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ALGEBRAS OF BOUNDED ANALYTIC FUNCTIONS
CONTAINING THE DISK ALGEBRA

KENJT IZUCHI AND YUKO IZUCHI

1. Introduction. Let D be the open unit disk and let 9D be its boundary.
We denote by C the algebra of continuous functions on 9D, and by L™ the
algebra of essentially bounded measurable functions with respect to
the normalized Lebesgue measure m on dD. Let H™ be the algebra of
bounded analytic functions on D. Identifying with their boundary
functions, we regard H® as a closed subalgebra of L. Let 4 =
H™ N C, which is called the disk algebra. The algebras 4 and H have
been studied extensively [S, 6, 7]. In these fifteen years, norm closed
subalgebras between H® and L*, called Douglas algebras, have received
considerable attention in connection with Toeplitz operators [12]. A norm
closed subalgebra between 4 and H is called an analytic subalgebra. In
[2], Dawson studied analytic subalgebras and he remarked that there are
many different types of analytic subalgebras. One problem is to study
which analytic subalgebras are backward shift invariant. Here, a subset E
of H is called backward shift invariant if

f* = (f(z) — f(0))/z € E forevery fin E.

Backward shift invariant subspaces of the Hardy space H” are studied in
[3, 4]. The other problems come from Sarason’s theorem [11, Theorem 2].
It is well known that if B is a Douglas algebra with H*® ¢ B, then B
contains C. Sarason studied its generalization. For an analytic subalgebra
<, let ¢, be the evaluation homomorphism of &7 at the origin;

$o: 3 f— f(0).

SARASON'S THEOREM. Let &/ be an analytic subalgebra and € be a
C*-subalgebra of L™ with o C €. If

(a)  is backward shift invariant, and

(b) ¢ of & has a unique norm-preserving Hahn-Banach extension to %,
then every closed subalgebra B with o/ C B C ¥ and B ¢ H® con-
tains C.

Sarason’s theorem provides us the following problems. For an analytic
subalgebra & and a C*-subalgebra %:
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(1) When does ¢, of 7 have a unique norm-preserving Hahn-Banach
extension to €?

(2) When does every closed subalgebra B with & C B C ¥ and B ¢
H® contain C?

It is difficult to answer these problems completely. In this paper, we
shall study a special type of algebras gH™ + A, where g is an inner
function, which is studied by Stegenga [13]. For an inner function ¢, we
put

supp ¢ = {A € 0D; there is a sequence {z,} in D such that
z, = A and ¢(z,) — 0}

Then supp ¢ is a closed subset of dD. Stegenga proved that gH*® + A is
norm closed if and only if m(supp ¢) = 0 or 1. Our results are
continuations of Stegenga’s works [13] concerning the questions men-
tioned above. The following is a main theorem proved in Section 3
(actually we shall prove it under more general situations).

THEOREM. Let B be the norm closure of gH™ + A. Then % is an analytic

subalgebra and the following assertions are equivalent.
(1) 4 is backward shift invariant.

(i1) m(supp ¢q) < 1.

(iil) ¢y of @ has a unique norm-preserving Hahn-Banach extension to
L™

(iv) If B is a closed subalgebra with 3 c B C L™ and B ¢ H, then B
contains C.

Some partial assertions in this theorem have been already proved in
[2, 8, 10]. In Section 2, we shall study backward shift invariant analytic
subalgebras. Proposition 2.1 answers Dawson’s question in [2, p. 94]. In
Section 4, we shall give more precise properties of 4. We shall describe
the maximal ideal space of % and study representing measures for ¢,
of #. Our final result is that condition (a) in Sarason’s theorem can not
be removed. In [11], Sarason remarked that condition (b) can not be
removed.

We give some notations and definitions. For f € L™, let || f|| denote the
essential sup-norm of f. For a subset E of L, [E] denotes the norm closed
subalgebra generated by E. For a closed subalgebra B between 4 and L™,
we denote by M(B) the maximal ideal space of B. Identifying a function in
B with its Gelfand transform, we regard B as a subalgebra of C(M(B)),
the space of continuous functions on M(B). For A € 9D, put

M\(B) = {x € M(B); z(x) = A},
which we call the fiber at A. We note that
M(H®\D = M(H® + C) = {x € M(H®); |z(x)| = 1}.
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The map
7e:M(H® + C) 2 x = z(x) € dD

is called the fiber projection. For a subset E of H® + C, put
Z(E) = {x € M(H® + C); f(x) = 0 for every f € E}.

A function g in H* with |¢g| = 1 a.e. on 3D is called inner. If ¢ is inner,
then

supp ¢ = my(Z(q) )

Let H' be the classical Hardy space. We denote by H, (1) the space of func-
tions in H' which vanish at the origin. For regular Borel measures y and A,
p < A means that p is absolutely continuous with respect to A, p L A
means that p and A are mutually singular, and ||u|| means the total
variation norm of p.

2. Backward shift invariant analytic subalgebras. It is well known that
H + Cis a closed subalgebra of L [12]. In [10], Nishizawa pointed out
that o + C is a closed subspace for every analytic subalgebra &/ Using
this fact, it is easy to give some characterizations of backward shift
invariant analytic subalgebras as follows [2, 10].

LEMMA 2.1. Let &/ be an analytic subalgebra, then the following conditions
are equivalent.

(1) is backward shift invariant.

(2) Foreachain D, (f(z) — f(a))/(z — a) € o for every [ € o

(3) ForeachainD,(z — a) + A = .

(4) o + Cis a closed subalgebra.

5) & =H"n|«+ Cl

But these characterizations are not sufficient to check whether a given &/
is backward shift invariant or not. In [14], Wolff proved that if .« contains
QA then 7 is backward shift invariant, where

O0C=H®+C)NEHZFC) and 04 = H® n QC.

The following lemma is also available to check whether a given &/ is
backward shift invariant or not.

LEMMA 2.2. Let a € D. Suppose that ¢ € H is continuous on an open
subarc V of 3D and y(a) = 0. Then y/(z — a) belongs to the uniform
closure of YA + A.

Proof. Let W be an open subarc of 0D whose closure is contained in V.
For a given € > 0, find f € A4 such that

’f(z) — L <yl forzeap\w.
zZ — a
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Set

”“P(f‘zla)'

Then h € H®, |h(z) | < € for almost all z in D\ W, and h is continuous
on V. Hence if g is a Cesaro mean of s with sufficiently high index, we
have g € 4 and

ol 2) ol <

LEMMA 2.3. Let o be a backward shift invariant analytic subalgebra.
Suppose that ¢ € H is continuous on an open subarc of 0D. Then [, ]
and [ + A] are backward shift invariant.

Proof. Y(z) — Y(0) satisfies the assumptions of Lemma 2.2 (for a = 0).
Hence y* € [A, {]. Note that
(fe)* = f*g + f(0)g* and [If*|| = 2lfl| forf g€ H™

Then it is easy to see that [4, ] and [y/ + A] are backward shift
invariant.

The following lemma shows the existence of non backward shift
invariant analytic subalgebras.

LEMMA 2.4. Let E be a closed subspace of H™ with
m(my(Z(E))) = 1.

Then of = E + A is a closed non backward shift invariant subspace.
Moreover, if E is an algebra and AE C E, then o/ becomes a non backward
shift invariant analytic subalgebra.

Proof. Let f, + g, € #(f, € E, g, € A,n = 1,2,...) be a Cauchy
sequence. Then {g, },>, is a Cauchy sequence on Z(E). Since

m(m(Z(E))) = 1,

{8,},—1 is a Cauchy sequence on dD. Hence {f,},2, is also a Cauchy
sequence. Thus ./ is closed. To see that .« is not backward shift invariant,
suppose that o7 is backward shift invariant. Let f + g e ' (f € E, g €
A) with f # 0. Put

o0
f@@) = a2, a, # 0.
n=k

Then
F*00) = ¢ and Y = —g7 on Z(E),
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where f*®) — f*k=D_Gince o is backward shift invariant, we can
represent

fE =g+ g,
where f; € E and g, € A. Hence g, = —a,Z on Z(E). Since
m(my(Z(E))) = 1,

g(z) = —a;zand z € A. But this is a contradiction, so.2 is not backward
shift invariant.

By our lemmas, we get easily the following proposition.

PRrROPOSITION 2.1. Let g be an inner function.

(1) If E is a backward shift invariant subspace of H™, then [qE, A] is
backward shift invariant if and only if m(supp q) < 1.

(2) If o/ is a backward shift invariant analytic subalgebra, then [q/ + A]
is backward shift invariant if and only if m(supp ¢q) < 1.

(3) [4, q] is backward shift invariant if and only if m(supp q) < 1.

Remark 2.1. The above results are proved in [2, 8, 9, 10] when
m(supp q) = O or 1.

3. Proof of the main theorem. We will prove a more generalized version
of our theorem given in the introduction. To state the new version, assume
that o/ % and g satisfy the following conditions throughout the rest of this
paper.

(a) « is a backward shift invariant analytic subalgebra.

(b) Zis a C*-algebra with./ C ¥ c L™.

(c) The evaluation functional ¢, of &/ has a unique norm-preserving
Hahn-Banach extension to &.

(d) ¢ is an inner function in &/

We give some examples of &7 and ¥ satisfying (a), (b) and (c).

Example 3.1. (1) o/ = H®® and ¥ = L™.

(2) For an inner function ¢, put % the C*-algebra generated by [4, ]
and put & = H® N € It is easy to check that s/ is backward shift
invariant. By [9, Theorem 3], &/ becomes a Dirichlet subalgebra of €. This
implies (c).

(3) Let B be a Douglas algebra and let € be the C*-algebra generated by
invertible inner functions in B. Put &/ = H® N &, then &/ is a logmod-
ular subalgebra of #[1]. It is easy to see (a) and (c).

Under the above assumptions (a)-(d) for &7 € and ¢, we will investigate
the algebra qo/ + A. In [13], Stegenga proved that gH™ + A is closed if
and only if m(supp ¢) = 0 or 1. We shall show that the same assertion is
true for g/ + A. The proof is the same as the one in [13].
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LEmMmA 3.1 ([13, Lemma 3.5]). If ¢ is an inner function with
m(supp ¢) = 0, then
g + ¥4 N Cll = llg + $H™I + llglluppy

for every g € C, where

Igllgupps = uP{ lgM) I: A € supp ¥}

Proof. This is a slight generalization of Stegenga’s lemma. We can prove
the above estimate by the same way as the one in [13].

LEmMMA 3.2 [13, Lemma 2.3]. Suppose that X and Y are closed subspaces
of a Banach space Z. Then X + Y is closed if and only if there exists a
positive constant K with

ly + XN Y| =K|ly+ X|| forallyinY.

ProrosITION 3.1. Let & be an analytic subalgebra and { be an inner
function. Then y& + A is closed if and only if m(supp ¢) = 0 or 1.

Proof. Case 1. Suppose that m(supp ¢) = 0. By Lemma 3.1,
lg +4s N Cl=llg + 94 0 Cll = llg + 41 + llgll
for every g € C. Since ||g + ¥ = IIgHSUPP\P,
llg + ¢& N (| = 2llg + ¢S for every g € C.
By Lemma 3.2, % + C is closed. Hence
P+ A =H®nN @S+ C)

suppy

is closed.
Case 2. Suppose that m(supp ¢) = 1. Since

llyh + gll = ||gll for every h € Land g € A,

it is easy to see that ¢ + A4 is closed.
Case 3. Suppose that 0 < m(supp ¥) < 1. Note that

yF N A = {0}
Let F be a closed subarc of dD such that

F N supp y = ¢.
Since ¢ is continuous on F and m(F) < 1, there exists a function A, in A
such that

[ — h)N) | < 1/n

for every A € F(n = 1, 2,...). Fix a point a in F. Then [Y(a)| = 1.
Choose a function g in 4 such that g(a) = 1 and |g(A) | < 1 for every
A € 3dD\{a}. Then for each n, there exists a positive integer k, such
that
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I = k)"l < 1/n.
Hence

g5 + v < 1/n.
But

gl = h,(a)| Z Wa)| = 1/n =1 = Un.
By Lemma 3.2, % + A is not closed.

CoROLLARY 3.1. g/ + A is an analytic subalgebra if and only if
m(supp q) = 0 or 1.

From now on, let put X = M (%), the maximal ideal space of %, and put
% the closure of go/ + A. Then % is an analytic subalgebra. Now we can
state our theorem.

THEOREM 3.1. The following assertions are equivalent.
(i) & is backward shift invariant.
(i1) m(supp ¢q) < 1.
(iii) The evaluation functional ¢, of % has a unique norm-preserving
Hahn-Banach extension to €.
(iv) If B is a closed subalgebra with # C B C ¥and B ¢ H, then B
contains C.

By Proposition 2.1(2), (i) and (ii) are equivalent. To see (iii), we regard
% as a closed subalgebra of C(X). Then the study of norm-preserving
Hahn-Banach extensions of ¢, of # to % is the same as the study of
representing measures for ¢, on X. We start out to study some properties
of measures on X.

For u € L'(m), there exists a unique measure fi on X such that

[( fdu = ./e;D fdu for every f € &

The map p — fi is one-to-one and norm-preserving from L'(m) onto
L](r?z). For a given p € L(m), {i is determined uniquely by the following
conditions;

fie L'(m) and

Lfdp = ‘/;D fdu for every f € C.

For a measure p on X, there is a unique measure (1) on dD such that

,/az) Sfdn(n) = jX fdp. for every f € C.

The measure 7(p) is the image of p by the fiber projection 7 from X onto
oD; m(x) = z(x) for x € X. If p € L'(m), then #() = p. If two meas-
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ures &, and p, in L(#) satisfy m(py) = m(u,), then p; = p,. From now on,
we identify p with ji for every p € L!(m), but we will use 7 to avoid the
confusion with m.

For a measure p on X, put

A

p=p, + B, p,<m and p, L m
By (c), m is the unique representing measure on X for ¢, of & Set

Ay ={fef(0)=0} and 4, = {f € 4; f(0) = 0}.
For a subset E of C(X) and for a measure p on X, we write p L E if

ﬁ( fdu = 0 for every f € E.

LEMMA 3.3. If a measure p on X satisfies p L o/ (or o), then we get the
following assertions.

(1) iy L Ao ).

(2) If we put dn(p,) = fdm, then f € H (or H").

B)yp, L &+ C.

Proof. We shall prove the case p | o7 By the same way, it is easy to get
(1)-(3) for the case p L o

(1) follows from the abstract F. and M. Riesz theorem [5, p. 44].

(2) Since p, 1 o 7(pn,) L 4 and f € H).

(3) Put

a= _/;,Edp.s.

Since 7 is backward shift invariant, for f € &

fX fd(zZp, — am) = fX fzdu, — Lfdus L fdm

— o2 - )

= L f*du, = 0.
By (1), zu, 1 &7 and p, | zo/ Repeating these arguments,
p, L Z" for every n.
Thus we get (3).

LeEMMA 3.4. If u is a probability measure on X and p L qs, + A, then
we have the following assertions.

1) m(p) = m.

(2) m(ug) is concentrated on supp q.

(3) If we put dn(p,) = fdm, then qf € H'.
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Proof. (1) Since p L A, m(n) L Ay Since m(p) = 0 and |[=(p) || = 1,

m(w) = m.
(2) First we note that gu | 4. By Lemma 3.3 (3),

gu, L o+ C and p, L g + C).
Then u;, L gC, and thus
w(u) L gC N C.

Consequently, 7(u,) is concentrated on supp g.
(3) By Lemma 3.3 (2),

dn(qu,) = qfdm and qf € H'.
The following lemma shows that in Theorem 3.1, (i) implies (ii1).

LEMMA 3.5. Let o, be a backward shift invariant analytic subalgebra such
that # C 4 C ¥ Then ¢, of 4 has a unique norm-preserving
Hahn-Banach extension to G.

Proof. Let p be a representing measure on X for ¢, of #/. To show our
assertion, it is sufficient to prove p = m. To see this, put

po=p, +p,p,<m and p L m.
Since p L q.of + A, it is clear that
(I p L g+ O)
in the proof of Lemma 3.4 (2). Put dn(p,) = fdm. By Lemma 3.4 (3),
) qf e H'
Set

(o0}
q(z) = 2 a,z".
n=0
Since ¢ € o and & is backward shift invariant,

n—1

" = (q(z) - akz")/z" e, n=0,12...)

k=0

Hence for each n,

a, = _/;(q*(n)dli
n—1
= /;q/z"dp, - LZ‘O a2 "d

= /;( q/2"dp, + '/;,q/z"dp.s

https://doi.org/10.4153/CJM-1986-005-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-005-9

96 K. IZUCHI AND Y. IZUCHI

(since p = 0 and p L 4;)

_ n
= ./a‘D qf’z"dm

by (1).
The above equations and (2) give us that gf = ¢. Since ¢ is inner, f = 1
a.e. dmand p = m.

As a corollary, we get the following.
CoroLLARY 3.2. Conditions (ii) and (iv) in Theorem 3.1 are equivalent.

Proof. (ii) = (iv) Suppose that m(supp ¢) < 1. Then Zis backward shift
invariant by Proposition 2.1(2). By Lemma 3.5 and Sarason’s theorem, we

get (iv).
(iv) = (ii) Suppose that m(supp ¢) = 1. Put

B=qg&+C)+ A

By the same way as in the proof of Lemma 2.4, B is a closed sub-
algebra with # C B C € Since gz" ¢ H for some n, B ¢ H*. Since
gl + C] n C = {0}, C ¢ B. But this contradicts (iv).

To complete the proof of Theorem 3.1, we need to prove (iii) = (ii). The
following lemma is its special case.

LEMMA 3.6. If m(supp q) = 1 and q(0) = 0, then ¢ of B does not have a
unique norm-preserving Hahn-Banach extension to @.

Proof. There exists a positive integer n such that
g/Z" € H® and (q/2")(0) # 0.
Put ¢ = ¢/Z", then y € o/ Also put
ayl + A 2 yh + f— f(0).

Then a is a non-zero complex homomorphism of J.«/ + 4. Let p be a
representing measure for a on X. Since

‘/;,(\P + f)dm = Y0) + f(0) forf € 4,
we obtain p # m. Note that for h € o/ and f € 4,

L(qh + fdp =_[X(\Pznh + fdp = f(0) = (gh + f)O).
Hence p is a representing measure for ¢, on %.

To remove the assumption ¢(0) = 0 in Lemma 3.6, we study the
structure of representing measures for a complex homomorphism e« of
# = qf + A with m(supp ¢q) = 1 defined as follows;
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ay:qd + A 3 gh + f— f(0).

If g(0) = 0, then ay = ¢. By the proof of Lemma 3.6, there exists a
representing measure g for a, such that p # m. Fix such a measure p
and put p = p, + p,. Set

dn(p,) = fdm (f € L'(m)).

Thenf # 1 and 0 = f = 1. Since p L g/ + A, m(p) = m by the same
way as in the proof of Lemma 3.4. By Lemma 3.3,

qf € Hy and p, L g+ O).

The following lemma shows that the converse of the above fact is
affirmative. This is the key to prove our theorem.

LEMMA 3.7. Let g € L'(m) such that 0 = g = 1 ae. dm and
qg € H(l). Then there exists a representing measure \ on X for a, such that
dn(A,) = gdm.

Proof. Since
dm = dm(p) = dmn(y,) + dn(u;) = fdm + dn(p,),
we have
dr(p,) = (1 = f)dm.
Since ¢f € H(l) as mentioned above, g(1 — f) € H'. Thus
1 — f+# 0ae dm.
Set
h=(@1-g/1 =)
Then 4 is a non-negative Borel measurable function on 4D, and

h € L'(m(u,)); in fact,

Jop et = [, (1~ gram < oo,

Here there is a sequence of non-negative functions {f,},~, in C such
that

Jy = h(n = 00) in L'(n(p,) ).
Since ||m(v) || = ||»|| for a non-negative measure v of X,
bty = el = VL = Selmll = HlwC LAy — Alw) I
= s, = K7 Il = 0 (n, k = o0).

Thus f,pu, converges to a non-negative measure A, on X with A, < p,. Since
llm(v) || = ||v|| for a measure » on X,
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llm() — (1 = gmll = llm(\) — h(1 — f)ml|
llzA) — (1 = gImll = llm(\,) — ha(p,) |
lim [lw(A,) — fm(p) |l

n—o00

lim [lm(A; — fop) |l

< Tm I\, — full = 0.

n—o0

This leads us to
dm(A,) = (1 — g)dm.
If we put dA = gdm + dA,, then
dn(\) = gdm + dn(\;) = dm.
Thus A is a probability measure on X. Since qg € H(l),
gdm L qA.
Since p, L g + C),
Sty L g + C).
Since fp, — A,
A, L g+ C).
These facts show
A =gdm + d\, 1 q.

Consequently

'/;((qh + f)d\ = f(0) forgh + f € qo/ + A.
This completes the proof.

Proof of Theorem 3.1. (i) < (ii) follows from Proposition 2.1 (2).
(i1) < (iv) is already proved in Corollary 3.2.
(1) = (1) follows from Lemma 3.5.

We shall prove (ii1) = (ii). To see this, suppose that

m(supp q) = 1.

By Lemma 3.6, it is sufficient to see that if g(0) # 0, then ¢, of % does not
have a unique representing measure on X.
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Claim. There exists g € L'(m) such that 0 < g < 1 a.e. dm, qg € H'

and faD qgdm = ¢q(0).

First, on the assumption of our claim, we shall complete the proof. By
our claim and Lemma 3.7, there exists a representing measure A on X for
ay of gzo/ + A such that dn(A,) = gdm. Then

AL gz and qd\ L .
Hence for every qf + h € B = qo/ + A, we get

/X(qf+ h)d\ = f){q(f—f(O) YA + £(0) Aqu + _/;,hd)\
= fxqu*d}\ + f(0) qu)\ + h(0)
— 5 [, adr, + @ [ aar, + no

— 1) [, agdm + h0)
(by Lemma 3.3 (3))

= f(0)q(0) + h(0)
(by our claim)

= ¢olqf + h).

Therefore A is a representing measure for ¢, of g/ + 4. Since 0 < g < 1
and dm(\,) = gdm, X # m. This completes the proof of Theorem 3.1.

We shall prove our claim. Put a = ¢(0). We may assume that
0 <a< 1 Set

F=(+d)a— (g + 7).

Then F € L and F # 0. Since (1 + a®)/a — 2 > 0and —2 = ¢q +
g = 2,0 < F ae. dn. Take a small positive number ¢ such that
0<1—cF<1ae.dn and put G = 1 — cF. Since

gF = (1 + abgla — (& + 1) € H™,
gG € H. Since
(@F)0) = (1 + a) — (@ + 1) = 0,

we get

_A‘D qGdm = /;D gdm — c /;D gFdm = ¢(0).
This completes the proof of our claim.
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4. Additional properties of gH> + A type algebras. In this section, we
use the same notations as the ones in Section 3. Here we discuss

(1) the maximal ideal space of %,

(2) the corona theorem for %,

(3) singular representing measures for ¢, of %, and

(4) Sarason’s theorem when one of the conditions is dropped.

Let % be an analytic subalgebra. For each z in D, put

¢, 3 [— f(2).

Then ¢, is a complex homomorphism of & We may identify D with
{¢.;z € D}. Then D C M(¥). We say that the corona theorem holds for
&if D is dense in M(¥). For each A in dD, put

M\(#) = {x € M(#); z(x) = A).

In [2, p. 43], Dawson remarked that if ¥ is backward shift invariant
then

M) =D U {M\(¥); A € dD}.
By Lemma 2.1, it is easy to see the above fact and that
M@ + C) = M(¥)\D.

If £ 1s not backward shift invariant, it is difficult to describe M (%), but it
1S easy to see

M7 + C) = {x € M&); l2(x)| = 1}.

The first result in this section is to describe M (). Since # C & there is a
continuous restriction map I' from M(7) to M(#). If m(supp q) = 1, for
z € D we put

o B =qd + A>qh+ f—f(2)
Then «a, is a complex homomorphism of %.

THEOREM 4.1. (1) I[(M(&)) = D U {x € M(%); lz(x)| = 1}.

(2) If the corona theorem holds for o/ and m(supp q) << 1, then the corona
theorem holds for .

(3) If m(supp q) = 1, then

M(#B) =T(MK)) U {a.;: z € D with q(z) # 0}
and the corona theorem does not hold for 8.
Proof. (1) From the definition of T, it is easy to see that
I'(D) = D and T'(My(&)) C M\(#) for A € dD.
Since M(&Z) = D U {x € M); |z(x)| = 1},
I'M(&)) € DU {x € M(B); Iz(x)|= 1}.
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To see the converse inclusion, let x € M(%) with z(x) = A and
Al = 1.
Case 1. Suppose that g(x) # 0. Put

v 3 f—= (qf)x)/q(x).

Then v is a non-zero complex homomorphism of &7 In fact, for f, g € &
Y@ = @)x)gg)x)/q(x)* = (g9/g)(x)/q(x)’

= q(x)gfR)(x)/q9(x)* = v(f2).

Hence there is a point x” in M(%/) such that
Y(f) =f(x) forf e

Since h(x") = y(h) = h(x) for h € %, we get
x € TIMK)).

Case 2. Suppose that g(x) = 0. Since

@/ (x) = q(x)gf*)x) =0 forf € o
{h € & h(x) = 0} D g

Since gq(x) = 0, g is not constant on M,(#). Hence g is not constant
on M,(#/). Consequently there is a point x’ in M,(«/) such that
q(x") = 0. Since

(af + &)x) = g(x) = g) = g(x) = (¢f + g)(x)
for f € «Zand g € A, we get

x =T(x) € TIMK)).
Thus we get (1). Note that I' is one-to-one on

{x € M@); lz(x)| = 1 and g(x) # 0},
and

I'{x € M); lz(x)| = 1 and g(x) = 0}

is a one point set by our proof.
(2) Suppose that the corona theorem holds for.«Z Then by (1), D is dense
n

DU {x € M(%B); lz(x)| = 1}.

If m(supp ¢) < 1, then % is backward shift invariant by Theorem 3.1.
So

M%) =D U {x € M(%); lz(x)| = 1}.
Thus we get (2).
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(3) We have
M(B) = U{M\(Z); A\ € 0D} U {x € M(Z); |z(x)| < 1}.
We shall prove that
{x € M(B);lz(x)| < 1} = D U {a,; z € D with g(z) # 0}.
It is obvious that
D U {a,; z € Dwith g(z) # 0} C {x € M(%); lz(x)| < 1}.

To see the converse inclusion, take x € M(%) with |z(x)]| < 1. If
(gh + f)x) = f(x) for every gh + f € %, we have x = a,,,,
because f(x) = f(z(x)). Moreover if g(z(x)) = 0, then

X =0y = b
Next, suppose that
(ghy + fo)(x) # fo(x) for some ghy + f, € %,

that is, (ghy)(x) # 0 for some h, € o/ We shall prove x = ¢,.,. We
have

(gh)(x) = (g(h — h(z(x)) )x) + h(z(x))gq(x)
for each h € &/ Since &/ is backward shift invariant, we may represent
h = hz(x)) = (z — (z(x))I,
where /' € o/ by Lemma 2.1. Then
(g(h — h(z(x) ) )x) = (gh')(x)(z — z(x))(x) = 0.
Thus
(gh)(x) = h(z(x))q(x).
In particular
9(x)* = q(z(x) )q(x) and g(x){g(x) — q(z(x)) } = 0.
Since (ghy)(x) # 0,
hy(z(x))g(x) # 0 and gq(x) # 0.
Then g(x) = q(z(x) ) and
(gh + )(x) = q(z(x) h(z(x)) + f(z(x)) = (gh + [)(z(x)).
Thus we get x = ¢,,), and
M(#B) = T(MK)) U {a,; z € D with g(z) # 0}.

Since I'(M(27)) is a compact subset of M (%), the corona theorem does
not hold for & by (1).
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If m(supp ¢) = 1, then g(&/ + C) + A is a closed subalgebra by the
same way as in the proof of Proposition 2.1.

THEOREM 4.2. Suppose that m(supp q) = 1. Then

(1) ay of # has a singular representing measure on X, where singular
means with respect to m.

(2) ¢y of @ has a singular representing measure on X if and only if
q(0) = 0.

(3) If q(0) = 0, then the set of singular representing measures for
¢y of B coincides with the set of representing measures for the complex
homomorphism

By:dgZ + C) + A 2 gh + f— f(0).

Proof. (1) We take g = 0 as the one in Lemma 3.7. Then there is a
representing measure A on X for «, such that dm(A,) = 0. Thus A is
singular.

(2) If g(0) = 0, then oy = 7. Hence the if part follows from (1). To see
the inverse direction, suppose that ¢, of % has a singular representing
measure A on X. Since gA L o4, A L ¢q(& + C) by Lemma 3.3(3). Then

q(0) = quh = 0.

(3) Let A be a singular representing measure on X for ¢, of %. Then
AL g + C), and A becomes a representing measure for 8. Let » be a
representing measure on X for B,. » is also a representing measure for ¢,.
Since v 1 ¢/

v, L g« and », L q& + C)
by Lemma 3.3. Moreover since v L g(« + C),
v, L g+ C) and gqdv, 1L C.
Hence gdv, = 0. Since g is inner, », = 0. Thus » is singular.
For the rest of this section, denote
& =H® N {g + C) + A} and
& = H® N {g + C) + C}.

Here we shall study some properties of =4 and 4. If m(supp q) = 1,
then 4 and % are analytic subalgebras with 4 C = C 4. Since
q + C) N A = {0}, foreach z € D,

v 2 qth + g) + f—f(2)

is a complex homomorphism of .%.
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THEOREM 4.3. Suppose that m(supp q) = 1. Then

(1) =, is not a backward shift invariant analytic subalgebra.

(2) o4 is the smallest backward shift invariant analytic subalgebra
containing .

(3) In the family of analytic subalgebras & between % and € with the
property that ¢, of & has a unique norm-preserving Hahn-Banach extension
to 6, S, is the smallest one.

4) B C o C b,

(5) There are no other analytic subalgebras between 2| and st,.

) M) = {x € M(#); lz(x)| =1}y UD U {y,;z € D}.

We need the following lemma proved essentially in [13, Lemma 3.4].

LEMMA 4.1. Let & be a backward shift invariant analytic subalgebra and
let  be a unimodular function in L. If ¥ N C # {0}, then ¢ N C is
weak star dense in YH™.

Proof of Theorem 4.3. (1) We may represent
o = {H® N g + O)} + A.
Then E = H® N g + C) satisfies
m(m(Z(E))) = 1.

By Lemma 2.4, &/ is a non-backward shift invariant analytic subalgebra.
(2) By the same way as in the proof of Lemma 2.4, g(/ + C) + Cis a
closed subalgebra. Since

b CH® N [#h + ClC H N [g + C) + C] = 24,

4 is backward shift invariant by Lemma 2.1 (5). Let 24 be a backward
shift invariant analytic subalgebra containing %. By Lemma 2.1 (4),

g+ C)+ C=[B+ Clc 4 + C.

Then 24 C oA4.

(3) Let %7, be an analytic subalgebra between % and % such that ¢, of 7
has a unique norm-preserving Hahn-Banach extension to %. Let A be a
measure on X such that A _L o7, then

A, L4 and A, L g+ O).
These imply that
AL H®N {g&+ C) + A4},
so that
H” N {g& + C) + A} C .
We shall prove that ¢, of H® N {g(& + C) + A} has a unique
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representing measure. We may asusme g(0) # 0. Because, if ¢ = z"'¢,

where ¢ € o/ and ¢'(0) # 0, then
g+ C)y+ A =qg+ C) + A.

Let u be a representing measure on X for ¢,. Since p is also a representing
measure for ¢, of g + A,

B, L g% and p; L g + C)
by Lemma 3.3. Then

q(0) = /; qdp. = _[quua-

By Lemma 4.1, zg&/ N C is weak star dense in zgH*. Hence %4, N ¢C is
weak star dense in H". Then for each h € Hj° there exists a net { £}, in C
such that

/g € & and fq— h (weak star topology).

Since

0 = ¢y(faq) = L Jogdp. = L Jogdy, = ﬁ p Jaddm(1,)

= [, hant,).

we have

‘/;;D hdn(p,) = 0 forh € H{'.

Since m(p,) is a non-negative measure on 9D, m(u,) = cm for some
constant ¢ with 0 = ¢ = 1. Since ¢(0) # 0 and

q(0) = L qdp, = c L qdm = cq(0),
we obtain ¢ = 1. So p, = 7.
(4) The first inequality follows from (3) and Theorem 3.1. The second
one follows from (1) and (2).
(5) Let &% be a closed subalgebra with o & &% C 4. Then there exists
a function f in .24 such that
f=qh +8) + 8 heAg,g e Candg, ¢ A

Let u be a measure on X with p | 2% By (3), ¢y of 2% has a unique
representing measure on X. Then p, 1 o4 and p; 1 4. Consequently,
r, L 4. Since [4, f] C 4%, we get [4, f] L p,. Since & L p,

g + C) L py

by Lemma 3.3. Hence [4, g,] L p. Since g, &€ 4, p, L C. These imply
that

p, L g+ C)+ C and p, L o4,
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Thus p L 94 and &% = 4.
(6) Since

Aoy = By for A & D,
it is clear that My(«4) = M,(%#). We shall show that
{x € M(#); lz(x)| <1} =D U {y,; z € D}.
It is obvious that
D U {y,;z € D} C {x € M#); |z(x)| < 1}.
To see the converse inclusion, let x € M(24) with |z(x)| < 1 and let x’
be the restriction homomorphism of x onto %. Then x’ € M(%#) and
z(x) = z(x’). By Theorem 4.1, x’ = ¢, (x) OF X' = a,(,). By the same way
as in the proof of (3), we may assume that g(z(x)) # 0.
Case 1. Suppose that X" = ¢,,). We shall prove that
X = ¢.(y)
Let g € C with gg € H*. By Lemma 2.1, gg € .« Then ¢’g € %, and
q(z(x) )(gg)(x) = q(x')(gg)(x) = g(x)(gg)(x)
(@) = (€)) = (@9)(x))
q(z(x) )(gg)(z(x) ).

I

I

Hence
(g8)(x) = (gg)(z(x))
and for g(f + g) + h € 4,
{a(/f + &) + h}(x) = (@/)X) + (g8)(x) + h(x')
= {q(f + &) + h}z(x)).

Thus x = ¢, .
Case 2. Suppose that X' = a,,). We shall prove that

X = Yy (x)
Let p be a representing measure for x on X. Then p is also a representing
measure for X’ = a,). Since p L ¢/

B, L g and p, L g + C)
by Lemma 3.3. If we put
#z) = (z — 2(x))/(1 — z(x)2),
then ¢ € 4. For g € C with gg € H*,
0 = ¢(z(x) )(gg)(x) = d(x)(gg)(x) = (Pgg)(x)

= L bqgdp = L bqgdp, = A p Pagdm(u,).
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Since H™ N ¢qC is weak star dense in H™ by Lemma 4.1,

j— (e o)
AD ohdm(p,) = 0 forh € H®.
We may represent
q = q(z(x)) + ¢hy, for some hy € H™.
Then

0

I

Joadn = [ adi = a0 s + [, oo,

q(z(x))llpll-

Hence ||p,ll = 0, and p = p,. Since p = p, L g + C), we get
(q(f + 8) + h)x) = h(x) = h(z(x))

for q(f + g) + h € . Thus x = Y:(x)

Remark 4.1. (1) In Sarason’s theorem, we can’t remove condition (a).
Because, if m(supp ¢) = 1, then

H® N {q + C) + 4} S g + C) + 4,
Ce g/ +C)+ A andg(f + C) + A4 ¢ H™

While, ¢, on H® N {g(& + C) + A} has a unique norm-preserving
Hahn-Banach extension to € by Theorem 4.3.

(2) If g 1s a singular inner function with m(supp ¢) = 1, then the
restriction map from M(4) to M(#) is a homeomorphism. This follows
from Theorems 4.1 and 4.3.

The authors are grateful to the referee for shortening the original proof
of Lemma 2.2.
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