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AN EXAMPLE ON CANONICAL ISOMORPHISM
MITSURU NAKAI

A nonnegative locally Holder continuous second order differential
P = P(z)dxdy (z = x + 1y) on a Riemann surface R is referred to as a
density on R. A density P is said to be finite if P is integrable over
R, i,

(1) jR P(2)dady <oo .

Suppose that R is hyperbolic, i.e. there exists the harmonic Green’s
function G(z,%) on R. A density P on such a surface R is said to be
Green energy finite provided the Green energy integral

(2) ”P Gz, OP@POdadydedy < oo (€ =& + i) .

Using a density P on a Riemann surface R we can consider a second
order selfadjoint elliptic differential equation

(3) Au(z) = P()u(z) (i.e. dxdu = uP)

invariantly defined on R. Denote by P(R) the space of C? solutions of
(3) on K and by PX(R) the space of u ¢ P(R) with a certain boundedness
condition X. As for X we take B to mean the boundedness, D the
finiteness of the Dirichlet integral

Dp(u) = I du N =du ,
R
E the finiteness of the energy integral with respect to P:
Ep) = j (du A« du + wP)
R

and the combinations BD and BE with obvious meanings. We use the
standard notations H(R) and HX(R) for P(R) and PX(R) with P =0,
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and in this case of harmonic function, E = D.

The space PX(R) (X = B, D, E, BD, BE) consists of only constants
for nonhyperbolic B, and avoiding such a trivial case we assume that
R is hyperbolic. Then the operator T defined by

(4) Tw=u+ L j G(-, OPQuC)dedy
27 J=r

is an injective positive linear operator from PX(R) to HX(P) for X =
B,D,FE,BD,BE (cf. e.g. [11). We denote by T the operator T considered
only on PX(R), i.e.

Ty = T|PX(R) ,

and if Ty:PX(R)— HX(R) is surjective, then we say that PX(R) is
canonically isomorphic to HX(R). For a systematic exposition on canonical
isomorphisms we refer to [2].

It is known (cf. e.g. [1]) that: 1) The space PBD(R) (PBE(R), resp.)
is dense in PD(R) (PE(R), resp.) with respect to the topology defined
by the uniform convergence on each compact set of B and by the Dirichlet
(energy, resp.) integral over R;2) If P is a Green energy finite (finite,
resp.) density on R, then Tz, (Tzg, resp.) is surjective. In view of
these there naturally arises the question: Is T, (Tz, resp.) surjective
for any Green energy finite (finite, resp.) density P on R? The purpose
of this paper is to answer mnegatively to this question by proving the
following

THEOREM, There exists a both finite and Green energy finite density
P on the hyperbolic simply connected Riemann surface R such that T,
and Ty are not surjective.

It has been known that there exists a density (a finite density, resp.)
on the hyperbolic simply connected Riemann surface R such that Tj,
(T35, resp.) is surjective and yet T, (T, resp.) is not (Singer [6] ([3],
resp.)). Our theorem contains the above as a special case. The simply
connectedness of R in our theorem is not an essential restriction. Actually
our theorem is true for eny Riemann surface with the property HD(R)
— HBD(R) # ¢. The only reason we put the restriction is to simplify
the reasoning and to avoid inessential complications. At the end of the
introduction the author should mention his indebtness to Professor Moses
Glasner who gave him an important incentive to the present work.

https://doi.org/10.1017/50027763000021760 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021760

CANONICAL ISOMORPHISM 27

1. As a conformal representation of the hyperbolic simply connected
Riemann surface R we take the unit disk in the complex plane C. Thus
we always mean in the sequel by R the unit disk |2| <1 and by B the
unit circle [z] = 1. Then a density P may be considered as a nonnegative
locally Hoélder continuous function P(z) on EB. The P-unit e is defined by

e(z) = lim e, (2)

where e, is the solution of (3) on the disk |z] <7 <1 with boundary
values 1 on |z| = 7.

We state a sufficient condition for a given positive bounded solution
% of (3) on R to be the P-unit e¢: If
(5) lim u(re®?) =1

r—1

for almost every e* ¢ 8, then u is the P-unit e. The harmonic Green’s
function G(z,%) on R is given by

G(z,0) = log l ﬂ'
z2—(
and, by (4), the function
_ 1 1-2¢2
Tu(z) = u(z) + > L log ‘-;:E—} dp(©)

belongs to HB(R), where du() = P(Qu(()dédy is a measure on R with a
finite total mass. By the Littlewood theorem (cf. e.g. Tsuji [7])
7 6

for almost every e ep. Therefore (5) implies that lim,., Tu(re?) =1
for almost every e*’ €5, and a fortiori the Fatou theorem implies that
Tw = 1. In particular, u <1 on R. By the maximum principle, v <
e, <1 on |z| <7r for every re(0,1). Hence we conclude that u < e <1
on R and the condition (5) is also satisfied by e. By the same reasoning
as above we obtain Te =1, i.e. Tu = Te. The injectiveness of T implies
that u = e.

A key lemma for the proof of our theorem is the following ingenious
result of Singer [5]: For every e PD(R) we have

(6) Dy(eTruw) < oo .
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Our program of the proof is to find an he HD(R) and a positive C=
subharmonic function e on R with (5) such that P(z) = de(z)/e(z) satisfies
(1) and (2) and yet Dz(e-h) = co. Then e is the P-unit and s ¢ T ,(PD(R))
by (6), i.e. T, is not surjective, from which nonsurjectiveness of Ty
follows since PE(R) < PD(R).

2. We start with constructing an » e HD(R). We use the notation
U, r) to denote the open disk in C with center ¢ e C and radius r > 0.
Let {d,} (n =0,1,.--) be the sequence determined by

dy=1, d,/d,.,=exp(—2an) (n=12,...).

We define an f,e C(C) N HUQ,d,.)—UQd,d,)) by fr=00nC—U{,d,_,)
and f,=1on UQ,d,) (n=1,2,-.--). Then

De(fa) = 2z /log (dn-r/dn) = 07" .

Let h, = H%, the harmonic function on R with boundary values f, on g.
Clearly h, > 0 on R. By the Dirichlet principle

Dp(h,) < Dp(fn) <nt.
By the triangle inequality
m+p m+p 2
DR( 2. hn) < ( >, %'2>
n=m+1 n=m+1

for every m and p = 1,2, - ... Hence the sequence {3 ™, h,} (m =1,2,..-)
in HD(R) is convergent in the Dirichlet integral on R. On the other
hand >, h, =0 on the part g~ of g in the second and third quadrants.
Therefore

hz) = z ha(2)

is convergent on R, he HD(R) N C(R — {1}), and h(z) — o asze R — {1}
tends to z = 1.

We denote by A, the part of g N [UQ,d,_) — UQ,d,)] in the first
quadrant. Then A, is an open arc in g such that

(7) hlA, > n n=12--.).

We denote by a, the midpoint of A, and by 2¢, the length of A,. The
sequence {a,} (»=1,2,...) of points in g and {o,} ®=1,2,-..) of
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positive numbers will be used later in the construction of a subharmonic
function ¢ on R.

3. The construction of e is rather complicated and requires a bit
delicate estimates. Therefore it is convenient to prepare several elementary
lemmas first in nos. 3-7, and then the construction will be carried over
in nos. 811. The proof of the theorem will be completed in the final
no. 12.

Let 1 be a cross cut in R, i.e. an analytic arc contained in R except
end points joining two distinct points in 8. We denote by F one of
regions in C bounded by g and 2. We take one more cross cut y in F
joining two distinct points in g N F different from end points of 2. The
region in F bounded by g and y is denoted by V. Let Y be the empty
set ¢ or the union of disks X; (j=1,---,k) such that X, C V and X,
NX,=¢ G#7. Let F=FF;Y) be the class of functions u in
C(F) N HF — Y) such that u|Y U (3 N F) = 0. The assertion is: There
exists a positive constant ¢, = ¢,(F'; Y,7) such that

(8) vDy(u) < ¢, max |u]

for every ue #.

To show this let g, be a Jordan arc joining two end points of 2
outside F such that the region F, bounded by 1 and g, contains F and
let Y, be the union of disks X, ( =1, ---, k) concentric to X; such that
X, C X,. Since u|(@F — Y) — 2 = 0 for every u ¢ &F which is harmonic
on F — Y, the symmetry principle on harmonic functions assures that
every u|(F' — Y) simultaneously has the harmonic extension % to F, — Y,
if we take B, and Y, close enough to 5 and Y, respectively. By the
maximum principle, |#| < max,|u| on F and thus

|%] < max |u|
2

on Fy— Y, for every uc%#. Let acV —Y, 7(a) >0 be such that
Ula, 2r(a)) Cc F, — Y,, and P(z, 2r(a)e*’) be the Poisson kernel on U(a,2r(e)),
ie.

v(2) = J‘:n P(z, 2r(a)e®)v(a + 27(a)e?’)dd

for every v harmonic on U(a,2r(a)). Since
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d N 16 0
—v() = —P(z, 2r(a)er’yv(a + 2r(a)et®)ds
ot o ot

for t = 2 and y, we have

liv(z)|sK(a) sup |v|
6t |z2—a]l=27r(a)
where
Ka) =3 su -a—P(z, C)l
t=2,9 |C—al=2r(a), lz~al<r@) | OF

which is seen to be finite by using the concrete representation of P(z, ().
Since V — Y is compact, it can be covered by a finite number of disks
V(a,,r@)) (@,e V—Y;v=1,...,4). Then the required ¢ is (max,,., K(a,))?
multiplied by the area of F — Y.

4. Let 2,7,V, and F be as in no. 3. This time we assume Y # ¢,
i.e. Y is the union of disks X, (j=1,.--,k) such that X, cV and
X; N X,=¢ @+ 7. By exactly the same consideration as in no. 3, we
obtain: There exists a positive constant ¢, = ¢,(F'; Y, ) such that

(9)

. ‘
b I *du‘ < ¢, max |u|
j=1lJar; 2

for every ue ¥ = F(F';Y) and

Irf*du‘ < cz(mér),x |f|)(m:itx |u|)

for every feC(y) and every ue F = F(F; Y).

(10)

5. We introduce the notation V({,r) for {ep and r > 0 to mean
Vi, r=RNUEZ7r. Let Y be the empty set ¢ or the union of disks
X; (G=1,---,k) such that X;CR and X, N X;=¢ (G # 7). Let o=
a(1,Y) be the distance dis (Y,1) between the point z =1 and Yif Y +# ¢
ande=2if Y =¢. We fix Y and take one more variable disk X such
that X c R — Y. Consider the harmonic measure w = w(-,Y U X) of
YUX in R, i.e. weC(R) such that w|X U Y =1 and w|8=0. The
third lemma is: For any numbers 7,7, and s with 0 <z <y, and
0<s<0(1,Y) there exists a number p € (0, s) and a disk X with X< V(1, p)
such that

a1 ;71<j wdw(-, Y UX) <y,
~3X
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where 6X is positively oriented with respect to X, and
12) T < DV(I,p)(w('9 YUX)< B2 -
Actually we can choose U(t,¢) as X where ¢t is on the real axis.

6. To prove the assertion in no. 5 we first consider the function

D) =j «dw(-,Y U U, o)

—=aU(t,e)

for telo, 1) (6 <g,<1) and ec (0,1 — t). As auxiliary results to prove
(11) and (12) we assert the following:

13) lim f(op,€) =0 5

For any fixed ¢, € (0, min [(¢, — 0),1 — a,])

(14) J(ye) €Clog, 1 — &)

i.e. f(t,¢) is continuous on the interval [¢,, 1 — ¢) as a function of ¢,
and

15) lim f(t,e) = oo .

t—l—co

We fix an ¢, € (0, min [o, — 0,1 — 0,]). Then w(-,Y U Ul(os,, ¢)) together
with its first derivatives converge to w(.,Y) and its first derivative
uniformly on each compact subset of R — Y — {4}, and in particular on
aU(ay, ¢,), and therefore

lim sdw(-,X U U(ao,s»:j sdw(-,X) =0 .
e—0 U (a0,61) U (g0,¢1)
Since f(gy,¢) = — f cdw(-, X U Ulsy ) for e e (0,e), we deduce (13).
U (00,e1)

Fix a t elo, 1 —¢) and an ¢, € (g, min 6, — 0,1 — g,]). It is easily
seen that w(-,Y U U(t,¢,)) together with its first derivatives converge to
w(, Y U U, &) and its first derivatives uniformly on each compact
subset of R — Y — U(ty,¢,) and in particular on aU(ty,e) as t—¢. In
view of

Ftye) = —f wdw(-,Y U Ut )

U (to,e1)

for ¢t in |t — &)| < e — &, we conclude (14) as in the proof of (13).
Let u, be the harmonic measure of Y U U — ¢,¢,) with respect to
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R, ie. uyycCR—-{IPNHR —-Y U U —¢y¢) such that u=1 on
YU@OA —epe) —{1) and u=0 on g — {1}. Suppose Dzuy) < + oo.
By the Dirichlet principle, Dg(u,) > Dg(v,), where v, = w(-, U(t,)) with
a fixed e€(0,¢) and a te (1 — ¢,1 —¢). Observe that Dy(v,) = 2x/log p,
where p, is the modulus of the annulus R — U(t,e). We know that
lim,,, , ¢, =1 (cf. e.g. Sario-Nakai [4; p. 28]), which implies a contradic-
tion. Thus we must have

Dg(uy) = oo .

On the other hand, w, = w(-, Y U U(%,¢,)) together with its first derivatives
converge to #, and its first derivatives uniformly on each compact sub-
set of R —Y — U(l — ¢p,) a8 t — 1 — ¢,  Therefore

I *dw, j * du,
oY Y

By the Fatou lemma, Dy(u,) < liminf, ,_, Dxp(w,) and thus

lim < oo.

t—1l—sp

lim Dg(w,) = oo .

t—1l~sg

Observe that
Dr(w) = f(t,e) + j wdw,.

Hence we see that (15) is valid.

7. We proceed to the proof of the assertion in no. 5. First we
choose and fix a pe (0,s) so small that

DV(I,p)(w(' ’ )< (772 — 7]1)/4 .

Let y =R NoU@,p) and 2= R NaU(,p/2). The region bounded by g
and y (1, resp.) containg Y in its interior is denoted by V (F, resp.).
The above inequality means that

(16)

j w(-, Y)xdw(-, )| < (g, — 1) /4 .

We consider auxiliary functions w, ¢ C(BE — g NaUA, 7)) N HR—-YUV(, 7))
with w, =1 on YU [VA,» — pN3UA, 7] and w,=0o0n g — N UQA,
for r€(0,p/4). For any disk X with X c V@, r), the maximum principle
yields
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w,Y)<w,YUX) <w,

on R, and sup,|w(-,Y) —w(-, Y U X)| < sup,|w(-,Y) — w,| = ). Since
w, converges to w(-,Y) uniformly on each compact of B — {1}, we have
lim,_ ,e(r) = 0. Observe that

I w(-, V) xdw(-,Y) —f w(, Y U X)sdw(,Y U X)l
is dominated by the sum of
sup |w(-, ¥) = w(-, ¥ U X)|- | [+dw(, D] < e [ [xdu., V)|

and

f w(, Y UX)sdw(-,Y UX) — w(.,Y))).

Observe once more that w(-, Y U X) —w(-,Y)e F(F;Y) in the sense of
no. 4. Thus the last term is dominated by

(sup (-, ¥ U X)1)(sup (-, ¥ U X) — (-, D))
< ei(max(w,])sr) < ei(max|uC., V)| + ) o)
as a consequence of (10). By fixing 7 € (0, o/4) so small that
@) [ [, )] + eimax|u(, V)] + o) Jor) < s = 1)/4

we conclude that

j‘ w(, Y)xdw(-,Y) — j w(, Y U X)«dw(-,Y U X)) < (p—n)/4
7 r
whenever X © U(1,7) N R = V(A,r). This with (16) gives

amn

Lw(-,Y UX)sdw(,Y U X)l < (g — )2

for every disk X with X c V(,r).

We next take f(t,¢) considered for the present w(-,Y U U(t,¢)) as
in no. 6 for te[r/2,1) andec (0,1 — ). By (13) we can choose ¢, € (0, r/2)
with f(r/2,¢) < (9, + /2. By (14) and (15), the mean value theorem
applied to f(-,&) eClr/2,1 —¢,) yields the existence of ¢,e (/2,1 — )
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such that f(¢,e) = (3 + 7)/2. Finally we prove that X = U(%,,¢,) is the
required. First, X € U(l,7) € U(,p). The (11) is clearly satisfied since
n <@+ 7)/2 <p. Observe that

Dy (-, Y U X)) = Flte) + j w(-,Y U X)sdw(-,Y U X)

where y is oriented in the direction of 9V(1,p). In view of (17) and
Sy e0) = (g, + 3,)/2, we conclude that (12) is true.

8. Having finished preparations in nos. 3-7, we proceed to the
construction of e as announced at the end of no. 1. The construction
will be carried over related to the » e HD(R) constructed in no. 2 and
in particular related to the sequences {a,} C g and {s,} defined in no. 2.
First choose an s,¢(0,0,) such that h|U(a,s,) > 1. By no. 5, we can
find a p,€(0,s) and a disk X, with X, C U(a,, p,) such that

2-1.1-2 < J wdw(-,X) < 2.1 ;
-3X1
27112 < Dy o (W(-, X)) < 2177 .

(13

Next choose s,€(0,0,) such that h|U(a,s,) > 2. Let y =R N aU(ay, sy)
and 1= R NaU(a,s,/2) and V (F, resp.) be the region bounded by g
and y (1, resp.) containing X;. Let w, be the function in the class
C(R — pNaU,r) N HR — X, — V(a,,7)) such that w,=1 on X, U
[V(a,, 7) — 8 N 8U(a, )] and w, = 0 on B — Ula, r) for r € (0, s,/2). Take
any disk X with X < U(a,,7). The maximum principle yields «, < u < w,
on R where u, = w(-, X,) and % = w(., X; U X). Observe that u, — u
e F(F,X) in the sense of nos. 3 and 4. Since |u — w| < |u, — w,),

U *du —j * du,
—-0X1 ~3X1

where ¢, is the constant in (9), and

< ¢;max |u, — w,|,
2

I*/DV(anm)(u) - ‘/DV(aum)(ul)] S \/DV(al,pl)(u - ux)
< VD,(u — u) < ¢, max |u, — w,|
2

where ¢, is the constant in (8). Since w, converges to %, uniformly on

each compact subset of B — {a,} as » — 0, by using (18) and the above
we can find an 7, € (0, s,/2) such that
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X,

2-1.1°2 < Dyg, (-, X; U X)) < 2.172

2-1-1-2<j dw(-, X, UX) <21 ;
19) { wdw(, X, UX)

for any disk X with X c U(a,, ;). Again using the results in no. 5,
we can find a p,e(0,7,) and a disk X, with X, C U(a,, p,) such that

X

9-1.9-2 <I wdw(-, X, U X,) <2.2°¢;
2712 < Dyaron(@W(-, X, U X)) < 2.272 .

Combining this with (19) we have

2t <[ saw( X UX) <247 (=19
(20 -ox;
271772 < Dyigpppw(-, X, U X)) < 2:572 (1=1,2).
9. Repeating the process as in no. 8, we can find a sequence {p,}

with p,€(0,0,) and a sequence {X,} of disks X, with X, C U(a,, p,)
(n=1,2,.-.) such that

2_1'j—2<j ox *dw(°’ k)<2‘j_z G=1,---,m);
~0xy

Ux
k=1
@1 2142 < DV‘“f"’f)<w("Ql ch)) < 2.4-2 G=1,---,n) ;

r\V(a,, o) > n

for every n =1,2,.... Although it should be clear by no. 8, we show
how to find p,,, and X,,, when {p,} ¢ =1,---, ) and {W,} v =1,---,m)
satisfying (21) have already been found. Choose s,,,<€(0,0,,,) such that
R U@pi1y Sni) >n0+1. Let y=RNoU(G 415 Spyy) and 2=RN0U(@p 15 Sns1/2)
and V (F, resp.) be the region bounded by g and y (1, resp.) containing
Uz, X,. Let w, be the function in the class

CR = §U 00, N H(E = X, = Vi)

such that w, =1 on (U Xo) U [V(@pyp,7) — B N 8U(@g41,7)] and w, = 0
on 8 — U@, ) for re(0,8,,,/2). Take any disk X with X C U(@,,., 7).
The maximum principle yields

Uy S UL W,

on R where u, = w(-, s, X, and % = w(-,(Jr.; X)) UX). Observe
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that  — u, e F(F,|Jr.. X;) in the sense of nos. 3 and 4. Since |u — u,)
_<_ Uy — Wy

3

5=t

I «du — ‘[ * dity,
-3xy ~axy

where ¢, is the constant in (9), and

< ¢, max|u, — w,|,
a

l'\/DV(aj,pj)(u) - '\/DV(aI,p})(un)l S vDV(a;,p;)(u - un)
< ¥/Dy(u — u,) < ¢, max |u, — w,|
2

for j =1,2,-..,n. Since w, converges to %, uniformly on each compact
of B — {a,,,} as r — 0, by using (18) and the above, we can find an r,,,
€ (0, 5,/2) such that

2-1.4-2 <I . *dw(,(o ch) U X) < 2.4 G=1,.---,m) ;
—3x;

21,471 < Dm,l,,,,,,(w(, ¥ Xk> U X)) <9t (G=1,.,m)

k=1

(22)

for every disk X with X C U(@,,1, 7n,1). Again using the results in
no. 5 we can find a p,,; € (0,7,,,) and a disk X,,, with X,,, € U(@ .1, 0ns1)
such that

2-1.(n 4+ 1)~ <I

~3Xp 41

n

2700+ D7 < Doy rammen( - U

13

*dw(-,’(jxk) <2+ 1)

k=1
i Xk)) <2+ 1)
=1

and clearly 2| U(a, .1, pn.0) > 7+ 1. Combining this with (22) for X =X, ,,
we deduce that {p;} k=1,---,n4+ 1 and {X;} (k=1,.--.,n+ 1) sat-

isfies (21).
10. Since w(-,|J?_, X,) increases as = increases and is bounded
by 1,
@3) w(.,C) Xk> = lim w( ) Xk)
r=1 oo k=1

exists on R, which is continuous on E — {1}, 1 on Ui, X;, O on g — {1},
harmonic on R — | i, X, and superharmonic on B. Set u, =w(-, 7., X,)
and u., = w(-, Uy, X). Then

DR(un+p - un) = ni) I_an (1 - un)*d(un+p - un)

k=n+1
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n+p

= ( f L A s — DXk(u,,)) .

k=n+1

Here 0 <1 —u, <1 and *du,,, >0 on —3X, for k=n+1,---,n+p
and a fortiori by (21)
Dattniy — ) <2 37 k.
On letting p — oo and by using the Fatou lemma
Drp(u., —u,) <2 Z k?

=n+1

for every n. Thus

©@4) lim Dy (w(kC)l Xk> — w(.,CJ Xk)) ~0.

n—co

On the other hand,

k=1 k=1 k=1
<23k
k=1
and we conclude with (24) that
25) DR(w(-,O Xk)) <23 k< oo .
= k=1

Passing to the limit in (21) by using (23) and (24) we obtain the follow-
ing:
2-1. -2<j *dw( )<2y‘2 G=1,2-):
Xy
(26) 2—1_]'—2 < DV(a;,p/)( (

hlV(ajy Pj) > (=

"C3 "CS

X
X)) <250 G=1200);
1,2,--1).

11. Take two concentric disks W, and Z, to X, such that Z, cC
X,cX,cW,cW,cU@,p,) (n=12...). By applying the regu-
larization (cf. e.g. Yosida [8], Tsuji [7], Sario-Nakai [4; p. 150]) to
w(,Jz,X,) on each W, —-Z, (n=1,2,...), the resulting C* super-
harmonic function on R will be denoted by g. Then
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The first inequality of (26) is also valid if the integrating curve —dX,
is replaced by —oW, and a fortiori we have

@ z-l-j-zsj sdg <257 (G=1,2--1).

Wy

We can also make Dy, z(9 — w(-, Us.. X,) as small as we wish by
choosing the regularization ¢ close enough to w(-, U, X,) (cf. e.g.
Sario-Nakai [4; p. 150]) in each W;—Z, (j=1,2,.--) and thus the
second inequality of (26) yields

(23) 47077 < Dyioypp(@) <4777 (G=12,--+)
and we stress here once more the following
(29) R V(,0)>7 (G=12,--2).
Finally we set e(z) =1 — g(2)/2 and observe that

(30) 1/12<ex) <1
on R and that e(z) is C~ subharmonic on R. As the counter parts of
(27)-(29) we obtain

4 wde<it (=120

Wy

16~1’,7._2 S Dy(a,,,,j,(e) S_ ‘7'—2 (j = 1’ 2’ .o .) ;
R\ V@gpep>i (G=12,--2).

3D

12. The required density P in the theorem is given by
P(z) = de(z)/e(z)

on R. Then ¢ is a bounded solution of (8) with this P. Since ¢ has
boundary values 1 on g — {1}, the condition (5) in no. 1 is satisfied by
e and therefore e is the P-unit for this P. Therefore

(82 1=Te=¢e+ lj G(-, DPQe)dedy
2r Jr

where G(z,%) is the harmonic Green’s function on R.
In view of (30) and (81), we deduce

j P@dady < zj de@ydwdy =23 | de@dedy
R R =1 Jw;

=2iJ' xde <23 j < oo,
=1 =1

Wy
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i.e. P is a finite density on R. By (30) and (32), we have
[ 6C,0P0dza < 4x

on R. Then by the Fubini theorem

], 6@ OP@POivsin = | PG ([, G, OPQdedy)zay
<4r [ P@dedy <8357 <o,

i.e. P is a Green energy finite density on R.

The last and the most delicate part of the proof of the theorem is
to show that T, for the present P is mnot surjective. For the aim we
shall show that the 2 in HD(R) defined in no. 2 does not have the
counter image of T, in PD(R), i.e.

heTp(PD(R)) .

To prove this we estimate Dgz(eh). Take a concentric disk £ to R with
2 c R. Then

D,(eh) — f edh A «dh — 2f edh A+ hde = f hde A de
Q2 2 2
and hence
I hide A +de < Dy(eh) + L edh A dh + 2“ edh N *hde] .
Q 2

By the Schwarz inequality, the last term is dominated by

172
20 edh A *dh) (I hide A *de)
Q2 2

In view of ¢? < 1, on setting ¢, = (I hide N *de)m, we have
2

1/2

45 < Dy(eh) + Do(h) + 2Dg(R)"*- 4,
or

(4o — Do(h)')* < Dy(eh) + 2Do(h) .
Since D,(h) < Dgz(h) < oo, on letting 2 — R, we obtain

33) [(L hide A de)m - DR(h)‘/2]2 < Dy(eh) + 2Dx(h) .
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On the other hand, by (29) and (81), we deduce

I Wde A *de > 3 hde A *de
R

Ji=1JUlajpp

> ‘Zl szU(a],pj)(e)
>3 167§ = oo
=1

Therefore, by (83), Dz(eh) = . By the Singer criterion (6), this means
that n e T,(PD(R)), i.e. T, is not surjective.
The proof of Theorem is herewith complete.

Added in Proof. The author feels it very fortunate that the
referee of this paper was at least careful enough to keep the manu-
script of this paper safely for almost three years in his drawer with-
out losing it. In the meantime further developements based on this
paper have been published by the present author in the following two
papers:

1) Extremizations and Dirichlet integrals on Riemann surfaces, J.
Math. Soc. Japan, 28 (1976), 581-603;

2) Malformed subregions of Riemann surfaces, J. Math. Soc. Japan,
29 (1977), T79-782.

REFERENCES

[ 1] M. Nakai: Dirichlet finite solutions of 4u=Pu on open Riemann surfaces, Kodai
Math. Sem. Rep., 23 (1971), 385-397.

: Order comparisons on canonical isomorphism, Nagoya Math. J., 50 (1973),

67-87.

: Canonical isomorphisms of energy finite solutions of du=Pu on open Rie-
mann surfaces, Nagoya Math. J., 56 (1975), 79-84.

[4] L. Sario and M. Nakai: Classification Theory of Riemann Surfaces, Springer,
1970.

[ 5] I. Singer: Dirichlet finite solutions of 4u=Pu, Proc. Amer. Math. Soc., 32 (1972),
464-468.

Boundary isomorphism between Dirichlet finite solutions of 4du=Pu and
harmonie functions, Nagoya Math. J., 50 (1973), 7-20.

[7] M. Tsuji: Potential Theory in Modern Function Theory, Maruzen, 1959.

[8] K. Yosida: Functional Analysis, Springer 1965.

[2]
[3]

[6]

Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa, Nagoya 466, Japan

https://doi.org/10.1017/50027763000021760 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021760



