism corresponds to the universal unipotent automorphism of the pullback.

2.2.7 Finite and aspherical Hecke categories. Let HfG = Shc(B\G/B) be the finite Hecke
category of B-equivariant constructible complexes on the flag variety B = G/B, with monoidal
structure defined by convolution. Pushforward along the closed embedding B = G/B ↪→

G((t))/I = FlG gives a fully fiathful monoidal functor HfG → Haff
G .

Let Ξ ∈ PervN (B) ⊂ Shc(G/B) be the tilting extension of the shifted constant sheaf
QBw0

[dimB] on the open N -orbit Bw0 ⊂ B. Equivalently, in the abelian category PervN (B),
it is also the projective cover of the skyscraper sheaf on the closed N -orbit.

Consider the functor

V = HomShc(B)(Ξ, q
∗(−)) : HfG // Vect,

where we first forget B-equivariance via the pullback q∗ :HfG → Shc(B) along q :G/B →B\G/B.
The functor V calculates the vanishing cycles at a generic covector at the closed N -orbit. It is

the universal quotient of HfG with the kernel the full monoidal ideal 〈ICw|w 6= 1 ∈Wf 〉 generated
by IC-sheaves of N -orbits Bw ⊂ B, for w 6= 1 ∈Wf , that are not closed. It can be equipped with
a monoidal structure (for the usual tensor product on Vect).

The aspherical affine Hecke category is defined to be the tensor product

Hasph
G := Haff

G ⊗HfG Vect,

where the HfG-module structure on Vect is given by V. It has a natural Haff
G -module structure

via convolution on the left.
When the base field has positive characteristic, Bezrukavnikov [Bez16] realizes Hasph

G as
the dg category of Iwahori–Whittaker sheaves on the affine flag variety with the help of an
Artin–Schreier sheaf. By [Bez16, Theorem 2], there is an equivalence of dg categories

Φasph : Perf(Ñ∨/G∨) = CohG
∨
(Ñ∨)

∼ // Hasph
G . (2.3)

Moreover, the Haff
G -action on the right-hand side gets intertwined with the CohG

∨
(StG∨)-action

on the left-hand side by left convolution via the equivalence Φaff .
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The above equivalence also holds when the base field is C. One way to see this is to work
with D-modules (where the exponential D-module plays the role of an Artin–Schreier sheaf) to
obtain an equivalence between the C-linearizations of the two sides of (2.3), and then descend it
to Q. Another way is to use a Gm-averaged version of an Artin–Schreier sheaf, as we do when
introducing the Whittaker sheaf in § 2.5.2.

2.3 Hecke modifications
Let X be a connected smooth projective curve of genus g, and S ⊂ X a finite subset.

Let BunG(X,S) be the moduli stack of G-bundles on X with B-reductions at S. This is an
algebraic stack locally of finite type. Later we will focus on the case G = PGL(2) and SL(2). For
more concrete modular interpretations of BunG(X,S) in these cases, see § 3.1.

Let Sh(BunG(X,S)) be the dg derived category of all complexes on BunG(X,S). We will
abuse terminology and use the term sheaves to refer to its objects.

Let Sh !(BunG(X,S)) ⊂ Sh(BunG(X,S)) be the full dg subcategory of constructible
complexes that are extensions by zero off of finite type substacks.

Introduce copies of the curve X = X− = X+, and for any x ∈X, introduce the non-separated
curve

Xx = X−
∐
X\{x}X+

with the two distinguished points x− ∈ X−, x+ ∈ X+, and the natural embeddings

Xx

X−

i−
==

Dx

j

OO

X+

i+
aa

where Dx = Dx−

∐
D×x

Dx+ is the formal neighborhood of {x−, x+} ⊂X. Note that for the choice
of a local coordinate, we can identify Dx with the standard model D.

2.3.1 Spherical Hecke action. For x ∈ X\S, we may define the moduli stack BunG(Xx, S)
of G-bundles on Xx with B-reductions at S. We have the following diagram.

BunG(Xx, S)
p−

vv

p+

((
κ

��
BunG(X,S) BunG(Dx) BunG(X,S)

Passing to sheaves, and choosing a local coordinate to identify BunG(Dx) withG[[t]]\G((t))/G[[t]],
one obtains the spherical Hecke modifications

Heckesph
x : Hsph

G ⊗ Sh(BunG(X,S)) // Sh(BunG(X,S)),

Heckesph
x (K,F) = (p+)!((p−)∗F ⊗ κ∗(K)).

It evidently preserves the full dg subcategory Sh !(BunG(X,S)) ⊂ Sh(BunG(X,S)).
Natural generalizations of the above constructions provide Sh(BunG(X,S)) the requisite

coherences of an Hsph
G -module.

Restricting to the heart of Hsph
G , one obtains a tensor action

Rep(G∨)⊗ Sh(BunG(X,S)) // Sh(BunG(X,S)).
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Remark 2.3.2. It is straightforward to generalize the above from a point x ∈ X\S to a family of

points parametrized by Y → X\S to obtain a functor

Heckesph
Y : Hsph

G ⊗ Sh(BunG(X,S)) // Sh(BunG(X,S)× Y ).

2.3.3 Affine Hecke action. For s ∈ S, let S± = S
∐
S\{s} S ⊂ Xs. We may similarly define the

moduli stack BunG(Xs, S±) of G-bundles on Xs with B-reductions at S±, and obtain a diagram

BunG(Xs, S±)
p−

uu

p+

))
κ

��
BunG(X,S) BunG(Ds, {s−, s+}) BunG(X,S)

(2.4)

Passing to sheaves, and choosing a local coordinate to identify BunG(Ds, {s−, s+}) with

I\G((t))/I, one obtains the affine Hecke modifications

Heckeaff
s : Haff

G ⊗ Sh(BunG(X,S)) // Sh(BunG(X,S)), (2.5)

Heckeaff
s (K,F) = (p+)!((p−)∗F ⊗ κ∗(K)).

More often, we will use the binary notation ?s to denote the affine Hecke action

K ?s F := Heckeaff
s (K,F).

It evidently preserves the full dg subcategory Sh !(BunG(X,S)) ⊂ Sh(BunG(X,S)).

Natural generalizations of the above constructions provide Sh(BunG(X,S)) the requisite

coherences of an Haff
G -module structure. For different s ∈ S, the resulting Haff

G -actions on

Sh(BunG(X,S)) commute with each other.

In particular, restricting the action of Haff
G to Perf(Ñ∨/G∨) via the monoidal functor

Perf(Ñ∨/G∨)
∆∗ // CohG

∨
(StG∨)

Φaff
// Haff

G , (2.6)

where ∆ : Ñ∨/G∨ → StG∨/G
∨ is the diagonal map, one obtains commuting tensor actions

Perf(Ñ∨/G∨)⊗S ⊗ Sh(BunG(X,S)) // Sh(BunG(X,S)). (2.7)

2.3.4 Compatibility. Let s ∈ S, and let Us ⊂ X\(S\{s}) be a disk around s (in the classical

topology). Let U×s = Us\{s} be the punctured disk. Recall the Hecke operators over U×s are

defined as in Remark 2.3.2. By the construction of the central functor Z in [Gai01], there is a

natural equivalence of bifunctors Hsph
G ⊗ Sh(BunG(X,S)) → Sh(BunG(X,S))

Heckeaff
s ◦ (Z ⊗ idSh(BunG(X,S))) ' Ψs ◦Heckesph

U×s
, (2.8)

where Ψs : Sh(BunG(X,S)× U×s ) → Sh(BunG(X,S)) denotes nearby cycles towards the s-fiber

of BunG(X,S) × Us → Us. Moreover, the monodromy of the central functor Z coincides with

the monodromy of Ψs.
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2.4 Eisenstein series
Consider the induction diagram

BunT (X) BunB(X)
poo q // BunG(X,S), (2.9)

where p is the usual projection, and q assigns to a B-bundle the induced G-bundle with its given
B-reduction remembered along S. Since BunT (X) ' ΛT ⊗Z Pic(X), for each λ ∈ ΛT we have
a corresponding component BunλT (X) of BunT (X). Let BunλB(X) be the preimage of BunλT (X)
under p. Restricting the diagram (2.9) to the λ-component we get

BunλT (X) BunλB(X)
pλoo qλ // BunG(X,S). (2.10)

Example 2.4.1 (G = PGL(2)). In this case, T = Gm, with ΛT ' Z, and therefore BunT (X) '
Pic(X). An object of BunB(X) is an inclusion (L ⊂ E) of a line bundle into a rank-two vector
bundle on X up to simultaneous tensoring with a line bundle. Then p is given by (L ⊂ E) 7→
L⊗2⊗ (det E)−1, and q is given by (L ⊂ E) 7→ (E ,L|S ⊂ E|S). An object (L ⊂ E) ∈ BunB(X) lies
in the component BunnB(X) if and only if 2 deg(L)− deg(E) = n.

Definition 2.4.2. For λ ∈ ΛT , we define the (unipotent) Eisenstein sheaf to be

Eisλ = qλ!QBunλB(X)
[dimB · (g − 1)− 〈2ρ, λ〉] ∈ Sh !(BunG(X,S)).

Note that the shift dimB · (g − 1)− 〈2ρ, λ〉 is the dimension of BunλB(X).

Example 2.4.3 (X = P1, λ = 0). In this case, using that H1(P1,OP1) = 0, we see that Bun0
B(P1)'

pt/B. The map q0 : Bun0
B(P1) → BunG(P1, S) is an isomorphism to its image, which is the point

classifying the trivial G-bundle over P1 with the same B-reduction at all s ∈ S. The Eisenstein
series sheaf Eis0 is the constant sheaf Q[−dimB] on this point extended by zero.

The next lemma shows that the Eisenstein sheaves are translated by Wakimoto sheaves.

Lemma 2.4.4. For λ, µ ∈ ΛT , s ∈ S, there is a canonical isomorphism

Jµ ?s Eisλ ' Eisµ+λ .

Proof. We first treat the case when µ is anti-dominant. To make notation more convenient, let µ
be dominant and consider the action of J−µ on Eisλ. By definition, J−µ is the !-extension of the
constant sheaf Q[〈2ρ, µ〉] on Fl−µG . Unravelling the definitions, in particular of the action (2.5),
we may describe the Hecke operator J−µ?s using the Hecke correspondence

BunG(X,S) Γ−µ
p−oo p+ // BunG(X,S) (2.11)

given by the subdiagram of the diagram (2.4) where Γ−µ ⊂ BunG(Xs, S) classifies pairs of points
in BunG(X,S) with relative position −µ at the point s. By definition, we have

J−µ ?s F = p+!p−
∗F [〈2ρ, µ〉] for F ∈ Sh(BunG(X,S)). (2.12)

We first assume the following.
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Claim. We have a commutative diagram

BunλB(X)

qλ

��

λΓ′−µ
γ−oo γ+ //

h

��

Bunλ−µB (X)

qλ−µ

��
BunG(X,S) Γ−µ

p−oo p+ // BunG(X,S)

with the left square Cartesian and γ+ a homeomorphism.

From the claim and (2.12), we can conclude

J−µ ?s Eisλ = p+!p−
∗qλ,!Q[dimB · (g − 1)− 〈2ρ, λ〉][〈2ρ, µ〉]

' p+!h!Q[dimB · (g − 1)− 〈2ρ, λ− µ〉]
' qλ−µ!γ+!Q[dimB · (g − 1)− 〈2ρ, λ− µ〉]
' Eisλ−µ . (2.13)

This proves the lemma for µ anti-dominant.
Since Jµ?s is the inverse to J−µ?s, from (2.13) we obtain

Jµ ?s Eisλ′ ' Eisµ+λ′ for µ dominant, λ′ ∈ ΛT . (2.14)

Finally, for general µ, write µ as µ1 − µ2, where µ1, µ2 are both dominant. Using (2.13) and
(2.14), we conclude

Jµ ?s Eisλ ' Jµ1 ?s (J−µ2 ?s Eisλ) ' Jµ1 ?s Eisλ−µ2 ' Eisλ−µ2+µ1 = Eisλ+µ .

Now to prove the lemma, it remains to prove the claim. With the choice of s ∈ S, we claim
there is a canonical morphism

bµ : Bunλ−µB (X) // BunλB(X). (2.15)

Once this is in hand, a local calculation shows there is a homeomorphism

γ+ : λΓ′−µ := BunλB(X)×BunG(X,S) Γ−µ // Bunλ−µB (X)

respecting the maps to BunG(X,S).
Thus it remains to construct the map (2.15).
First, recall the following ‘pushout’ construction for filtered vector bundles. Suppose E is a

vector bundle over X with a finite decreasing filtration {F iE}i∈Λ by subbundles indexed by i in
some poset Λ. Let i 7→ Li be a functor Λ → Pic(X)↪→, where Pic(X)↪→ is the category of line
bundles on X with injective sheaf maps as morphisms. Then there is a canonical vector bundle
E ′ equipped with a decreasing filtration {F iE ′}i∈Λ such that

GriFE ′ ' GriFE ⊗ Li for all i ∈ Λ.

The construction is by induction on the number of steps in the filtration, and we omit the details.
Next, the fiber of the natural projection BunB(X) → BunT (X) above a point L ∈ BunT (X)

classifies the following data.
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– A tensor functor E : Rep(G) → Vect(X) (the tensor category of vector bundles on X)
denoted by V 7→ EV .

– For V ∈ Rep(G), a decreasing filtration {F βEV }β∈Λ∨T
indexed by the poset Λ∨T (where

β 6 β′ ∈ Λ∨T iff β′ − β is a Z>0-combination of simple roots), along with isomorphisms

GrβFEV ' L
⊕ dimV (β)
β (where V (β) denotes the β-weight space of V , and Lβ ∈ Pic(X) the

induction of L ∈ BunT (X) along β : ΛT → Z).

– Moreover, the filtrations {F βEV }β∈Λ∨T
and the tensor structure of V 7→ EV are compatible

in the following sense: if V, V ′ ∈ Rep(G), then under the isomorphism EV⊗V ′ ' EV ⊗ EV ′ ,
we have F β

′′EV⊗V ′ =
∑

β+β′>β′′ F
βEV ⊗ F β

′EV ′ .

Now we are ready to define the map (2.15). Starting with a point (EV ;F βEV )V ∈Rep(G) of

Bunλ−µB (X). Let E ′V be the pushout of EV with respect to the line bundles β 7→ OX(〈β, µ〉 · s).
Since µ is dominant, for β 6 β′ ∈ Λ∨T , we have 〈β, µ〉 6 〈β′, µ〉 hence a natural inclusion
OX(〈β, µ〉 · s) ↪→ OX(〈β′, µ〉 · s), therefore the pushout is defined. The data (E ′V ;F βE ′V )V ∈Rep(G)

then defines a point in BunλB(X).
This completes the proof of the claim and thus that of the lemma. 2

Example 2.4.5 (G = PGL(2)). We explain the stacks that appear in the proof above in the case
G = PGL(2). Let µ = n > 0. The Hecke correspondence Γ−n in the proof above can be described
as follows. Let Γ̃−n be the moduli stack of (E−1 ↪→ E0 ↪→ · · · ↪→ En; {`s′}s′∈S\{s}), where each Ei
is a rank-two vector bundle on X, each arrow Ei ↪→ Ei+1 is an upper modification of degree 1 at
s, such that Ei−1(s) 6= Ei+1 for i = 0, 1, . . . , n − 1; finally, for s′ 6= s, `s′ is a line of the fiber of
E0 at s′. Then we define Γ−n = Γ̃−n/Pic(X), where Pic(X) acts by simultaneous tensoring on
Ei. The map p− sends (E−1 ↪→ E0 ↪→ · · · ↪→ En; {`s′}s′∈S\{s}) to (E0; {`s′}s′∈S), where `s is the
image of E−1 in the fiber of E0 at s. The map p+ sends (E−1 ↪→ E0 ↪→ · · · ↪→ En; {`s′}s′∈S\{s}) to
(En, {`′s′}s′∈S), where `′s is the image of En−1 in the fiber of En at s, `′s′ for s′ 6= s is induced from
`s′ after identifying E0|X\{s} and En|X\{s}.

Let λ = m ∈ Z. The stack mΓ′−n defined in the proof above has the following moduli
interpretation. It classifies (L ⊂ E0 ↪→ · · · ↪→ En), where the chain E0 ↪→ · · · En is as before,
L is a line subbundle of E0, which is also saturated in E1 (the last condition is equivalent to
E−1(s) 6= E1, if we define E−1 to be the lower modification of E0 at s determined by the line Ls
of the fiber of E0 at s). It is easy to see inductively that L is saturated in E2, . . . , En. Therefore,
(L ⊂ En) defines a point in Bunm−nB (X). This gives the map γ+ : mΓ′−n → Bunm−nB (X), which
is an isomorphism: the pair L ⊂ En determines the chain E0 ↪→ · · · ↪→ En because Ei−1 can be
inductively identified with the pullback of (Ei/L)(−s) under the quotient Ei � Ei/L.

2.5 Whittaker sheaf
In this subsection, we assume in addition that ρ∨ ∈ ΛT , for example G is adjoint.

2.5.1 Twisted N -bundles. Consider the distinguished T -bundle

ω(S) := ρ∨ ⊗ ωX(S) ∈ BunT (X) ' ΛT ⊗Z Pic(X).

Define the moduli

Bun
ω(S)
N (X,S) = Bun

ω(S)
N (X)×BunG(X) BunG(X,S)

classifying triples (EB, τ, {Fs}s∈S), where EB is a B-torsor, τ : EB/N → ω(S) is an isomorphism of
T -torsors, and Fs is aB-reduction of the fiber EG|s of theG-bundle induced by EB. In other words,

the choice of Fs is equivalent to the choice of a point of the twisted flag variety BEB |s = EB|s
B
× B.
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Observe that there is an open substack

Bun
ω(S),◦
N (X,S) ⊂ Bun

ω(S)
N (X,S),

where the B-reductions EB|s and Fs of the fiber EG|s are transverse, for each s ∈ S. If we let

B◦ ⊂ B be the open B-orbit, then the choice of Fs is now equivalent to the choice of a point of

the twisted open cell

B◦EB |x ⊂ BEB |s .

Note since B\B◦ → T\pt is an equivalence, the choice of such Fs is in turn equivalent to a

splitting of EB|s → ω(S)|s.
Thus the abelianization map N → N/[N,N ] '

∏r
i=1 Ga, where r is the rank, induces a map

Bun
ω(S),◦
N (X,S) //

∏r
i=1 Bun

ωX(S)
Ga,S (X), (2.16)

where Bun
ωX(S)
Ga,S (X) classifies extensions ωX(S) → E → OX with a splitting at each s ∈ S.

Pushout of extensions along the inclusion ωX → ωX(S) provides a canonical equivalence

BunωXGa (X)
∼ // Bun

ωX(S)
Ga,S (X), (ωX → E → OX) � // (ωX(S) → E ′ → OX) (2.17)

since the inclusion Ex → E ′x factors through Ex → OX,x, and hence its image gives a splitting of

E ′x → OX,x.

Composing (2.16) with the inverse of (2.17) and taking the sum of the canonical evaluations

BunωXGa (X) ' H1(X,ωX) ' Ga

we obtain the total evaluation

ev : Bun
ω(S),◦
N (X,S) // Ga.

Note that the total evaluation is Gm-equivariant for the action on Bun
ω(S),◦
N (X,S) induced via

ρ∨ : Gm → T from the adjoint T -action and the usual rotation action on Ga. Therefore, it

descends to a map

ev : Bun
ω(S),◦
N (X)/Gm

// Ga/Gm.

We also have the natural induction map

p : Bun
ω(S),◦
N (X,S) // BunG(X,S),

which descends to a map

p : Bun
ω(S),◦
N (X,S)/Gm

// BunG(X,S),

where again the Gm-action on Bun
ω(S),◦
N (X,S) is induced via ρ∨ : Gm → T from the adjoint

T -action.
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2.5.2 Gm-averaged Artin–Schreier sheaf. Let us write j : pt = Gm/Gm → Ga/Gm for the
open inclusion. Let

Ψ := j∗Qpt
[−1] ∈ DGm(Ga).

This sheaf should be thought of as a Gm-equivariant version of an Artin–Schreier sheaf over Ga if
we worked over a base field of finite characteristic, or a Gm-equivariant version of the exponential
D-module over Ga if we worked in the D-module setting.

Definition 2.5.3. The Whittaker sheaf is the object

WhS = p!ev∗Ψ[−dS ] ∈ Sh !(BunG(X,S)),

where
dS = dimB · (g − 1) + 〈2ρ, ρ∨〉(2g − 2 + #S)

is the dimension of Bun
−ω(S)
B (X).

Example 2.5.4 (X = P1, S = {0,∞}). In this case, we have ω(S)'OP1 , and hence the Whittaker
sheaf is supported on the open locus, where the underlying G-bundle is semistable or equivalently
trivializable

Buntriv
G (P1, {0,∞}) ' G\(B × B).

On the other hand, let B◦ be the open N -orbit in B, then we have

Bun
ω(S),◦
N (P1, {0,∞}) ' N\(B◦ × B◦).

If we choose a point B− ∈ B◦ represented by a Borel opposite to B, then we have G\(B × B) '
B−\B by fixing the first coordinate to be B−; similarly, we have N\(B◦ × B◦) ' B◦ by fixing

the first coordinate to be B−. Under the above isomorphisms, the map p : Bun
ω(S),◦
N (P1, {0,∞})

→ BunG(P1, {0,∞}) is the evident composition

B◦ �
� i // B q // // B−\B.

Let Ξ ∈ PervN (B) be the tilting extension to B of the constant perverse sheaf QB◦ [dimB◦].
We claim that

Wh{0,∞} ' u!q!Ξ[dimB]. (2.18)

Here u : B−\B ' Buntriv
G (P1, {0,∞}) ↪→ BunG(P1, {0,∞}) is the open inclusion. To see this, we

only need to note that both sides of (2.18), up to appropriate shifts, corepresent the functor of
vanishing cycles at a generic covector at the image of Bun0

B(P1) → BunG(P1, {0,∞}).

The Whittaker sheaf WhS enjoys an asphericity property, as we spell out now. For s ∈ S
and a parabolic subgroup P ⊂ G, we may define a moduli stack BunG(X,S)s,P , where the level
structure at s is changed to a P -reduction. We have a proper smooth projection

πs,P : BunG(X,S) → BunG(X,S)s,P ,

which induces adjoint functors

Sh !(BunG(X,S))
πs,P,∗=πs,P !

π!
s,P

// Sh !(BunG(X,S)s,P ).

π∗s,Poo

oo
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Lemma 2.5.5. Let s ∈ S and P ⊂ G be a parabolic subgroup, which is not a Borel. Then

πs,P !WhS ' 0.

Proof. Let Pi be the standard parabolic whose Levi only has simple root αi. Then each P , which
is not a Borel, contains some Pi, and πs,P factors as

BunG(X,S)
πs,Pi−−−→ BunG(X,S)s,Pi → BunG(X,S)s,P .

Therefore, it suffices to show that πs,Pi!WhS ' 0, for each Pi.
We denote BunG(X,S)s,Pi simply by BunG(X,S)s,i, and denote πs,Pi similarly by πs,i, which

is a P1-fibration.
Let us extend the maps in the definition of WhS to a commutative (but not Cartesian)

diagram

pt = Gm/Gm
� � j // Ga/Gm Bun

ω(S),◦
N (X,S)/Gm

evoo p //

π′s,i
��

BunG(X,S)

πs,i

��
Bun

ω(S),◦
N (X,S)s,i/Gm

ps,i // BunG(X,S)s,i

where we denote by Bun
ω(S),◦
N (X,S)s,i/Gm the moduli, where we replace the B-reduction at

s with a Pi-reduction in general position with the given N -structure, and π′s,i is the natural

A1-fibration, where we forget the B-reduction at s to a Pi-reduction.
Now returning to the definition of WhS , we have

πs,i!WhS = πs,i!p!ev∗j∗Qpt
[−1− dS ] ' ps,i!π′s,i!ev∗j∗Qpt

[−1− dS ]

and so it suffices to show
π′s,i!ev∗j∗Qpt

' 0.

Fix a point ξ : pt → Bun
ω(S),◦
N (X,S)s,i, and consider the following base-changed Cartesian

diagram.

Gm
� � j // Ga Bun

ω(S),◦
N (X,S)

evoo

π′s,i
��

A1ξ̃oo

��
Bun

ω(S),◦
N (X,S)s,i pt

ξoo

Then it suffices to show
ξ∗π′s,i!ev∗j∗QGm

' 0.

Finally, observe that ev ◦ ξ̃ : A1
→ Ga is an isomorphism of schemes, and so

ξ̃∗ev∗j∗QGm
' j′∗QU

,

where j′ : U = (ev ◦ ξ̃)−1(Gm) ↪→ A1 is the complement of one point in A1. Thus we have the
required vanishing

ξ∗π′s,i!ev∗j∗QGm
' π′s,i!ξ̃∗ev∗j∗QGm

' H∗c(A1, j′∗QU
) ' 0. 2
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Corollary 2.5.6. Let s ∈ S.

(i) For any w 6= 1 ∈Wf , we have ICw ?s WhS ' 0.

(ii) The action of HfG ⊂ Haff
G on Sh(BunG(X,S)) by Hecke modification at s factors through the

monoidal functor V : HfG → Vect in that for any K ∈ HfG, there is a canonical isomorphism

K ?s WhS ' V(K)⊗WhS

compatible with the monoidal structures in the obvious sense.

Proof. (i) Since any w 6= 1 can be written as a product of simple reflections σi, it suffices to
show ICσi ?s WhS ' 0, for the simple reflections σi ∈Wf . Let Pi be the standard parabolic of G
whose Levi has only simple root αi. Then

ICσi ?s WhS ' π∗s,Piπs,Pi,!WhS [1],

which vanishes by Lemma 2.5.5. Therefore, (i) is proved.

Since V : HfG → Vect is monoidal and the universal quotient functor with the kernel the
monoidal ideal 〈ICw|w 6= 1 ∈Wf 〉, (ii) follows from (i). 2

2.5.7 Wakimoto action on Whittaker sheaf. For s ∈ S, we have an action of Perf(Ñ∨/G∨)
on Sh !(BunG(X,S)) as the restriction of the affine Hecke action at s, see (2.6) and (2.7). By
acting on WhS , we obtain a functor

αs : Perf(Ñ∨/G∨) // Sh !(BunG(X,S)) (2.19)

such that line bundles go to translations of WhS by Wakimoto operators

αs(OÑ∨(λ)) = Jλ ?s WhS , λ ∈ ΛT .

Proposition 2.5.8. The functor αs intertwines the action of CohG
∨
(StG∨) on the left side and

the ?s-action of Haff
G on the right side under the monoidal equivalence Φaff .

Proof. By Corollary 2.5.6, the ?s-action of Haff
G on the object WhS factors through the aspherical

quotient Hasph
G , or in other words, we have a functor

α′s : Hasph
G

// Sh !(BunG(X,S))

and a canonical equivalence K ?s WhS ' α′s(K), where K ∈ Haff
G , and K ∈ Hasph

G is its image. By
construction, the functor α′s is a Haff

G -module map.
Now we claim that αs and α′s are the same functors under the equivalence Φasph. By the

construction in [Bez16], Φasph is the composition Perf(Ñ∨/G∨) → Haff
G → Hasph

G given by K 7→
∆∗K. Thus we have canonical equivalences

αs(K) ' (∆∗K) ?s WhS ' α′s(∆∗K), K ∈ Perf(Ñ∨/G∨).

Finally, since Φasph intertwines the Haff
G -action and the CohG

∨
(StG∨)-action via the monoidal

equivalence Φaff , and α′s is a Haff
G -module map, the lemma follows. 2
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2.6 Two point ramification
In this section, we specialize to the case X = P1 and S = {0,∞}. We elaborate on the principle
that ‘Sh !(BunG(P1, {0,∞})) is the same as Haff

G ’.
We have the two commuting actions ?0, ?∞ of Haff

G on Sh !(BunG(P1, {0,∞})) by Hecke
modifications at respectively 0, ∞. We have the Eisenstein series sheaf Eis0 described in
Example 2.4.3. Acting by Haff

G on Eis0 at 0, we obtain a functor

Φ′0,∞ : Haff
G

// Sh !(BunG(P1, {0,∞}), Φ′0,∞(K) = K ?0 Eis0 .

Lemma 2.6.1. Φ′0,∞ is an equivalence.

Proof. Let us relate Φ′0,∞ to the Radon transform.

Let j : pt/T ↪→ BunG(P1, {0,∞}) be the open substack, where the underlying bundle is
trivial and the two Borel reductions at 0,∞ are transverse. Acting by Haff

G on j!Q[−dimT ] at 0
we recover the Radon transform

R : Haff
G

// Sh !(BunG(P1, {0,∞}), R(K) = K ?0 j!Q[−dimT ].

It is well-known that R is an equivalence (see [Yun09, Corollary 4.1.5 and § 5.2] for example).

Let Tw0∗ ∈ H
f
G denote the perverse sheaf, which is the ∗-extension of the shifted constant sheaf

from the open B-orbit in B. Then Tw0∗ ?0 j!Q[−dimT ] ' Eis0. Therefore,

Φ′0,∞(K) = K ?0 Eis0 ' (K ? Tw0∗) ?0 j!Q[−dimT ] = R(K ? Tw0∗).

In other words, Φ′0,∞ is the composition of first convolution on Haff on the right by Tw0∗ (which
is an equivalence with inverse given by convolution on the right by Tw0!), and then the Radon
transform R (which is again also an equivalence). This shows that Φ′0,∞ is an equivalence. 2

Let LocG∨(P1, {0,∞}) denote the (derived) moduli stack (over Q) of G∨-local systems on
P1\{0,∞} equipped near {0,∞} with a Borel reduction with unipotent monodromy. Then
LocG∨(P1, {0,∞}) admits the presentation as the substack of (Ñ∨×Ñ∨)/G∨ given by imposing

on pairs (Ã0, Ã∞) ∈ Ñ∨ × Ñ∨ the equation A0A∞ = 1 on the underlying group elements inside
of G∨. Therefore, we have an isomorphism

ι : StG∨/G
∨ = (Ñ∨ ×G∨ Ñ∨)/G∨

∼ // LocG∨(P1, {0,∞}), ι(Ã0, Ã∞) = (Ã0, Ã
−1
∞ ),

where Ã−1
∞ means we invert the group element A∞ while keeping the Borel containing it

unchanged.
Now introduce the equivalence given by the composition of equivalences

Φ0,∞ : Coh(LocG∨(P1, {0,∞})) ι∗ // CohG
∨
(StG∨)

Φaff
// Haff

G

Φ′0,∞ // Sh !(BunG(P1, {0,∞}).

By construction, Φ0,∞ intertwines the CohG
∨
(StG∨)-action on Coh(LocG∨(P1, {0,∞})) by

convolution at 0 and the Haff
G -action on Sh !(BunG(P1, {0,∞})) by the Hecke modifications ?0,

under the monoidal equivalence Φaff . One can also show that Φ0,∞ similarly intertwines the

CohG
∨
(StG∨)-action on Coh(LocG∨(P1, {0,∞})) by convolution at ∞ and the Haff

G -action on
Sh !(BunG(P1, {0,∞})) by the Hecke modifications ?∞. We will not use this statement in the rest
of the paper, only the following compatibilities.
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Lemma 2.6.2.

(i) Let ∆− : Ñ∨/G∨ → LocG∨(P1, {0,∞}) be the anti-diagonal ∆−(Ã0) = (Ã0, Ã
−1
0 ). Then we

have

Φ0,∞(∆−∗ OÑ ) ' Eis0 .

(ii) For OLoc the derived structure sheaf of LocG∨(P1, {0,∞}), we have

Φ0,∞(OLoc) 'Wh0,∞.

Proof. (i) Under the equivalence Φaff , the monoidal unit δ ∈ Haff
G , given by the constant sheaf

on the closed I-orbit in FlG = G((t))/I, corresponds to ∆∗OÑ∨ ∈ CohG
∨
(StG∨) (see § 2.2.3).

By construction, we also have ι∗(∆∗OÑ∨) ' ∆−∗ OÑ∨ , and Φ′0,∞(δ) = δ ?0 Eis0 ' Eis0, therefore
Φ0,∞(∆−∗ OÑ ) ' Eis0.

(ii) First, we claim that under the equivalence Φaff , the derived structure sheaf OStG∨ ∈
CohG

∨
(StG∨) corresponds to q!Ξ[2 dimB] ∈ HfG ⊂ Haff

G (see Example 2.5.4 for notation). To see
this, we use the equivalence established in [Bez16, Theorem 1]

ΦI0I : Shc(I
0\FlG)

∼ // CohG
∨
(St ′),

where I0 = I ×B N ⊂ I, and St ′ = g̃∨ ×g∨ Ñ∨ (g̃∨ → g∨ is the Grothendieck alteration).
By [Bez16, Example 57], ΦI0I(Ξ) = OSt ′ . On the other hand, the equivalences ΦI0I and Φaff

are compatible: the forgetful functor Forg : Haff
G → Shc(I

0\FlG) corresponds to pushforward
along i : StG∨ ↪→ St ′. Therefore, i∗ corresponds to the left adjoint of Forg, and this is given by
q![2 dimB] when restricted to Shc(N\B) ⊂ Shc(I

0\FlG). Hence OStG∨ ' i∗OSt ′ corresponds to

q!Ξ[2 dimB] under the equivalence Φaff .
Therefore, we have

Φ0,∞(OLoc) = Φ′0,∞(Φaff(OStG∨ )) ' Φ′0,∞(q!Ξ[2 dimB]) = q!Ξ[2 dimB] ?0 Eis0.

Finally, if we view q!Ξ[2 dimB]?0Eis0 as an object of Shc(B\G/B)
u!−→ Sh !(BunG(P1, {0,∞})),

it is equivalent to q!Ξ[2 dimB] ? δ[−dimB] ' q!Ξ[dimB]. Thus Φ0,∞(OLoc) ' u!q!Ξ[dimB], and
in turn u!q!Ξ[dimB] 'Wh0,∞ as seen in (2.18). 2

3. Automorphic side: P1, three ramification points, G = PGL(2), SL(2)

Let P1 = ProjC[x, y] be the projective line with homogeneous coordinates [x, y] and coordinate
t = y/x.

Fix the three points S = {0, 1,∞} ⊂ P1, where the coordinate t takes the respective value.

3.1 Moduli of bundles
Let Pic(P1) ' BunGL(1)(P1) denote the Picard stack of line bundles on P1, and Vect2(P1) '
BunGL(2)(P1) the moduli of rank-two vector bundles on P1.

3.1.1 G = PGL(2). By the exact sequence 1 → GL(1) → GL(2) → PGL(2) → 1 and the
vanishing of the Brauer group of a curve over C, we have an isomorphism

Vect2(P1)/Pic(P1)
∼ // BunPGL(2)(P1).
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Thus we can represent PGL(2)-bundles by rank-two vector bundles up to tensoring with a line
bundle. There is a disjoint union decomposition

BunPGL(2)(P1) = Bun0
PGL(2)(P

1)
∐

Bun1
PGL(2)(P

1)

given by the parity of the degree of a rank-two vector bundle.
The stack BunPGL(2)(P1, S) is the moduli of PGL(2)-bundles on P1 with B-reductions at the

points of S = {0, 1,∞}. We can represent objects of BunPGL(2)(P1, S) by (E , {`s}s∈S), where E
is a rank-two vector bundles on P1 up to tensoring with a line bundle, and `s is a line in the
fiber Es for each s ∈ S.

Let us list the isomorphism classes of objects of BunPGL(2)(P1, S). For each isomorphism
class of E ∈ BunPGL(2)(P1), we describe the poset of points in BunPGL(2)(P1, S) over it, where
an arrow x → y means y lies in the closure of x.

(i) E = OP1 ⊕OP1 , Aut(E) ' PGL(2), with the poset of configurations of lines

c0(∅)

yy �� &&

Aut ' {1}

c0(0, 1)

%%

c0(0,∞)

��

c0(1,∞)

xx

Aut ' T ' Gm

c0(S) Aut ' B ' Gm nGa

where c0(R) denotes the locus where two lines `s and `s′ at distinct points s, s′ ∈ S are equal if
and only if s, s′ ∈ R.

(ii) E = OP1(1)⊕OP1 , Aut(E) ' Gm nG2
a, with the poset of configurations of lines

c1(∗)

tt yy �� &&

Aut ' {1}

c1(∅)

$$ ** ,,

c1(0)

%%��

c1(1)

&&yy

c1(∞)

xx ��

Aut ' T ' Gm

c1(0, 1)

%%

c1(0,∞)

��

c1(1,∞)

yy

Aut ' B ' Gm nGa

c1(S) Aut ' Gm nG2
a

where c1(R) denotes where the lines `r lie in the summand OP1(1), for r ∈ R ⊂ S, and in the
summand OP1 , for r 6∈ R ⊂ S. The generic configuration c1(∗) denotes where none of the lines
`s lie in OP1(1), for s ∈ S, and also they do not all lie in the image of any map OP1 → E (as in
the configuration c1(∅)).

(iii) k > 2, E = OP1(k)⊕OP1 , and we have an exact sequence

1 // Gk−2
a

// Aut(E)
evS // Gm n (Ga)

S // 1.

The poset of configurations of lines is the product∏
s∈S({`s ⊂ OP1} // {`s ⊂ OP1(k)})
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with automorphisms

1 // Gk−2
a

// Aut
evS // Gm n (Ga)

R // 1, R = {s ∈ S | `s ⊂ OP1(k)}.

Let us denote by ck(R) where the lines `r lie in the summand OP1(k), for r ∈ R ⊂ S, and in the
summand OP1 , for r 6∈ R ⊂ S.

3.1.2 G = SL(2). Note that 1 → SL(2) → GL(2) → GL(1) → 1 allows us to represent
SL(2)-bundles by rank-two vector bundles with trivialized determinant.

Let BunSL(2)(P1, S) denote the moduli of SL(2)-bundles on P1 with B-reductions at the
points of S = {0, 1,∞}. We can represent objects of BunSL(2)(P1, S) by (E , τ, {`s}s∈S) where E
is a rank-two vector bundle on P1, τ : OP1

∼
→ det(E), and `s is a line in the fiber Es for s ∈ S.

Let us list the isomorphism classes of objects of BunSL(2)(P1, S) according to the isomorphism
type of the underlying rank-two bundles.

(i) E = OP1 ⊕OP1 Aut(E) ' SL(2), with the poset of configurations of lines

c0(∅)

yy �� &&

Aut ' Z(SL(2)) ' µ2

c0(0, 1)

%%

c0(0,∞)

��

c0(1,∞)

xx

Aut ' T ' Gm

c0(S) Aut ' B ' Gm nGa

where c0(R) denotes where the lines `r coincide, for r ∈ R ⊂ S.
(ii) k > 1, E = OP1(k)⊕OP1(−k), and we have an exact sequence

1 // G2k−2
a

// Aut(E)
evS // Gm n (Ga)

S // 1.

The poset of of configurations of lines is product∏
s∈S({`s ⊂ OP1(−k)} // {`s ⊂ OP1(k)})

with automorphisms

1 // G2k−2
a

// Aut
evS // Gm n (Ga)

R // 1, R = {s ∈ S | `s ⊂ OP1(k)}.

Let us denote by c2k(R) where the lines `r lie in the summand OP1(k), for r ∈ R ⊂ S, and in the
summand OP1(−k), for r 6∈ R ⊂ S.

3.2 Coarse symmetries
3.2.1 Atkin–Lehner modifications for G = PGL(2). Atkin–Lehner modifications provide

involutions exchanging the two connected components of BunPGL(2)(P1, S). For r ∈ S, define
the involution

ALr : BunPGL(2)(P1, S) // BunPGL(2)(P1, S), ALr(E , {`s}s∈S) = (E ′, {`′s}s∈S),

where E ′ ⊂ E is the lower modification at r ∈ P1 so that `r ⊂ Er factors through E ′r ⊂ Er, the
resulting map E → Er induces an isomorphism

E/E ′ ∼ // Er/`r
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and `′r ⊂ E ′r is the image of the map E(−r)r → E ′r, and the other lines are unchanged `′s = `s ⊂
E ′s = Es, for s 6= r ∈ S. Note the involution ALr exchanges the open points

c0(∅) oo // c1(∗).

The Atkin–Lehner modifications generate a group (Z/2Z)S of order 8. For R ⊂ S of even
size, the Atkin–Lehner modifications ALR =

∏
r∈RALr preserve the two connected components,

and generate a subgroup (Z/2Z)S,ev of order 4.

3.2.2 Central automorphisms for G = SL(2). The inclusion µ2 ' Z(SL(2)) ⊂ SL(2) of the
center induces an automorphisms of the identity functor of BunSL(2)(P1, S).

3.3 Constructible sheaves
3.3.1 G = PGL(2). Recall the points of BunPGL(2)(P1, S) are discretely parameterized and

their automorphism groups are connected. We have the corresponding generating set of objects
of Sh !(BunPGL(2)(P1, S)) given by the respective extensions by zero of constant sheaves (in the
following j denotes the inclusion of ck(R) into BunPGL(2)(P1, S)):

F0(R) = j!Qc0(R),
R = ∅, {0, 1}, {0,∞}, {1,∞}, S;

F1(R) = j!Qc1(R),
R ⊂ S or R = ∗;

Fk(R) = j!Qck(R),
R ⊂ S, k > 2.

Another generating set for Sh !(BunPGL(2)(P1, S)) is defined as follows. For k > 0, let ik :Bk ↪→
BunPGL(2)(P1, S) be the locally closed substack where the underlying bundle is isomorphic to

OP1(k)⊕OP1 . Let jRk : ck(R) ↪→ Bk be the inclusion map. We define

ICk(R) := ik,!j
R
k,!∗Qck(R)

[−dim Aut(ck(R))] (3.1)

to be the IC-sheaf of the closure of ck(R) in Bk, extended by zero off of Bk.
The decomposition into connected components

BunPGL(2)(P1, S) = Bun0
PGL(2)(P

1, S)
∐

Bun1
PGL(2)(P

1, S)

provides a direct sum decomposition

Sh !(BunPGL(2)(P1, S)) ' Sh !(Bun0
PGL(2)(P

1, S))⊕ Sh !(Bun1
PGL(2)(P

1, S)).

The above basis of objects Fk(R) belongs to Sh !(BunkPGL(2)(P
1, S)), where k = k mod 2. For

r ∈ S, note the Atkin–Lehner involution ALr exchanges the basis elements

F0(∅) oo // F1(∗).

3.3.2 Whittaker sheaf for G = PGL(2). Let us record the form of the Whittaker sheaf.
Consider the open substacks of the odd component

c1(∗) �
� j // c1(∗) ∪ c1(∅) �

� i // Bun1
PGL(2)(P

1, S)

classifying respectively bundles E ' OP1(1)⊕OP1 with generic lines `0, `1, `∞, and more generally,
lines `0, `1, `∞ with none contained within OP1(1). Then the Whittaker sheaf is given by

WhS = i!j∗Qc1(∗) ∈ Sh !(Bun1
PGL(2)(P

1, S)).

Note the twist in the definition of WhS disappears because dS = −1 in this situation.
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3.3.3 G = SL(2). Recall the points of BunSL(2)(P1, S) are discretely parameterized and their
automorphism groups are connected except for the configuration c0(∅) with Aut ' Z(SL(2))
' µ2. Let Qalt

c0(∅) denote the rank-one local system on c0(∅), where the automorphism group µ2

acts by the sign character. We have the corresponding basis of objects of Sh !(BunPGL(2)(P1, S))

given by the respective extensions by zero of constant sheaves and one additional sheaf Qalt
c0(∅):

F0(R) = j!Qc0(R),
R = ∅, {0, 1}, {0,∞}, {1,∞}, S;

F0(∅)alt = j!Qalt
c0(∅);

F2k(R) = j!Qc2k(R),
R ⊂ S, k > 1.

The canonical automorphisms of the identity functor of BunSL(2)(P1, S) given by µ2 '
Z(SL(2)) provides a direct sum decomposition

Sh !(BunSL(2)(P1, S)) ' Shtriv
! (BunSL(2)(P1, S))⊕ Shalt

! (BunSL(2)(P1, S))

determined by whether the induced action of µ2 ' Z(SL(2)) on sheaves is trivial or alternating.
The second summand admits an equivalence

Shalt
! (BunSL(2)(P1, S)) ' Vect,

since all of its objects are finite complexes built out of shifts of F0(∅)alt whose automorphisms
are scalars.

3.3.4 Relation between G = PGL(2) and G = SL(2). The natural map SL(2) → PGL(2)
induces a map

p : BunSL(2)(P1, S) // Bun0
PGL(2)(P

1, S) ⊂ BunPGL(2)(P1, S),

which sends c2k(R) ∈ BunSL(2)(P1, S) to the same-named point c2k(R) in Bun0
PGL(2)(P

1, S), for
any k > 0 and R ⊂ S.

Pullback provides an equivalence

p∗ : Sh !(Bun0
PGL(2)(P

1, S))
∼ // Shtriv

! (BunSL(2)(P1, S)) (3.2)

that acts on the above basis by

p∗(F0(R)) ' F0(R), R = ∅, {0, 1}, {0,∞}, {1,∞}, S;

p∗(F2k(R)) ' F2k(R), R ⊂ S, k > 1.

Thus using the prior decompositions and Atkin–Lehner involutions, we see that to understand
any of the above categories, it suffices to understand, for example, Sh!(Bun1

PGL(2)(P
1, S)). We

prefer the odd component of BunPGL(2)(P1, S) since it supports the Whittaker sheaf.

4. Spectral side: P1, three ramification points, G∨ = SL(2),PGL(2)

Continue with P1 = Proj(k[x, y]) the projective line with homogeneous coordinates [x, y] and
coordinate t = y/x, and the three points S = {0, 1,∞} ⊂ P1, where the coordinate t takes the
respective value.
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4.1 Moduli of local systems
4.1.1 General definition. We start with a reductive group G∨ over Q. Let LocG∨(P1, S) be

the moduli of (Betti) G∨-local systems on P1\S with B∨-reductions near S with trivial induced
T∨-monodromy. By choosing a point u0 in P1\S and a based loop γs around s ∈ S for each s ∈ S
such that γ0γ1γ∞ = 1 in π1(P1\S, u0), we obtain the presentation

LocG∨(P1, S) ' (Ñ∨)S,
∏

=1/G∨.

Here, (Ñ∨)S,
∏

=1 is the derived fiber of 1 of the map

(Ñ∨)S
µS // (N∨)S

mult // G∨ (4.1)

and the map ‘mult’ takes (A0, A1, A∞) to A0A1A∞.

4.1.2 G∨ = SL(2). In this case, (Ñ∨)S,
∏

=1 is the derived subscheme of (Ñ∨)S classifying
triples of pairs (As, `s)s∈S consisting of a matrix As ∈ SL(2) and an eigenline As(`s) ⊂ `s with
trivial eigenvalue As|`s = 1, and the matrices satisfy the equation A0A1A∞ = 1 inside of SL(2).

To write explicit local equations for (Ñ∨)S,
∏

=1, we may apply the SL(2)-symmetry to assume
without loss of generality that `∞ = [1 : 0], `0 = [1 : x] and `1 = [1 : y]. Then the three matrices
take the form

A0 =

(
1− ax a

−ax2 1 + ax

)
, A1 =

(
1− by b

−by2 1 + by

)
A−1
∞ = A0A1 =

(
1− ax− by + aby(x− y) a+ b− ab(x− y)

−ax2 − by2 + abxy(x− y) 1 + ax+ by − abx(x− y)

)
such that A∞ is of the form (1 ∗

0 1). Since det(A∞) = 1, we need only impose the equations

1− ax− by + aby(x− y) = 1, −ax2 − by2 + abxy(x− y) = 0.

These in turn are equivalent to the equations

ax+ by = 0, ax2 + by2 = 0.

We conclude that (Ñ∨)S,
∏

=1 is a lci classical scheme (i.e., not derived) with five irreducible
components.

(i) A0 = A1 = A∞ = 1. This component is isomorphic to P1 × P1 × P1. Local equation:

a = b = 0.

(ii) A0 = 1 (hence A1 = A−1
∞ ) and `1 = `∞. This component is isomorphic to P1 × Ñ∨. Local

equation:
a = 0, y = 0.

(iii) A1 = 1 (hence A0 = A−1
∞ ) and `0 = `∞. This component is isomorphic to P1 × Ñ∨. Local

equation:
b = 0, x = 0.

(iv) A∞ = 1 (hence A0 = A−1
1 ) and `0 = `1. This component is isomorphic to P1 × Ñ∨. Local

equation:
a+ b = 0, x = y.
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(v) A0, A1, A∞ all lie in a single Borel. Note this does not mean that `0, `1, `∞ are the same;
in fact, this component is non-reduced since A0, A1, A∞ fix `0, `1, `∞ respectively. Local
equation:

x2 = 0, y2 = 0, xy = 0, ax+ by = 0.

Note for a, b not both zero, there is a unique infinitesimal direction for (x, y). The reduced
structure of this component is isomorphic to the total space of O(−2) ⊕ O(−2) over P1,
and we denote it as Ñ∨∆.

If we view (Ñ∨)S as the cotangent bundle of (P1)S , the five components listed above, after
passing to reduced structures, are exactly the conormal bundles of various partial diagonals in
(P1)S . For this reason, we introduce the following notation. For a subset R ⊂ S with #R 6= 1,
we denote by ∆R the partial diagonal of (P1)S where the R-components are equal. For example,
∆∅ = (P1)S . Let ΛR ⊂ T ∗(P1)S ' (Ñ∨)S be the conormal bundle of ∆R. Then the reduced

structure of the five components of ((Ñ∨)S)
∏

=1 are, in the order listed above, Λ∅,Λ1,∞,Λ0,∞,Λ0,1

and ΛS = Ñ∨∆.

4.1.3 G∨ = PGL(2). The stack LocPGL(2)(P1, S) has two connected components. In fact, for

G∨ = PGL(2), the Springer resolution Ñ∨ and the unipotent variety N∨ are the same as those
of SL(2). Therefore, the map ‘mult’ in (4.1) factorizes as

(N∨)S
m̃ult // SL(2) // PGL(2).

Hence, according to whether the product of three elements in N∨ is 1 or −1 in SL(2), we have
a decomposition of LocPGL(2)(P1, S)

LocPGL(2)(P1, S) = Loc0
PGL(2)(P

1, S)
∐

Loc1
PGL(2)(P

1, S), (4.2)

where

Loc0
PGL(2)(P

1, S) = (Ñ∨)S,
∏̃

=1/PGL(2),

Loc1
PGL(2)(P

1, S) = (Ñ∨)S,
∏̃

=−1/PGL(2).

The natural map SL(2) → PGL(2) induces a map

p : LocSL(2)(P1, S) // Loc0
PGL(2)(P

1, S) ⊂ LocPGL(2)(P1, S), (4.3)

which in turn induces an equivalence

LocSL(2)(P1, S)
∼ // Loc0

PGL(2)(P
1, S)×pt/PGL(2) (pt/SL(2)).

The odd component of LocPGL(2)(P1, S) actually reduces to a single point.

Lemma 4.1.4. The derived scheme (Ñ∨)S,
∏̃

=−1 is a trivial torsor for PGL(2). In particular,

Loc1
PGL(2)(P

1, S) ∼= Spec Q.
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Proof. Let (As, `s)s∈S be a point of (Ñ∨)S,
∏̃

=−1. We view As as unipotent elements in SL(2),
then A0A1A∞ = −1 ∈ SL(2). It is easy to see that none of As can be 1, hence each line `s is
determined by As. It is also easy to see that no two lines are equal, hence using the PGL(2)-action
we may arrange `0 = [1 : 0], `1 = [0 : 1] and using the remaining T∨-conjugacy we may arrange
uniquely

A0 =

(
1 1

0 1

)
, A1 =

(
1 0

c 1

)
.

Then we have

A∞ = −A−1
1 A−1

0 =

(
−1 1

c −1− c

)
,

which is unipotent if and only if c = −4. This shows that (Ñ∨)S,
∏̃

=−1 is a torsor for PGL(2)
with a rational point. 2

Remark 4.1.5. The unique point in Loc1
PGL(2)(P

1, S) corresponds to a rank-two local system on

P1\S with non-trivial unipotent monodromy at 0 and 1, and monodromy with a single Jordan
block of eigenvalue −1 at ∞. This local system arises from the universal Tate module of the
Legendre family of elliptic curves over P1\{0, 1,∞} given by y2 = x(x−1)(x−t), t ∈ P1\{0, 1,∞}.

4.2 Comparison with linear and de Rham moduli
In this subsection G∨ = SL(2). We will show that LocSL(2)(P1, S) is isomorphic to its linearized
version and its de Rham version, which traditionally appears in the formulation of the geometric
Langlands correspondence.

4.2.1 Linearized version. Let
∑

SL(2)(P1, S) denote the linearized version of LocSL(2)(P1, S)
defined by the presentation∑

SL(2)(P1, S) := T ∗((P1)S/SL(2)) = (Ñ∨)S,
∑

=0/SL(2),

where we regard Ñ∨ as the Springer resolution of the nilpotent cone in g∨ = sl(2), and impose
that the sum of the Lie algebra elements be zero. Thus a point of

∑
SL(2)(P1, S) is a triple of pairs

(Bs, `s)s∈S consisting of a matrix Bs ∈ sl(2) and an eigenline Bs(`s) ⊂ `s with trivial eigenvalue
Bs|`s = 0, and the matrices satisfy the equation B0 +B1 +B∞ = 0 inside of sl(2).

The local equations for (Ñ∨)S,
∑

=0 are exactly the same as those derived above for (Ñ∨)S,
∏

=1

except now B0, B1, B∞ are nilpotent rather than unipotent matrices

B0 =

(
−ax a

−ax2 ax

)
, B1 =

(
−by b

−by2 by

)
−B∞ = B0 +B1 =

(
−ax− by a+ b

−ax2 − by2 +ax+ by

)
with the requirement that B∞ is of the form (0 ∗

0 0) imposing the equations

ax+ by = 0, ax2 + by2 = 0.

Thus we can construct an SL(2)-equivariant isomorphism

(Ñ∨)S,
∏

=1 ∼ // (Ñ∨)S,
∑

=0
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by the assignment

(A0, A1, A∞, `0, `1, `∞) � // (A0 − 1, A1 − 1, 2−A0 −A1, `0, `1, `∞).

Note that A∞ − 1 6= 2−A0 −A1 as they differ in local coordinates by(
0 0

ab(x− y) 0

)
though nevertheless (2−A0 −A1)`∞ = 0.

We could just as well choose either of the alternative isomorphisms given by the assignments

(A0, A1, A∞, `0, `1, `∞) � // (2−A1 −A∞, A1 − 1, A∞ − 1, `0, `1, `∞),

(A0, A1, A∞, `0, `1, `∞) � // (A0 − 1, 2−A0 −A∞, A∞ − 1, `0, `1, `∞).

They give different isomorphisms reflecting the fact that (Ñ∨)S,
∏

=1 has automorphisms that
infinitesimally move points in its non-reduced component.

4.2.2 de Rham moduli. Let ConnSL(2)(P1, S) denote the de Rham version of LocSL(2)(P1, S)
classifying data (E , τ, {`s}s∈S ,∇), where E is a rank-two vector bundle on P1 equipped with a
line `s ⊂ Es at each s ∈ S, and a meromorphic connection

∇ : E // E ⊗ ΩP1(S)

with regular singularity at each s ∈ S, whose residue Ress∇ is trivial when restricted to `s, and

τ : OP1
∼ // det(E)

is a ∇-flat trivialization of the determinant.

Lemma 4.2.3. There is canonical isomorphism from the de Rham moduli to linearized moduli

ConnSL(2)(P1, S)
∼ //

∑
SL(2)(P1, S).

Proof. First, for any ((E , τ, {`s}s∈S ,∇) ∈ ConnSL(2)(P1, S)), we have E ' O2
P1 . Otherwise, there

is an embedding OP1(n) ↪→ E with quotient OP1(−n), for some n > 0. The composition

OP1(n) �
� // E ∇ // E ⊗ ΩP1(S) // E/OP1(n)⊗ ΩP1(S) ' OP1(1− n)

is OP1-linear, hence must be zero since n > 1 − n. Thus ∇ restricts to a connection on OP1(n)
without poles (because the residues of ∇ are nilpotent), which is impossible since n 6= 0.

Next, fix an isomorphism (E , τ) ' (O2
P1 , τ0) with the trivial bundle (such choices form an

SL(2)-torsor). The trivial bundle carries the de Rham connection d, and any ((E , τ, {`s}s∈S ,∇) ∈
ConnSL(2)(P1, S)) is equivalent to one of the form (O2

P1 , {`s}s∈S , τ0,∇= d+ϕ)∈ConnSL(2)(P1, S),
where ϕ : O2

P1 → O2
P1 ⊗ ΩP1(S) is a traceless O-linear map whose restriction to `s, for each s ∈ S,

is trivial.
Now, define the sought-after isomorphism by the SL(2)-equivariant assignment

(O2
P1 , {`s}s∈S , τ0,∇ = d+ ϕ) // (Res0ϕ, `0,Res1ϕ, `1,Res∞ϕ, `∞) ∈ (Ñ∨)S

whose image lies in (Ñ∨)S,
∑

=0 thanks to the residue theorem for curves

Res0ϕ+ Res1ϕ+ Res∞ϕ = 0. 2

Corollary 4.2.4. The Betti moduli LocSL(2)(P1, S), its linearized version
∑

SL(2)(P1, S), and

the de Rham moduli ConnSL(2)(P1, S) are all isomorphic as stacks over the classifying stack of
SL(2).
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4.3 Coherent sheaves
Given a stack Z, recall we write Coh(Z) to denote the dg derived category of coherent complexes
on Z. We abuse terminology and use the term coherent sheaves to refer to its objects.

4.3.1 Affine Hecke action. Let G∨ be any reductive group over Q. Fix s ∈ S, then the

monoidal category CohG
∨
(StG∨) acts on Coh(LocG∨(P1, S)) as follows. Recall the curve Xs =

P1
−
∐

P1\{s}P1
+ in § 2.3 with the point s doubled. The moduli stack LocG∨(Xx, S±) can be similarly

defined as LocG∨(P1, S), with B∨-reductions at both s− and s+. The Steinberg stack StG∨/G
∨

can be identified with the moduli stack LocG∨(Ds, {s−, s+}) of G∨-local systems on the doubled
disk Ds with unipotent monodromy and B∨-reductions at s− and s+. We have the following
diagram.

LocG∨(Xs, S±)
p−

tt

p+

**
κ

��
LocG∨(P1, S) LocG(Ds, {s−, s+}) = StG∨/G

∨ LocG∨(P1, S)

Passing to quasi-coherent sheaves, one obtains the affine Hecke action

?s : CohG
∨
(StG∨)⊗QCoh(LocG∨(P1, S)) // QCoh(LocG∨(P1, S))

K ?s F = (p+)!((p−)∗F ⊗ κ∗(K)) ,

which preserves the subcategory Coh(LocG∨(P1, S)) because p+ is proper.
Natural generalizations of the above constructions provide Coh(LocG∨(P1, S)) the requisite

coherences of a CohG
∨
(StG∨)-module structure.

4.3.2 G∨ = SL(2). The center Z(SL(2)) ' µ2 acts trivially on (Ñ∨)S,
∏

=1, therefore it acts
on the underlying coherent sheaf of each object in Coh(LocSL(2)(P1, S)). This provides a direct
sum decomposition

Coh(LocSL(2)(P1, S)) ' Cohtriv(LocSL(2)(P1, S))⊕ Cohalt(LocSL(2)(P1, S))

determined by whether the action of µ2 ' Z(SL(2)) is trivial or by the alternating representation.
For any s ∈ S, the corresponding Atkin–Lehner involution Ocl

StG∨
(−1, 0) ∈ CohG

∨
(StG∨)

exchanges the two summands.

4.3.3 G∨ = PGL(2). The decomposition into connected components (4.2) provides a direct
sum decomposition

Coh(LocPGL(2)(P1, S)) ' Coh(Loc0
PGL(2)(P

1, S))⊕ Coh(Loc1
PGL(2)(P

1, S)).

By Lemma 4.1.4, the second summand admits an equivalence

Coh(Loc1
PGL(2)(P

1, S)) ' Vect.

4.3.4 Relation between G∨ = SL(2) and G∨ = PGL(2). Pullback along the map p in (4.3)
provides an equivalence

p∗ : Coh(Loc0
PGL(2)(P

1, S))
∼ // Cohtriv(LocSL(2)(P1, S))

as Perf(LocPGL(2)(P1, S))-module categories.
Thus using the prior decompositions and Atkin–Lehner involutions, we see that to understand

any of the above categories, it suffices to understand for example Cohtriv(LocSL(2)(P1, S)).
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5. Langlands duality

In this section we give the proof of our main theorem. For most of this section we focus on
G = PGL(2) and G∨ = SL(2). We will establish results in this case first, and then use them to
deduce the case of G = SL(2) and G∨ = PGL(2).

5.1 Dictionary: matching objects
Before proceeding to the construction and proof of the equivalence, let us record here various
distinguished objects that will be matched by it.

Let U0, U1 ⊂ BunPGL(2)(P1, S) denote the open substacks classifying parabolic bundles with
respectively underlying bundle E ' OP1 ⊕ OP1 , E ' OP1(1) ⊕ OP1 . In what follows, all sheaves

will be extensions by zero off of U0 or U1. In particular, we recall the objects IC0(R) introduced

in (3.1), which is the IC-sheaf of the closure of c0(R) in U0 then extended by zero.

5.1.1 U1. Within U1, consider the open substacks

c1(∗) �
� j // c1(∗) ∪ c1(∅) �

� i // U1

classifying respectively bundles E ' OP1(1)⊕OP1 with generic lines `0, `1, `∞, and more generally,
lines `0, `1, `∞ with none contained within OP1(1).

We have the following distinguished objects:

WhS = i!j∗Qc1(∗)
oo // OLocSL(2)(P1,S) (by construction),

Eis−1 = i!Qc1(∅)
[−1] oo // OÑ∨∆ (by Proposition 5.4.3),

Eis1 = Q
c1(S)

[−3] oo // OÑ∨∆(2) (by Proposition 5.4.3).

5.1.2 U0. On U0, we have the following distinguished objects:

IC0(∅) oo // O(P1)3(−1,−1,−1) (by Proposition 5.3.3),

IC0(0, 1) oo // OΛ0,1(0, 0,−1) (by Proposition 5.3.3), (5.1)

IC0(0,∞) oo // OΛ0,∞(0,−1, 0) (by Proposition 5.3.3),

IC0(1,∞) oo // OΛ1,∞(−1, 0, 0) (by Proposition 5.3.3), (5.2)

Eis0 = Q
c0(S)

[−2] oo // OÑ∨∆(1) (by Proposition 5.4.3).

We will also use the object J1 ?1 WhS . Consider the open substacks

c0(∅) �
� j // c0(∅) ∪ c0(0,∞) �

� i // U0

classifying bundles E ' O2
P1 with respectively generic lines `0, `1, `∞, and more generally, lines

`0, `1, `∞ with the only possible coincidence `0 = `∞. Then we have

J1 ?1 WhS ' i∗j!Qc0(∅)
oo // OLocSL(2)(P1,S)(0, 1, 0) (by calculating J1?1).
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5.2 Construction of functor
In order to construct the functor in (1.1), we first construct an action of the monoidal category
Perf(LocG∨(P1, S)) (under ⊗) on the automorphic category Sh(BunG(X,S)).

Note the natural inclusion and projection

LocG∨(P1, S)
∼ // (Ñ∨)S,

∏
=1/G∨ // (Ñ∨)S/G∨ // (Ñ∨/G∨)S .

Passing to perfect complexes, we obtain a composite pullback functor

Perf(Ñ∨/G∨)⊗S
∼ // Perf((Ñ∨/G∨)S) // Perf((Ñ∨)S/G∨) // Perf(LocG∨(P1, S)).

(5.3)
Recall from (2.7) that we have an action of Perf(Ñ∨/G∨)⊗S on Sh(BunG(P1, S)) coming from

Wakimoto operators at each s ∈ S. This action preserves the subcategory Sh !(BunG(P1, S)).

Theorem 5.2.1. For G = PGL(2) or SL(2), the Perf(Ñ∨/G∨)⊗S-action on Sh(BunG(P1, S))
in (2.7) factors through the functor in (5.3)

Perf(Ñ∨/G∨)⊗S // Perf(LocG∨(P1, S)).

Thus there is an action of Perf(LocG∨(P1, S)) on Sh(BunG(P1, S)) preserving the subcategory
Sh !(BunG(P1, S)). Moreover, for any x ∈ P1\S, the Rep(G∨)-action on Sh(BunG(P1, S)) given
via the evaluation map

ev∗x : Rep(G∨) → Perf(LocG∨(P1, S)) (5.4)

coincides with the spherical Hecke action at x via the geometric Satake equivalence (2.1).

Proof. In [NY16, Theorem 6.3.9], we prove a more general theorem, where G is any reductive
group and P1\S can be replaced by any punctured curve X\S. The result there says that there is
an action of Perf(LocG∨(P1, S)) on ShNG(X,S)(BunG(X,S)), the full subcategory of objects whose
singular support is contained in the global nilpotent cone NG(X,S) ⊂ T ∗BunG(X,S). In the case
G is semisimple of rank one, X = P1 and #S = 3, the Hitchin base for T ∗BunG(X,S) reduces to a
point, therefore the nilpotent singular support condition is vacuous, i.e., ShNG(X,S)(BunG(X,S))
is equal to Sh(BunG(X,S)). The theorem then follows from [NY16, Theorem 6.3.9]. 2

Remark 5.2.2. A key ingredient in the proof of [NY16, Theorem 6.3.9] is the local constancy
of the spherical Hecke action, namely [NY16, Theorem 1.2.1]. This is the only place where the
nilpotent singular support condition is used. In the situation of Theorem 5.2.1, one can give a
more elementary proof, which we sketch below.

Let G = PGL(2) or SL(2). First, let us be precise about the meaning of local constancy of
the spherical Hecke action. Write U = P1\S. Consider the family version of Hecke modifications

Heckesph
U introduced in Remark 2.3.2. For any F ∈ Sh !(BunG(P1, S)) and K ∈ Hsph

G , the complex

Heckesph
U (K,F) ∈ Sh !(BunG(P1, S)× U) is called locally constant in the U -direction if its singular

support SS(Heckesph
U (K,F)), a conical Lagrangian in T ∗BunG(P1, S) × T ∗U , is contained in

T ∗BunG(P1, S)× U (the second factor is the zero section of the cotangent bundle T ∗U).

Claim. For any F ∈ Sh !(BunG(P1, S)) and any K ∈ Hsph
G , the complex Heckesph

U (K,F) on
BunG(P1, S)× U is locally constant in the U -direction in the above sense.
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Below we only sketch the proof of this claim in the case G = PGL(2) and K corresponds
to the standard representation of G∨ = SL(2) (i.e., Heckesph

x (K,−) corresponds to the lower
modification at x).

For x ∈ U , the Hecke correspondence of a lower modification at x is given by the diagram

BunG(P1, S) BunG(P1, S ∪ {x})
px−oo px+ // BunG(P1, S). (5.5)

Here px− sends a point (E , `0, `1, `∞, `x) to (E , `0, `1, `∞), and px+ sends it to (E ′, `′0, `′1, `′∞),
where E ′ fits into a short exact sequence E ′ → E → `x, and `′s = `s for s ∈ S after identifying E ′s
with Es.

Since BunG(P1, S) is stratified by points, we only need to show that for any object F ∈
Sh !(BunG(P1, S)), the stalk of px+!p

∗
x−F at any point b′ ∈ BunG(P1, S) is locally constant as x

varies in U . It suffices to check this for F = Fk(R), one of the basis objects. Let b = ck(R) and
let Hx(b, b′) = (px−, px+)−1(b, b′) ⊂ BunG(P1, S ∪ {x}). As x varies, the Hx(b, b′) form a family
hb,b′ : H(b, b′) → U . Since the stalk of px+!p

∗
x−Fk(R) at b′ is simply H∗c(Hx(b, b′),Q), it suffices

to show that h is a fibration.
Therefore, we fix b, b′ ∈ BunG(P1, S), viewed as classifying spaces of their respective

automorphism groups. Consider the two projections restricted from (5.5):

b Hx(b, b′)
hx−oo hx+ // b′.

The fibers of hx− and hx+ are subsets of P1, hence dim Aut(b) and dim Aut(b′) differ at most
by 1. We have the following two cases.

(i) If dim Aut(b) and dim Aut(b′) differ by 1, one of the arrows hx− or hx+ has to be an
isomorphism. Therefore, in this case, H(b, b′) ' b× U or H(b, b′) ' b′ × U , hence hb,b′ is a
trivial fibration.

(ii) If dim Aut(b) = dim Aut(b′). Inspecting the list of points in BunG(P1, S) given in § 3.1.1,
we see this happens only for the following pairs (b, b′).

– (b, b′) = (c0(S−{s}), c1(s)) or (c1(s), c0(S−{s})) for s ∈ S. In this case both hx− and
hx+ are isomorphisms, therefore hb,b′ is a trivial fibration.

– (b, b′) = (c1(∅), c2(∅)) or (c2(∅), c1(∅)). In this case both hx− and hx+ are isomorphisms,
therefore hb,b′ is a trivial fibration.

– (b, b′) = (c0(∅), c1(∗)) or (c1(∗), c0(∅)). In this case, Aut(b) = Aut(b′) = 1. If b = (E =
O2

P1 , `0, `1, `∞), then

H(b, b′) = {(x, `x) ∈ U × P1 | there is no map OP1(−1) → E
containing `0, `1, `∞ and `x}.

One can check that H(b, b′) ⊂ U × P1 is the complement of the graph of an open
embedding U ↪→ P1. Therefore, hb,b′ is an A1-fibration.

This proves the claim in the special case of lower modification.

5.2.3 The functor Φ. Let G = PGL(2) and G∨ = SL(2). By making Perf(LocSL(2)(P1, S))
act on the Whittaker sheaf WhS ∈ Sh !(BunPGL(2)(P1, S)), we obtain a functor

ΦPerf : Perf(LocSL(2)(P1, S)) // Sh !(BunPGL(2)(P1, S)).
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Since Sh(BunPGL(2)(P1, S)) is cocomplete, we can take the continuous extension of ΦPerf to get
a functor

Φ : QCoh(LocSL(2)(P1, S)) // Sh(BunPGL(2)(P1, S)).

Consider as well the restriction

ΦCoh = Φ|Coh(LocSL(2)(P1,S)).

We will defer the proof of the following until Proposition 5.6.1 below but mention it here for
clarity.

Proposition 5.2.4. The functor ΦCoh lands in the full dg subcategory Sh !(BunPGL(2)(P1, S)).

5.3 Compatibilities with changing level structure
In this section, we will see why it is important that we act upon the Whittaker sheaf to construct
the functor Φ and its elaborations.

5.3.1 Changing level structure on the automorphic side. On the automorphic side, for s ∈ S,
consider the natural P1-fibration

πs : BunPGL(2)(P1, S) // BunPGL(2)(P1, S\{s}),

where we forget the flag at s ∈ S. It provides an adjoint triple

Sh !(BunPGL(2)(P1, S))
πs∗=πs!

π!
s

// Sh !(BunPGL(2)(P1, S\{s})).

π∗soo

oo

5.3.2 Changing level structure on the spectral side. We seek the corresponding adjoint triple
on the spectral side.

First, introduce the intermediate stack

LocSL(2)(P1, S\{s}, {s}) = LocSL(2)(P1, S\{s})×{s}/SL(2) P1/SL(2)

classifying an SL(2)-local system on P1\(S\{s}) with B∨-reductions near S\{s} with trivial
induced T∨-monodromy, and an additional B∨-reduction at s ∈ P1.

Next, consider the natural correspondence

LocSL(2)(P1, S\{s}, {s})
qs

uu
κs
��

ps

**
LocSL(2)(P1, S) P1/SL(2) LocSL(2)(P1, S\{s})

where ps is the evident P1-fibration forgetting the flag at s ∈ P1, κs forgets all of the data except
the flag at s ∈ P1, and qs is the evident inclusion fitting into the Cartesian square.

LocSL(2)(P1, S)

��

LocSL(2)(P1, S\{s}, {s})qsoo

��
(T ∗P1)/SL(2) P1/SL(2)oo
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Note, in particular, that the pullback q∗s preserves coherent complexes since up to base change
it is given by tensoring with the perfect complex OP1 = Cone(OT ∗P1(2) → OT ∗P1).

Passing to coherent complexes, define the adjoint triple

Coh(LocSL(2)(P1, S))
ηs // Coh(LocSL(2)(P1, S\{s}))

η`soo

ηrsoo

ηs(F) = ps∗(q
∗
sF ⊗ κ∗sOP1(−1))

η`s = qs∗(p
∗
sF ⊗ κ∗sOP1(−1)[−1]), ηrs = qs∗(p

∗
sF ⊗ κ∗sOP1(−1)[1]).

Finally, recall from § 2.6 that there is an equivalence (denoted by Φ0,∞ there)2

ΦS\{s} : Coh(LocSL(2)(P1, S\{s})) ∼ // Sh !(BunPGL(2)(P1, S\{s})).

Proposition 5.3.3. For each pair of vertical arrows (η`s, π
∗
s), (ηs, πs!), and (ηrs , π

!
s), the following

diagram commutes by a canonical isomorphism.

Coh(LocSL(2)(P1, S))

ηs

��

Φ // Sh !(BunPGL(2)(P1, S))

πs!
��

Coh(LocSL(2)(P1, S\{s}))

η`s

OO
ηrs

OO

ΦS\{s}// Sh !(BunPGL(2)(P1, S\{s}))

π∗s

OO

π!
s

OO

Proof. (1) We first prove the commutativity for the pair (η`s, π
∗
s).

By construction, both compositions

Φ ◦ η`s, π∗s ◦ ΦS\{s} : Coh(LocSL(2)(P1, S\{s})) // Sh !(BunPGL(2)(P1, S))

are naturally equivariant for the tensor action of Perf(Ñ∨/G∨) at the points S\{s}. Therefore.
it suffices to give a natural isomorphism when evaluated on the structure sheaf

π∗s(ΦS\{s}(OLoc))
∼ // Φ(η`s(OLocs)), (5.6)

where we use the short-handed notation OLoc (respectively OLocs) to denote the structure sheaf
of LocSL(2)(P1, S) (respectively LocSL(2)(P1, S\{s})).3

On the one hand, note the isomorphism

η`s(OLocs) ' Cone(OLoc(1, 0, 0) // OLoc(−1, 0, 0))[−1],

where we order the twists with s as the first component. We can recast this as an isomorphism

η`s(OLocs) ' Cone(OÑ∨(1) ?s OLoc
// OÑ∨(−1) ?s OLoc)[−1].

2 Note that the definition of Φ0,∞ in § 2.6 is asymmetric with respect to 0 and ∞: its definition uses the Hecke
action at 0. Therefore, in defining ΦS\{s}, we need to make a choice of one of the two points in S\{s}. The results
involving ΦS\{s} will be valid for any such choice. In fact, one can show that for different choices of points in
S\{s}, the resulting functors are canonically isomorphic to each other, but we do not need this statement in the
following.
3 There is a general argument that works for any G, but here we give a more down-to-earth argument for G =
PGL(2).
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Moreover, the morphism of the cone is induced by the natural morphism of Wakimoto kernels

OÑ∨(1) // OÑ∨(−1).

Thus we have an isomorphism

Φ(η`s(OLocs)) ' Cone((J1
// J−1) ?s WhS)[−1].

Expanding in terms of the standard basis, we have the reformulation

Φ(η`s(OLocs)) ' Cone((T0∗T1/2
// T1/2T0!) ?s WhS)[−1].

Thanks to the distinguished triangles in Haff
PGL(2) given by

δ // T0!
// Avg, Avg // T0∗ // δ

and the fact that Avg ?s WhS = 0 as seen in Corollary 2.5.6, we have the further reformulation

Φ(η`s(OLocs)) ' Avg ?s T1/2 ?s WhS = π∗sπs∗(T1/2 ?s WhS)[1].

Finally, we have an isomorphism

T1/2 ?s WhS ' i!j∗Qc0(∅)

in terms of the open substacks

c0(∅) �
� j // c0(∅) ∪ c0(0,∞) �

� i // BunPGL(2)(P1, S)

classifying trivial bundles O2
P1 with distinct lines `0, `1, `∞, and with `1 alone distinct. From this,

we observe an isomorphism

πs∗(T1/2 ?s WhS)[1] 'WhS\{s}

from which (5.6) follows.
(2) The proof for the pair (ηrs , π

!
s) is completely the same as that for (η`s, π

∗
s).

(3) By adjunction and the known canonical isomorphism π∗s ◦ΦS\{s} ' Φ ◦ η`s, we get a natural

transformation ΦS\{s} ⇒ πs∗ ◦ Φ ◦ η`s. Precomposing with ηs, we get a natural transformation

θ : ΦS\{s} ◦ η ⇒ πs∗ ◦ Φ ◦ η`s ◦ η ⇒ πs∗ ◦ Φ.

We will show that θ is an equivalence. Note it suffices to show that π∗sθ is an equivalence because
π∗s is conservative.

Observe that

η`sη(F) = OP1×P1(−1,−1)[−1] ?s F for F ∈ Coh(LocSL(2)(P1, S)).

By the affine Hecke equivariance of Φ (see Proposition 2.5.8), and the fact that OP1×P1(−1,−1)
corresponds to Avg under the equivalence Φaff , we have

Φ ◦ η`s ◦ η = Φ ◦ (OP1×P1(−1,−1)[−1]?s) ' Avg[−1] ?s Φ.

On the other hand, the above equivalence of functors is the composition

Φ ◦ η`s ◦ η
∼ // π∗s ◦ ΦS\{s} ◦ η

π∗sθ // π∗s ◦ πs∗ ◦ Φ = Avg[−1] ?s Φ ,

where the first equivalence is the composition of the identity of η and the equivalence established
above in (1). Therefore, π∗sθ is an isomorphism. This completes the proof. 2

This proposition allows us to calculate the image of IC0(∅), IC0(1,∞), IC0(0,∞), and
IC0(0, 1) under Φ, as listed in § 5.1.2. For example, IC0(0,∞) ∼= π∗1 Eis0,{0,∞} (the Eisenstein
series Eis0 for P1\{0,∞}).
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5.4 Compatibility with Eisenstein series
In the case G = PGL(2), we have ΛT = Z. For n ∈ Z, recall the subdiagram

BunnT (P1) BunnB(P1)
pnoo qn // Bunn̄PGL(2)(P

1, S),

where we fix n = 2 deg(L)− deg(E) (and n̄ = n mod 2).
Recall the Eisenstein series sheaf

Eisn = qn!QBunnB(P1)
[−n− 2].

To describe it, recall we write j : cn(S) → Bunn̄G(P1, S) for the point, where E ' OP1(n)⊕OP1

with lines `0, `1, `∞ ⊂ OP1(n), and write Fn(S) = j!Qcn(S)
∈ Sh !(Bunn̄G(P1, S)) for the extension

by zero of the constant sheaf. Recall also the special point j : c1(∅) → Bun1̄
G(P1, S) where

E ' OP1(1)⊕OP1 with collinear lines `0, `1, `∞ ⊂ OP1 , and F1(∅) = j!Qc1(∅)
∈ Sh !(Bun1̄

G(P1, S))

is the extension by zero of the constant sheaf.

Lemma 5.4.1.

(i) When n > 0, we have an isomorphism

pn : BunnB(P1)
∼ // cn(S) ⊂ Bunn̄PGL(2)(P

1, S)

and hence an isomorphism
Eisn ' Fn(S)[−n− 2].

(ii) When n = −1, we have an isomorphism

p1 : Bun−1
B (P1)

∼ // c1(∅) ⊂ Bun1̄
PGL(2)(P

1, S)

and hence an isomorphism
Eis−1 ' F1(∅)[−1].

Proof. For E ' OP1(n) ⊕OP1 with n > −1, and lines `0, `1, `∞ ⊂ OP1(n), there exists a unique
inclusion OP1(n) ⊂ E such that OP1(n)|S coincides with the given lines. (In fact, for n > 1, there
exists a unique inclusion independently of the lines.) 2

5.4.2 Spectral Eisenstein series. We seek the objects on the spectral side corresponding to
Eisenstein sheaves.

Consider the substack LocB∨(P1, S) ⊂ LocSL(2)(P1, S) classifying B∨-local systems on P1\S
with trivial induced T∨-monodromy near S (which in this case implies trivial induced T∨-
monodromy globally). It admits the presentation as a quotient

LocB∨(P1, S) ' Ñ∨∆/SL(2)

of the reduced subscheme Ñ∨∆ ⊂ (Ñ∨)S,
∏

=1 of the irreducible component ΛS from the list

of § 4.1.2. In particular, we have the natural SL(2)-equivariant projection π : Ñ∨∆/SL(2) →

P1/SL(2).
For n ∈ Z, define the spectral Eisenstein series coherent sheaf to be

O∆(n) = OÑ∨∆/SL(2)
(n) ' π∗OP1/SL(2)(n).
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Proposition 5.4.3. For n ∈ Z, we have an isomorphism

Φ(O∆(n+ 1)) ' Eisn .

Proof. We denote (Ñ∨)S,
∏

=1 simply by Λ during the proof. Also, we will denote objects in
Coh(LocSL(2)(P1, S)) ' CohSL(2)(Λ) by their pullbacks to Λ.

By the construction of Φ, we have Φ(O∆(n + 1)) = Φ(OΛ(n, 0, 0) ⊗OΛ
O∆(1)) ' Jn ?0

Φ(O∆(1)); on the other hand, by Lemma 2.4.4, Jn ?0 Eis0 ' Eisn. Therefore, it suffices to show
that

Φ(O∆(1)) ' Eis0 .

One direct strategy would be to write O∆(1) as a complex of vector bundles, then apply Φ to
the complex, and show the resulting complex is isomorphic to Eis0. Unfortunately, since O∆(1)
is coherent but not perfect, this would involve infinite complexes. To avoid this complication, we
will instead bootstrap off of Proposition 5.3.3 and express O∆(1) in terms of the structure sheaf
OΛ and objects coming from two points of ramification.

First, by construction we have

Φ(OΛ(0, 1, 0)) ' Φ(J1 ?1 OΛ) ' J1 ?1 Φ(OΛ) ' J1 ?1 WhS .

Let us describe this sheaf explicitly. Consider the open substacks

c0(∅) �
� j // c0(∅) ∪ c0(0,∞) �

� i // U0 � � u // Bun0
PGL(2)(P

1, S)

classifying bundles E ' O2
P1 with respectively distinct lines `0, `1, `∞, more generally, lines `0, `1,

`∞ with the only possible coincidence `0 = `∞, and finally most generally, any configuration of
lines `0, `1, `∞. Then a simple calculation, for example via the identity J1 = T0∗T1/2, shows that

J1 ?1 WhS ' u!i∗j!Qc0(∅)
.

From here on, we will only consider the open substack U0 ⊂ BunPGL(2)(P1, S), and all sheaves

will be understood to be extensions by zero off of U0.
Let Y be the preimge of the partial diagonals ∆0,1 ∪ ∆1,∞ ⊂ (P1)S in (Ñ∨)S,

∏
=1. Under

the local coordinates introduced in § 4.1.2, Y is given locally by the equation xy = 0. Therefore,
Y = Λ0,1∪Λ1,∞∪ Λ̃S , where Λ̃S denotes the non-reduced component (5) in § 4.1.2 whose reduced

structure is ΛS ' Ñ∨∆. Since ∆0,1 ∪ ∆1,∞ have ideal sheaves O(P1)S (−1,−1, 0) ⊗ O(P1)S (0,−1,

−1) =O(P1)S (−1,−2,−1) within (P1)S , the ideal sheaf IY is a quotient of OΛ(−1,−2,−1). Using
local coordinates, we see that the ideal sheaf of Y in Λ is generated by one equation (a + b),
which defines the components Λ∅ and Λ0,∞. This gives in the heart of CohSL(2)(Λ) a short exact
sequence

0 // OΛ∅∪Λ0,∞(−1,−2,−1) // OΛ
// OY // 0

and its twist

0 // OΛ∅∪Λ0,∞(−1,−1,−1) // OΛ(0, 1, 0) // OY (0, 1, 0) // 0. (5.7)

By a similar process, using a Koszul-like resolution of OΛ as a quotient of OY (locally defined
by the equations x = 0, y = 0), we get a filtration of OY (0, 1, 0) by SL(2)-equivariant coherent
subsheaves with associated-graded (from sub to quotient)

O∆(1), OΛ0,1(0, 0,−1)⊕OΛ1,∞(−1, 0, 0), O∆(1).
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In particular, OY (0, 1, 0) carries an endomorphism ε : OY (0, 1, 0) � O∆(1) ↪→ OY (0, 1, 0) such
that ε2 = 0.

Next we consider the automorphic side. Consider the respective open and closed substacks

a : A = {`0 6= `∞} �
� // U, b : B = {`0 = `1} ∪ {`1 = `∞} �

� // U.

We have a short exact sequence of perverse sheaves

0 // a!QA
// i∗j!Qc0(∅)

// b!TB // 0, (5.8)

where TB is a perverse sheaf on B. It is easy to see that b!TB has a filtration (as a perverse
sheaf) with associated-graded (from sub to quotient)

Eis0, IC0(0, 1)⊕ IC0(1,∞), Eis0 .

In particular, b!TB carries an endomorphism ε′ : b!TB � Eis0 ↪→ b!TB such that ε′2 = 0.
Recall there is an isomorphism

Φ(OΛ(0, 1, 0)) ' i∗j!Qc0(∅)
.

Claim. There is an isomorphism

Φ(OΛ∅∪Λ0,∞(−1,−1,−1)) ' a!QA
.

Proof. In the case of P1 with two punctures 0 and ∞, we may identify LocSL(2)(P1, {0,∞}) with
the adjoint quotient StSL(2)/SL(2) of the derived Steinberg variety. In the following we write

LocSL(2)(P1, {0,∞}) simply as Loc(0,∞). Recall from Example 2.2.5, Φaff sends the twisted

classical structure sheaf Ocl
St(−1,−1) to T0!. Therefore, by the definition of Φ0,∞ we have

Φ0,∞(Ocl
Loc(0,∞)(−1,−1)) = Φaff(Ocl

St(−1,−1)) ?0 Eis0,{0,∞}
' T0! ?0 Eis0,{0,∞}
' j0,∞!QU0,∞

[−1].

Here j0,∞ : U0,∞ ' pt/T ↪→ BunPGL(2)(P1, {0,∞}) is the open point E = O2
P1 with two distinct

lines `0, `∞.
Since η`1(Ocl

Loc(0,∞)(−1,−1)) ' OΛ∅∪Λ0,∞(−1,−1,−1)[−1], by Proposition 5.3.3, we have that

Φ(OΛ∅∪Λ0,∞(−1,−1,−1)) ' Φ(η`1(Ocl
Loc(0,∞)(−1,−1)))[1]

' π∗1Φ0,∞(Ocl
Loc(0,∞)(−1,−1))[1]

' π∗1j0,∞!QU0,∞

' a!QA
. 2

Taking direct sums, we obtain an isomorphism

Φ(OΛ∅∪Λ0,∞(−1,−1,−1)⊕OΛ(0, 1, 0)) ' a!QA
⊕ i∗j!Qc0(∅)

.

Claim. The functor Φ induces a quasi-isomorphism

End(OΛ∅∪Λ0,∞(−1,−1,−1)⊕OΛ(0, 1, 0))
∼ // End(a!QA

⊕ i∗j!Qc0(∅)
).
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Proof. First, one can calculate

End(OΛ(0, 1, 0)) ' Q, End(i∗j!Qc0(∅)
) ' Q.

Since both are generated by the identity morphism, Φ must induce a quasi-isomorphism on them.
Next, we have seen in the previous claim that

OΛ∅∪Λ0,∞(−1,−1,−1) ' η`1(Ocl
Loc(0,∞)(−1,−1)))[1],

a!QA
' π∗1j0,∞!QU0,∞

.

Thus for any object M, we have a commutative diagram

Hom(OΛ∅∪Λ0,∞(−1,−1,−1),M)
Φ //

∼
��

Hom(a!QA
,Φ(M))

∼
��

Hom(Ocl
Loc(0,∞)(−1,−1)[1], η1M)

Φ0,∞ // Hom(j0,∞!QU0,∞
, π1∗Φ(M))

where the vertical equivalences are by adjunction. Since the bottom arrow is an equivalence,
the top arrow must be as well. In particular, we can apply this for M ' OΛ∅∪Λ0,∞(−1,−1,
−1)⊕OΛ(0, 1, 0).

Finally, a similar argument using the respective right adjoints ηr1, π
!, shows for any object

M, that Φ induces an equivalence

Hom(M,OΛ∅∪Λ0,∞(−1,−1,−1))
∼ // Hom(Φ(M), a!QA

).

Again, we can apply this for M' OΛ∅∪Λ0,∞(−1,−1,−1)⊕OΛ(0, 1, 0).
This concludes the proof of the claim. 2

Claim. The functor Φ applied to the sequence (5.7) gives the sequence (5.8). In particular, we
have an isomorphism

Φ(OY (0, 1, 0)) ' b!TB. (5.9)

Moreover, the functor Φ takes the endomorphism ε of OY (0, 1, 0) to a non-zero multiple of the
endomorphism ε′ of b!TB.

Proof. We have seen that

Φ(OΛ∅∪Λ0,∞(−1,−1,−1)) ' a!QA
, Φ(OΛ(0, 1, 0)) ' i∗j!Qc0(∅)

.

One can calculate

Hom(OΛ∅∪Λ0,∞(−1,−1,−1),OΛ(0, 1, 0)) ' Q⊕Q[−1],

Hom(a!QA
, i∗j!Qc0(∅)

) ' Q⊕Q[−1].

Note that each is one-dimensional in degree 0.
By the previous claim, the first morphism of (5.7) is taken to a non-zero morphism. Since

this morphism and the first morphism of (5.8) are non-zero elements of a one-dimensional vector
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space, each is a non-zero scale of the other. This implies Φ takes the sequence (5.7) to the
sequence (5.8), and in particular, passing to cones gives the isomorphism (5.9).

Furthermore, the previous claim also implies the functor Φ induces a quasi-isomorphism on
endomorphisms of the cones

End(OY (0, 1, 0))
∼ // End(b!TB). (5.10)

One can calculate the degree 0 endomorphisms on both sides of (5.10) to see each is isomorphic
to the dual numbers with respective generators ε and ε′. Thanks to the quasi-isomorphism (5.10),
this implies Φ takes ε to a non-zero multiple of ε′.

This completes the proof of the claim. 2

To complete the proof of the proposition, introduce the quotient categories

C = QCoh(LocSL(2)(P1, S))/〈OΛ0,1(0, 0,−1),OΛ1,∞(−1, 0, 0)〉,

Sh = Sh(BunPGL(2)(P1, S))/〈IC0(0, 1)⊕ IC0(1,∞)〉.

By (5.1) and (5.2), Φ induces a continuous functor

Φ : C // Sh.

Let K be the image of OY (0, 1, 0) in C1; let T be the image of b!TB in Sh. By (5.9), we have

Φ(K) ' T .

Inside of C, the image of O∆(1) is represented by the infinite complex (the last non-zero
entry is in degree 0)

· · ·→ K ε−→ K ε−→ K 0−→ 0 → · · · , (5.11)

where ε is the endomorphism of K induced by the endomorphism ε of OY (0, 1, 0).
Inside Sh, the image of Eis0 is represented by the infinite complex of perverse sheaves (the

last non-zero entry is in degree 0)

· · ·→ T ε′−→ T ε′−→ T 0−→ 0 → · · · , (5.12)

where ε′ is the endomorphism of T induced by the endomorphism ε′ of b!TB.
By the previous claim, the continuous functor Φ sends (5.11) to (5.12). Therefore, the image

of Φ(O∆(1)) in Sh is the same as the image of Eis0. In particular,

Φ(O∆(1)) ⊂ 〈IC0(0, 1), IC0(1,∞),Eis0〉. (5.13)

The same argument can be applied when the point 1 ∈ S is replaced by 0 or ∞, and we get

Φ(O∆(1)) ⊂ 〈IC0(0, 1), IC0(0,∞),Eis0〉, (5.14)

Φ(O∆(1)) ⊂ 〈IC0(0,∞), IC0(1,∞),Eis0〉. (5.15)

Since the intersection of the categories on the right sides of (5.13)–(5.15) consists of sheaves
supported at the point c0(S), we conclude that Φ(O∆(1)) is supported at c0(S).
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Finally, using the compatibility of Φ with changing levels, we can calculate the push forward of
Φ(O∆(1)) under π1 : Sh(BunPGL(2)(P1, S)) → Sh(BunPGL(2)(P1, {0,∞})). By Proposition 5.3.3
we have

π1∗Φ(O∆(1)) ' Φ(η1(O∆(1))). (5.16)

Since we will be changing the level structure, we use Ñ∨∆,{0,∞} and O∆,{0,∞} to denote the

analogues of Ñ∨∆ and O∆ when S is replaced by {0,∞}. We have the following commutative
diagram where the left parallelogram is derived Cartesian.

Ñ∨∆,{0,∞}/SL(2)
θ′ //

p′1

,,

q′1

ww

LocSL(2)(P1, {0,∞}, {1})
q1

uu

p1

**
Ñ∨∆/SL(2)

θ // LocSL(2)(P1, S) LocSL(2)(P1, {0,∞})

Then we have

η1(O∆(1)) ' p1∗(q
∗
1θ∗O∆(1)⊗OΛ(0,−1, 0)) ' p1∗(θ

′
∗q
′∗
1 O∆) ' O∆,{0,∞}. (5.17)

By Lemma 2.6.2, Φ0,∞ sends O∆,{0,∞} (which is the same as ∆−∗ OÑ∨ in the notation of
Lemma 2.6.2) to the Eisenstein sheaf Eis0,{0,∞}. Combining (5.16) and (5.17), we have

π1∗Φ(O∆(1)) ' Eis0,{0,∞} .

Since Φ(O∆(1)) is supported on c0(S), which is mapped isomorphically onto its image under π1,
we conclude that Φ(O∆(1)) ' Eis0. This completes the proof of the proposition. 2

5.5 Newforms
On the automorphic side, for s ∈ S, define Shs ⊂ Sh !(BunPGL(2)(P1, S)) to be the full subcategory
generated by the image of π∗s .

Define the dg category of newforms to be the dg quotient

Shnew = Sh !(BunPGL(2)(P1, S))/〈Sh0,Sh1,Sh∞〉,

where we kill all ‘old forms’ coming from fewer points of ramification.
Similarly, on the spectral side, define Cs ⊂ Coh(LocSL(2)(P1, S)) to be the full subcategory

generated by the image of η`s.
Define the dg quotient category

Cnew = Coh(LocSL(2)(P1, S))/〈C0, C1, C∞〉.

Lemma 5.5.1.

(i) Shnew is generated by Eisn, for n > −1.

(ii) Cnew is generated by O∆(n), for n > 0.

Proof. (i) Set Shold = 〈Sh0,Sh1,Sh∞〉. We only need to exhibit a set of generators for the category
Sh !(BunPGL(2)(P1, S)) whose members are either in Shold, or a (shifted) Eisenstein sheaf. Such
a set of generators is given by the following.

– For n > 2, ICn(R) ∈ Shold when R 6= S (see (3.1)); by Lemma 5.4.1, we also have Fn(S) '
Eisn[−n− 2].
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– For n= 1, IC1(R) ∈ Shold when R 6= ∅ or S; by Lemma 5.4.1, we also have F1(∅)' Eis−1[−1]
and F1(S) ' Eis1[−3].

– For n = 0, IC0(R) ∈ Shold when R 6= S; by Lemma 5.4.1, we also have F0(S) ' Eis0[−2].

(ii) Let Cold = 〈C0, C1, C∞〉 and let C ′ = 〈Cold,O∆(n);n > 0〉. Our goal is to show that
C ′ = Coh(LocSL(2)(P1, S)).

We will use the following well-known fact. Let Y be a stack of finite type, i : Z ↪→ Y a closed
substack and j : U = Y − Z ↪→ Y the open complement of Z. Then j∗ induces an equivalence
Coh(Y )/CohZ(Y ) ' Coh(U), where CohZ(Y ) is the dg subcategory of Coh(Y ) generated by the
image of i∗ : Coh(Z) → Coh(Y ).

Using the above fact and induction, one can show the following statement, which we label (†):

Suppose a stack Y of finite type is stratified into a union of finitely many strata
Yα ⊂ Y , for α in some index set A. Suppose for each α ∈ A, we have a collection of

objects F (i)
α ∈ Coh(Y α), for i in some index set Iα, such that {F (i)

α |Yα ; i ∈ Iα} generate
Coh(Yα). Then the collection {Fα;α ∈ A, i ∈ Iα} generate Coh(Y ).

(†)

We will also use the following additional simple observation we label (‡):

Let Y be an affine scheme with an action of an affine group H. Then CohH(Y ) is
generated by objects of the form V ⊗ OY , where V runs over all finite-dimensional
irreducible representations of H, and the H-equivariant structure on V ⊗OY is given
by the diagonal action of H.

(‡)

In § 4.1.2 we listed the irreducible components of (Ñ∨)S,
∏

=1, and denoted their reduced
structure by ΛR, for subsets R ⊂ S such that #R 6= 1. We know that ΛR is the conormal bundle
to the partial diagonal ∆R ⊂ (P1)S .

Let us now stratify (Ñ∨)S,
∏

=1 by taking the intersections of the components ΛR. By the
above statements (†) and (‡), it is enough to exhibit a collection of objects in C ′ on the closure
of each stratum whose restrictions to that stratum generate the G∨-equivariant derived category
of coherent sheaves on that stratum.

The three-dimensional strata are the opens Λ◦R = ΛR\
⋃
R′ 6=R ΛR′ , for R ⊂ S, #R 6= 1. Let

us describe the quotients Λ◦R/G
∨, along with a set of objects of C ′ whose restrictions generate

CohG
∨
(Λ◦R).

(i) Λ◦
∅
/G∨ ' pt/µ2, where µ2 is the center of G∨. By (‡), CohG

∨
(Λ◦R) is generated by two

elements OΛ◦R
and sgn⊗OΛ◦R

, where sgn denotes the sign representation of µ2. Therefore,

for R = ∅, the restrictions of OΛ∅
(−1,−1, 0),OΛ∅

(−1, 0, 0) ∈ C0 ⊂ Cold ⊂ C ′ to Λ◦
∅

generate

CohG
∨
(Λ◦

∅
).

(ii) When #R = 2, Λ◦R/G
∨ ' (N∨\{1})/T∨ ' pt/µ2. Note ΛR ' P1 × Ñ∨. By the same

argument as in the previous case, the restrictions of OP1(−1)�OÑ∨(1),OP1(−1)�OÑ∨ ∈
Cold ⊂ C ′ to Λ◦R generate CohG

∨
(Λ◦R).

(iii) Λ◦S/G
∨ ' Y ′/B∨, where Y ′ = (N∨\{1})S,

∏
=1, and the action of B∨ factors through T∨.

Therefore, Λ◦S/G
∨ ' (A1\{0, 1}) × (pt/(Ga × µ2)). Again by (‡), CohG

∨
(Λ◦S) is generated

by two elements OΛ◦S
and sgn⊗OΛ◦S

. Therefore, the restrictions of O∆ and O∆(1) ∈ C ′ to

Λ◦S generate CohG
∨
(Λ◦S).

The one-dimensional stratum is the intersection of all ΛR given by the diagonal ∆S ⊂ (P1)S .
We will return to it momentarily.
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For #R = 2, we have ∆R = Λ∅ ∩ ΛR, and set ∆◦R = ∆R\∆S ; we also set ΘR = ΛS ∩ ΛR ' Ñ∨,
and Θ◦R = ΘR\∆S . Then the two-dimensional strata are ∆◦R,Θ

◦
R, for #R = 2. Let us describe

their quotients by G∨, along with a set of objects of C ′ whose restrictions generate equivariant
coherent sheaves.

(i) ∆◦R/G
∨ ' pt/T∨. Write ∆R as P1×P1. By (‡), CohG

∨
(∆◦R) is generated by the restrictions

of OP1×P1(−1, n), for all n ∈ Z, which all lie in Cold ⊂ C ′.
(ii) Θ◦R/G

∨ ' pt/(Ga × µ2). Note the canonical projection ΘR ' Ñ∨ → P1, providing the

line bundles OΘR(n), for n ∈ Z. By (‡), CohG
∨
(Θ◦R) is generated by the restrictions of

OΘR and OΘR(1). Note that ΘR ⊂ ΛS = Ñ∆ is a G∨-invariant line sub-bundle in the

two-dimensional vector bundle Ñ∆ ' OP1(−2)⊕2 over P1. Therefore, we have an exact
sequence of G∨-equivariant coherent sheaves 0 → O∆(2) → O∆ → OΘR → 0. This shows
that OΘR ∈ C ′. Similarly, 0 → O∆(n+ 2) → O∆(n) → OΘR(n) → 0 implies OΘR(n) ∈ C ′,
for any n > 0.

Finally let us show that O∆S
(n) ∈ C ′, for all n ∈ Z. This will complete the proof by providing

a generating set for CohG
∨
(∆S), where recall ∆S ⊂ (P1)S is the closed one-dimensional stratum.

Since ∆S is the zero section of ΘR, for any #R = 2, we have a G∨-equivariant exact sequence
0 → OΘR(n+2) → OΘR(n) → O∆S

(n) → 0. Since we have already shown that OΘR(n) ∈ C ′, for
all n > 0, we also have O∆S

(n) ∈ C ′, for all n > 0. Now pick any #R = 2 and write ∆R = P1×P1

and regard ∆S as the diagonal. Consider the G∨-equivariant exact sequence

0 // O∆R
(−1,−n− 2) // O∆R

(n,−1) // En // 0 (5.18)

obtained by restricting O∆R
(n,−1) to the nth infinitesimal neighborhood of the diagonal ∆S .

Then En (which is topologically supported on ∆S) is a successive extension of O∆S
(n − 1),

O∆S
(n − 3), . . . ,O∆S

(−n − 1) (each time the twisting decreases by 2). We have En ∈ Cold,
for any n > 0, by (5.18) because the first two terms are in Cold. We have already shown that
O∆S

(n) ∈ C ′, for any n > 0. Using that En ∈ C ′, for any n > 0, we conclude that O∆S
(n) ∈ C ′,

for all n < 0. This completes the proof. 2

5.6 Equivalence
Proposition 5.6.1. Proposition 5.2.4 holds: ΦCoh lands in Sh !(BunPGL(2)(P1, S)).

Moreover, ΦCoh is essentially surjective onto Sh !(BunPGL(2)(P1, S)).

Proof. We continue with the notation introduced in the previous section.
By Proposition 5.3.3, we have Φ|Cs : Cs → Shs, for s ∈ S. Moreover, it is essentially surjective

since ΦS\{s} is essentially surjective.
Therefore Φ induces a functor

Φnew : Cnew // Sh(BunPGL(2)(P1, S))/〈Sh0,Sh1,Sh∞〉.

It suffices to show that Φnew has image exactly equal to Shnew. By Proposition 5.4.3, we have

Φnew(O∆(n+ 1)) ' Eisn, n > −1.

Thus by Lemma 5.5.1(ii), the image of Φnew lies in Shnew, and by Lemma 5.5.1(i), it is essentially
surjective onto Shnew. 2

Now we are ready to prove our main theorem for G = PGL(2).
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Theorem 5.6.2. The functor ΦCoh provides an equivalence

Coh(LocSL(2)(P1, S))
∼ // Sh !(BunPGL(2)(P1, S))

compatible with the affine Hecke actions at s ∈ S.
It restricts to equivalences

Cohtriv(LocSL(2)(P1, S))
∼ // Sh !(Bun1

PGL(2)(P
1, S)),

Cohalt(LocSL(2)(P1, S))
∼ // Sh !(Bun0

PGL(2)(P
1, S)). (5.19)

Proof. Compatibility of ΦCoh with the affine Hecke actions follow from Proposition 2.5.8.
Thanks to Proposition 5.6.1, it remains to show the following: for F ,G ∈ Coh(LocSL(2)(P1,

S)), the natural homomorphism

HomCoh(LocSL(2)(P1,S))(F ,G) // HomSh !(BunPGL(2)(P1,S))(ΦF ,ΦG) (5.20)

is a quasi-isomorphism.
We will make a series of reductions. We use the abbreviation Sh ! = Sh !(BunPGL(2)(P1, S))

and Loc = LocSL(2)(P1, S).
First, by continuity, we may assume that F = OLoc(a, b, c) ⊗ V , i.e., the tensor of a line

bundle and an SL(2)-representation. Then the left-hand side of (5.20) takes the form

HomCoh(Loc)(F ,G) ' Γ(LocSL(2)(P1, S),OLoc(−a,−b,−c)⊗ V ∨ ⊗ G).

Second, by construction, we have

HomSh !
(ΦF ,ΦG) ' HomSh!

(Heckesph
u0

(V, Ja ?0 Jb ?1 Jc ?∞ WhS),ΦG)

' HomSh!
(WhS ,Heckesph

u0
(V ∨, J−a ?0 J−b ?1 J−c ?∞ ΦG))

' HomSh!
(WhS ,Φ(OLoc(−a,−b,−c)⊗ V ∨ ⊗ G)),

where u0 ∈ P1\S is a base point.
Thus we may reduce to the case F = OLoc, and would like to show that the natural map

Γ(LocSL(2)(P1, S),G) // HomSh !
(WhS ,ΦG)

is a quasi-isomorphism.
Now the global sections’ functor Γ(LocSL(2)(P1, S),−) factors through Cnew since objects in

Cs, for s ∈ S, have a factor OP1(−1) whose global sections must vanish.
Similarly, since πs!WhS = 0 by Lemma 2.5.5, the functor HomSh !

(WhS ,−) factors through
Shnew. Furthermore, by Proposition 5.3.3, we have Φ(Cs) ⊂ Shs, for s ∈ S. Thus the functor
HomSh !

(WhS ,Φ(−)) factors through Cnew.
Hence by Lemma 5.5.1(2), it suffices to assume G = O∆(n), for n > 0.
For n = 0, both sides are canonically quasi-isomorphic to Q and we claim the morphism is a

quasi-isomorphism. Equivalently, applying Wakimoto symmetry, we claim the induced morphism

HomCoh(Loc)(O(0, 1, 0),OÑ∨(1)) // HomSh !
(J1 ?1 WhS ,Eis0) (5.21)
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is a quasi-isomorphism. Returning to the proof and notation of Proposition 5.4.3, observe the
left-hand side of (5.21) is generated by the composition

O(0, 1, 0)
σ // OY (0, 1, 0)

ε̃ // OÑ∨(1)

such that the endomorphism ε : OY (0, 1, 0) → OY (0, 1, 0) therein is the composition of the
surjection ε̃ and the inclusion OÑ∨(1) ↪→ OY (0, 1, 0). Similarly, the right-hand side of (5.21) is
generated by the composition

J1 ?1 WhS
σ′ // b!TB

ε̃′ // OÑ∨(1)

such that the endomorphism ε′ : b!TB → b!TB is the composition of the surjection ε̃′ and the
inclusion Eis0 ↪→ b!TB. Moreover, in the two claims in the proof of Proposition 5.4.3, we saw
that Φ(σ) = σ′, and Φ(ε) is a non-zero multiple of ε′. Thus Φ(ε̃) is a non-zero multiple of ε̃′, since
both lie in one-dimensional spaces, and we have confirmed (5.21) is a quasi-isomorphism.

For n > 0, both sides of (5.21) vanish. On the one hand, Γ(LocSL(2)(P1, S),O∆(n)) is a direct
sum of the SL(2)-invariants in Γ(P1,OP1(n+2i)), for i > 0, and hence vanishes for n > 0. On the
other hand, the support of Φ(O∆(n)) = Eisn−1 is disjoint from the support of WhS , and hence
they are orthogonal. 2

By invoking the identifications and symmetries for the automorphic and spectral categories
recorded in §§ 3.3.4 and 4.3.4, we can conclude from the theorem an additional equivalence.

Corollary 5.6.3. There is an equivalence

CohSL(2)−alt(LocPGL(2)(P1, S))
∼ // Sh !(BunSL(2)(P1, S))

compatible with affine Hecke actions at s ∈ S. Here we write CohSL(2)−alt(LocPGL(2)(P1, S))

for the dg category of SL(2)-equivariant coherent complexes on (Ñ∨)S,
∏

=1, where the equation∏
= 1 is imposed inside of PGL(2), and such that the center µ2 ' Z(SL(2)) ⊂ SL(2) acts by the

alternating representation on coherent complexes.
It restricts to equivalences

CohSL(2)−alt(Loc0
PGL(2)(P

1, S))
∼ // Shtriv

! (BunSL(2)(P1, S)), (5.22)

CohSL(2)−alt(Loc1
PGL(2)(P

1, S))
∼ // Shalt

! (BunSL(2)(P1, S)). (5.23)

Proof. The equivalence (5.22) follows by combining (5.19) and (3.2), and the fact that

CohSL(2)−alt(Loc0
PGL(2)(P

1, S)) = Cohalt(LocSL(2)(P1, S)).

By §§ 3.3.3 and 4.3.3 that both sides of (5.23) are equivalent to Vect; the equivalence (5.23)
then follows immediately. 2

Remark 5.6.4. The sheaf F0(∅)alt on BunSL(2)(P1, S) is a cuspidal Hecke eigensheaf with
eigenvalue given by the unique ‘odd’ PGL(2)-local system on P1\S given in Lemma 4.1.4. See
Remark 4.1.5 for a description of this local system.
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Remark 5.6.5. Though we will not discuss the details here, the above equivalences further restrict
to equivalences from those coherent sheaves with nilpotent singular support to those constructible
sheaves that are point-wise compact

CohN (LocSL(2)(P1, S))
∼ // Sh†(BunPGL(2)(P1, S)),

Coh
SL(2)−alt
N (LocPGL(2)(P1, S))

∼ // Sh†(BunSL(2)(P1, S)).

5.7 Unipotently monodromic version
We record here the monodromic form of the prior equivalence. Its construction and proof are
similar.

Let BunPGL(2)(P1, S̃) denote the moduli of PGL(2)-bundles on P1 with N -reductions at the

points of S = {0, 1,∞}. Note the natural map π : BunPGL(2)(P1, S̃) → BunPGL(2)(P1, S) is a

TS = T 3-torsor.
Let Shmon

! (BunPGL(2)(P1, S̃)) denote the full dg subcategory of Sh !(BunPGL(2)(P1, S̃))
generated by pullbacks along π.

Let LocSL(2)(P1, S̃) denote the Betti moduli of SL(2)-local systems on P1\S with B∨-
reductions near S with arbitrary induced T∨-monodromy. Thus it admits a presentation

LocSL(2)(P1, S̃) ' (S̃L(2))S,
∏

=1/SL(2),

where S̃L(2) is the Grothendieck alteration of SL(2), and the equation on the product of the
group elements

∏
= 1 is imposed inside of SL(2).

Let CohLocSL(2)(P1,S)(LocSL(2)(P1, S̃)) be the full subcategory of Coh(LocSL(2)(P1, S̃))

consisting of coherent complexes set-theoretically supported on the substack LocSL(2)(P1, S).

Theorem 5.7.1. There is an equivalence

Φ̃Coh : CohLocSL(2)(P1,S)(LocSL(2)(P1, S̃))
∼ // Shmon

! (BunPGL(2)(P1, S̃))

compatible with Hecke modifications.

The proof is similar to the equivariant version with the following changes.
The monodromic version of the Whittaker sheaf ŴhS corresponds to the structure sheaf of

the completion of LocSL(2)(P1, S̃) along LocSL(2)(P1, S). It can be constructed as follows. Consider
the diagram of Cartesian squares of open substacks

c̃1(∗)

��

� � j̃ // c̃1(∗) ∪ c̃1(∅)

π

��

� � ĩ // Bun1
PGL(2)(P

1, S̃)

��

c1(∗) �
� j // c1(∗) ∪ c1(∅) �

� i // Bun1
PGL(2)(P

1, S)

where the vertical maps are TS-torsors. In particular, since c1(∗) is simply a point, c̃1(∗) is itself
a TS-torsor. Then the free-monodromic Whittaker sheaf is given by

ŴhS = ĩ!j̃∗Lc1(∗)[2#S · dimT ] = ĩ!j̃∗Lc1(∗)[6] ∈ Shmon
! (Bun1

PGL(2)(P
1, S̃)),

370

https://doi.org/10.1112/S0010437X18007893 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007893


Geometric Langlands for SL(2), PGL(2) over the pair of pants

where Lc1(∗) denotes the free-monodromic unipotent local system on c̃1(∗): its monodromy

representation is the completion of the regular representation of π1(c̃1(∗)) ∼= π1(TS) at the
augmentation ideal. By construction we have

π!ŴhS 'WhS .

The functor Φ̃Coh is constructed by acting on the monodromic Whittaker sheaf. Its essential
surjectivity follows from that of the equivariant case, and its fully faithfulness comes down to
the calculation

Hom(ŴhS , π
! Eis−1) ' Hom(π!ŴhS ,Eis−1) ' Hom(WhS ,Eis−1) ' Q.
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