ALGEBRAS OF BOUNDED ANALYTIC FUNCTIONS CONTAINING THE DISK ALGEBRA

KEIJI IZUCHI AND YUKO IZUCHI

1. Introduction. Let D be the open unit disk and let ∂D be its boundary. We denote by C the algebra of continuous functions on ∂D , and by L^{∞} the algebra of essentially bounded measurable functions with respect to the normalized Lebesgue measure m on ∂D . Let H^{∞} be the algebra of bounded analytic functions on D. Identifying with their boundary functions, we regard H^{∞} as a closed subalgebra of L^{∞} . Let $A = H^{\infty} \cap C$, which is called the disk algebra. The algebras A and H^{∞} have been studied extensively [5, 6, 7]. In these fifteen years, norm closed subalgebras between H^{∞} and L^{∞} , called Douglas algebras, have received considerable attention in connection with Toeplitz operators [12]. A norm closed subalgebra between A and H^{∞} is called an *analytic subalgebra*. In [2], Dawson studied analytic subalgebras and he remarked that there are many different types of analytic subalgebras. One problem is to study which analytic subalgebras are backward shift invariant. Here, a subset E of H^{∞} is called backward shift invariant if

$$f^* = (f(z) - f(0))/z \in E$$
 for every f in E.

Backward shift invariant subspaces of the Hardy space H^p are studied in [3, 4]. The other problems come from Sarason's theorem [11, Theorem 2]. It is well known that if B is a Douglas algebra with $H^{\infty} \subseteq B$, then B contains C. Sarason studied its generalization. For an analytic subalgebra \mathscr{A} , let ϕ_0 be the evaluation homomorphism of \mathscr{A} at the origin;

 $\phi_0: \mathscr{A} \ni f \to f(0).$

SARASON'S THEOREM. Let \mathscr{A} be an analytic subalgebra and \mathscr{C} be a C^* -subalgebra of L^{∞} with $\mathscr{A} \subset \mathscr{C}$. If

(a) A is backward shift invariant, and

(b) ϕ_0 of \mathscr{A} has a unique norm-preserving Hahn-Banach extension to \mathscr{C} , then every closed subalgebra B with $\mathscr{A} \subset B \subset \mathscr{C}$ and $B \not\subset H^{\infty}$ contains C.

Sarason's theorem provides us the following problems. For an analytic subalgebra \mathscr{A} and a C*-subalgebra \mathscr{C} :

Received March 19, 1984 and in revised form March 4, 1985.

(1) When does ϕ_0 of \mathscr{A} have a unique norm-preserving Hahn-Banach extension to \mathscr{C} ?

(2) When does every closed subalgebra B with $\mathscr{A} \subset B \subset \mathscr{C}$ and $B \not\subset H^{\infty}$ contain C?

It is difficult to answer these problems completely. In this paper, we shall study a special type of algebras $qH^{\infty} + A$, where q is an inner function, which is studied by Stegenga [13]. For an inner function q, we put

supp $q = \{\lambda \in \partial D; \text{ there is a sequence } \{z_n\} \text{ in } D \text{ such that } \}$

$$z_n \rightarrow \lambda$$
 and $q(z_n) \rightarrow 0$.

Then supp q is a closed subset of ∂D . Stegenga proved that $qH^{\infty} + A$ is norm closed if and only if m(supp q) = 0 or 1. Our results are continuations of Stegenga's works [13] concerning the questions mentioned above. The following is a main theorem proved in Section 3 (actually we shall prove it under more general situations).

THEOREM. Let \mathscr{B} be the norm closure of $qH^{\infty} + A$. Then \mathscr{B} is an analytic subalgebra and the following assertions are equivalent.

(i) B is backward shift invariant.

(ii) m(supp q) < 1.

(iii) ϕ_0 of \mathscr{B} has a unique norm-preserving Hahn-Banach extension to L^{∞} .

(iv) If B is a closed subalgebra with $\mathscr{B} \subset B \subset L^{\infty}$ and $B \notin H^{\infty}$, then B contains C.

Some partial assertions in this theorem have been already proved in [2, 8, 10]. In Section 2, we shall study backward shift invariant analytic subalgebras. Proposition 2.1 answers Dawson's question in [2, p. 94]. In Section 4, we shall give more precise properties of \mathcal{B} . We shall describe the maximal ideal space of \mathcal{B} and study representing measures for ϕ_0 of \mathcal{B} . Our final result is that condition (a) in Sarason's theorem can not be removed. In [11], Sarason remarked that condition (b) can not be removed.

We give some notations and definitions. For $f \in L^{\infty}$, let ||f|| denote the essential sup-norm of f. For a subset E of L^{∞} , [E] denotes the norm closed subalgebra generated by E. For a closed subalgebra B between A and L^{∞} , we denote by M(B) the maximal ideal space of B. Identifying a function in B with its Gelfand transform, we regard B as a subalgebra of C(M(B)), the space of continuous functions on M(B). For $\lambda \in \partial D$, put

$$M_{\lambda}(B) = \{ x \in M(B); \, z(x) = \lambda \},\$$

which we call the fiber at λ . We note that

 $M(H^{\infty}) \setminus D = M(H^{\infty} + C) = \{x \in M(H^{\infty}); |z(x)| = 1\}.$

The map

$$\pi_0: M(H^{\infty} + C) \ni x \to z(x) \in \partial D$$

is called the fiber projection. For a subset E of $H^{\infty} + C$, put

$$Z(E) = \{ x \in M(H^{\infty} + C); f(x) = 0 \text{ for every } f \in E \}.$$

A function q in H^{∞} with |q| = 1 a.e. on ∂D is called inner. If q is inner, then

supp $q = \pi_0(Z(q))$.

Let H^1 be the classical Hardy space. We denote by H_0^1 the space of functions in H^1 which vanish at the origin. For regular Borel measures μ and λ , $\mu \ll \lambda$ means that μ is absolutely continuous with respect to λ , $\mu \perp \lambda$ means that μ and λ are mutually singular, and $||\mu||$ means the total variation norm of μ .

2. Backward shift invariant analytic subalgebras. It is well known that $H^{\infty} + C$ is a closed subalgebra of L^{∞} [12]. In [10], Nishizawa pointed out that $\mathscr{A} + C$ is a closed subspace for every analytic subalgebra \mathscr{A} . Using this fact, it is easy to give some characterizations of backward shift invariant analytic subalgebras as follows [2, 10].

LEMMA 2.1. Let \mathscr{A} be an analytic subalgebra, then the following conditions are equivalent.

- (1) \mathscr{A} is backward shift invariant.
- (2) For each a in D, $(f(z) f(a))/(z a) \in \mathscr{A}$ for every $f \in \mathscr{A}$.
- (3) For each a in D, $(z a) \mathscr{A} + A = \mathscr{A}$.
- (4) $\mathscr{A} + C$ is a closed subalgebra.
- (5) $\mathscr{A} = H^{\infty} \cap [\mathscr{A} + C].$

But these characterizations are not sufficient to check whether a given \mathscr{A} is backward shift invariant or not. In [14], Wolff proved that if \mathscr{A} contains QA then \mathscr{A} is backward shift invariant, where

$$QC = (H^{\infty} + C) \cap \overline{(H^{\infty} + C)}$$
 and $QA = H^{\infty} \cap QC$.

The following lemma is also available to check whether a given \mathscr{A} is backward shift invariant or not.

LEMMA 2.2. Let $a \in D$. Suppose that $\psi \in H^{\infty}$ is continuous on an open subarc V of ∂D and $\psi(a) = 0$. Then $\psi/(z - a)$ belongs to the uniform closure of $\psi A + A$.

Proof. Let W be an open subarc of ∂D whose closure is contained in V. For a given $\epsilon > 0$, find $f \in A$ such that

$$\left|f(z)-\frac{1}{z-a}\right|<\epsilon/||\psi||$$
 for $z\in\partial D\setminus W$.

Set

$$h = \psi \Big(f - \frac{1}{z - a} \Big).$$

Then $h \in H^{\infty}$, $|h(z)| < \epsilon$ for almost all z in $\partial D \setminus W$, and h is continuous on V. Hence if g is a Cesaro mean of h with sufficiently high index, we have $g \in A$ and

$$\left|\left|\psi\left(f-\frac{1}{z-a}\right)-g\right|\right|<\epsilon.$$

LEMMA 2.3. Let \mathscr{A} be a backward shift invariant analytic subalgebra. Suppose that $\psi \in H^{\infty}$ is continuous on an open subarc of ∂D . Then $[\mathscr{A}, \psi]$ and $[\psi \mathscr{A} + A]$ are backward shift invariant.

Proof. $\psi(z) - \psi(0)$ satisfies the assumptions of Lemma 2.2 (for a = 0). Hence $\psi^* \in [A, \psi]$. Note that

$$(fg)^* = f^*g + f(0)g^*$$
 and $||f^*|| \le 2||f||$ for $f, g \in H^{\infty}$

Then it is easy to see that $[A, \psi]$ and $[\psi \mathscr{A} + A]$ are backward shift invariant.

The following lemma shows the existence of non backward shift invariant analytic subalgebras.

LEMMA 2.4. Let E be a closed subspace of H^{∞} with

 $m(\pi_0(Z(E))) = 1.$

Then $\mathscr{A} = E + A$ is a closed non backward shift invariant subspace. Moreover, if E is an algebra and $AE \subset E$, then \mathscr{A} becomes a non backward shift invariant analytic subalgebra.

Proof. Let $f_n + g_n \in \mathscr{A}(f_n \in E, g_n \in A, n = 1, 2, ...)$ be a Cauchy sequence. Then $\{g_n\}_{n=1}^{\infty}$ is a Cauchy sequence on Z(E). Since

$$m(\pi_0(Z(E))) = 1,$$

 $\{g_n\}_{n=1}^{\infty}$ is a Cauchy sequence on ∂D . Hence $\{f_n\}_{n=1}^{\infty}$ is also a Cauchy sequence. Thus \mathscr{A} is closed. To see that \mathscr{A} is not backward shift invariant, suppose that \mathscr{A} is backward shift invariant. Let $f + g \in \mathscr{A}$ ($f \in E, g \in A$) with $f \neq 0$. Put

$$f(z) = \sum_{n=k}^{\infty} a_n z^n, \quad a_k \neq 0.$$

Then

$$f^{*(k)}(0) = a_k$$
 and $f^{*(k+1)} = -a_k \overline{z}$ on $Z(E)$,

where $f^{*(k)} = f^{*(k-1)}$. Since \mathscr{A} is backward shift invariant, we can represent

$$f^{*(k+1)} = f_1 + g_1,$$

where $f_1 \in E$ and $g_1 \in A$. Hence $g_1 = -a_k \overline{z}$ on Z(E). Since

 $m(\pi_0(Z(E))) = 1,$

 $g_1(z) = -a_k \overline{z}$ and $\overline{z} \in A$. But this is a contradiction, so \mathscr{A} is not backward shift invariant.

By our lemmas, we get easily the following proposition.

PROPOSITION 2.1. Let q be an inner function.

(1) If E is a backward shift invariant subspace of H^{∞} , then [qE, A] is backward shift invariant if and only if m(supp q) < 1.

(2) If \mathscr{A} is a backward shift invariant analytic subalgebra, then $[q\mathscr{A} + A]$ is backward shift invariant if and only if m(supp q) < 1.

(3) [A, q] is backward shift invariant if and only if m(supp q) < 1.

Remark 2.1. The above results are proved in [2, 8, 9, 10] when m(supp q) = 0 or 1.

3. Proof of the main theorem. We will prove a more generalized version of our theorem given in the introduction. To state the new version, assume that \mathcal{A} , \mathcal{C} and q satisfy the following conditions throughout the rest of this paper.

(a) \mathscr{A} is a backward shift invariant analytic subalgebra.

(b) \mathscr{C} is a C^* -algebra with $\mathscr{A} \subset \mathscr{C} \subset L^{\infty}$.

(c) The evaluation functional ϕ_0 of \mathscr{A} has a unique norm-preserving Hahn-Banach extension to \mathscr{C} .

(d) q is an inner function in \mathcal{A} .

We give some examples of \mathscr{A} and \mathscr{C} satisfying (a), (b) and (c).

Example 3.1. (1) $\mathscr{A} = H^{\infty}$ and $\mathscr{C} = L^{\infty}$.

(2) For an inner function ψ , put \mathscr{C} the C*-algebra generated by $[A, \psi]$ and put $\mathscr{A} = H^{\infty} \cap \mathscr{C}$. It is easy to check that \mathscr{A} is backward shift invariant. By [9, Theorem 3], \mathscr{A} becomes a Dirichlet subalgebra of \mathscr{C} . This implies (c).

(3) Let B be a Douglas algebra and let \mathscr{C} be the C*-algebra generated by invertible inner functions in B. Put $\mathscr{A} = H^{\infty} \cap \mathscr{C}$, then \mathscr{A} is a logmodular subalgebra of $\mathscr{C}[1]$. It is easy to see (a) and (c).

Under the above assumptions (a)-(d) for \mathscr{A} , \mathscr{C} and q, we will investigate the algebra $q\mathscr{A} + A$. In [13], Stegenga proved that $qH^{\infty} + A$ is closed if and only if m(supp q) = 0 or 1. We shall show that the same assertion is true for $q\mathscr{A} + A$. The proof is the same as the one in [13].

LEMMA 3.1 ([13, Lemma 3.5]). If ψ is an inner function with $m(\text{supp }\psi) = 0$, then

 $||g + \psi A \cap C|| \leq ||g + \psi H^{\infty}|| + ||g||_{\mathrm{supp}\psi}$

for every $g \in C$, where

 $||g||_{\sup \psi} = \sup \{ |g(\lambda)|; \lambda \in \operatorname{supp} \psi \}.$

Proof. This is a slight generalization of Stegenga's lemma. We can prove the above estimate by the same way as the one in [13].

LEMMA 3.2 [13, Lemma 2.3]. Suppose that X and Y are closed subspaces of a Banach space Z. Then X + Y is closed if and only if there exists a positive constant K with

 $||y + X \cap Y|| \leq K||y + X||$ for all y in Y.

PROPOSITION 3.1. Let \mathscr{S} be an analytic subalgebra and ψ be an inner function. Then $\psi \mathscr{S} + A$ is closed if and only if $m(\text{supp } \psi) = 0$ or 1.

Proof. Case 1. Suppose that $m(\text{supp } \psi) = 0$. By Lemma 3.1,

 $||g + \psi \mathscr{S} \cap C|| \leq ||g + \psi A \cap C|| \leq ||g + \psi \mathscr{S}|| + ||g||_{\operatorname{supp}\psi}$

for every $g \in C$. Since $||g + \psi \mathscr{S}|| \ge ||g||_{\text{supply}}$.

 $||g + \psi \mathscr{S} \cap C|| \leq 2||g + \psi \mathscr{S}||$ for every $g \in C$.

By Lemma 3.2, $\psi \mathscr{S} + C$ is closed. Hence

 $\psi \mathscr{S} + A = H^{\infty} \cap (\psi \mathscr{S} + C)$

is closed.

Case 2. Suppose that $m(\text{supp } \psi) = 1$. Since

 $||\psi h + g|| \ge ||g||$ for every $h \in \mathcal{S}$ and $g \in A$,

it is easy to see that $\psi \mathcal{S} + A$ is closed.

Case 3. Suppose that $0 < m(\text{supp } \psi) < 1$. Note that

 $\psi \mathscr{S} \cap A = \{0\}.$

Let F be a closed subarc of ∂D such that

 $F \cap \operatorname{supp} \psi = \phi.$

Since ψ is continuous on F and m(F) < 1, there exists a function h_n in A such that

 $|(\psi - h_n)(\lambda)| < 1/n$

for every $\lambda \in F$ (n = 1, 2, ...). Fix a point *a* in *F*. Then $|\psi(a)| = 1$. Choose a function *g* in *A* such that g(a) = 1 and $|g(\lambda)| < 1$ for every $\lambda \in \partial D \setminus \{a\}$. Then for each *n*, there exists a positive integer k_n such that

$$\|(\psi-h_n)g^{k_n}\|<1/n.$$

Hence

 $||h_n g^{k_n} + \psi \mathscr{S}|| < 1/n.$

But

 $||h_n g^{k_n}|| \ge |h_n(a)| \ge |\psi(a)| - 1/n = 1 - 1/n.$

By Lemma 3.2, $\psi \mathcal{S} + A$ is not closed.

COROLLARY 3.1. $q\mathcal{A} + A$ is an analytic subalgebra if and only if m(supp q) = 0 or 1.

From now on, let put $X = M(\mathscr{C})$, the maximal ideal space of \mathscr{C} , and put \mathscr{B} the closure of $q\mathscr{A} + A$. Then \mathscr{B} is an analytic subalgebra. Now we can state our theorem.

THEOREM 3.1. The following assertions are equivalent.

(i) B is backward shift invariant.

(ii) m(supp q) < 1.

(iii) The evaluation functional ϕ_0 of \mathscr{B} has a unique norm-preserving Hahn-Banach extension to \mathscr{C} .

(iv) If B is a closed subalgebra with $\mathscr{B} \subset B \subset \mathscr{C}$ and $B \not\subset H^{\infty}$, then B contains C.

By Proposition 2.1(2), (i) and (ii) are equivalent. To see (iii), we regard \mathscr{B} as a closed subalgebra of C(X). Then the study of norm-preserving Hahn-Banach extensions of ϕ_0 of \mathscr{B} to \mathscr{C} is the same as the study of representing measures for ϕ_0 on X. We start out to study some properties of measures on X.

For $\mu \in L^{1}(m)$, there exists a unique measure $\hat{\mu}$ on X such that

$$\int_X f d\hat{\mu} = \int_{\partial D} f d\mu \quad \text{for every } f \in \mathscr{C}.$$

The map $\mu \to \hat{\mu}$ is one-to-one and norm-preserving from $L^{1}(m)$ onto $L^{1}(\hat{m})$. For a given $\mu \in L^{1}(m)$, $\hat{\mu}$ is determined uniquely by the following conditions;

$$\hat{\mu} \in L^{1}(\hat{m})$$
 and
 $\int_{X} f d\hat{\mu} = \int_{\partial D} f d\mu$ for every $f \in C$.

For a measure μ on X, there is a unique measure $\pi(\mu)$ on ∂D such that

$$\int_{\partial D} f d\pi(\mu) = \int_X f d\mu \quad \text{for every } f \in C.$$

The measure $\pi(\mu)$ is the image of μ by the fiber projection π from X onto ∂D ; $\pi(x) = z(x)$ for $x \in X$. If $\mu \in L^{1}(m)$, then $\pi(\hat{\mu}) = \mu$. If two meas-

ures μ_1 and μ_2 in $L^1(\hat{m})$ satisfy $\pi(\mu_1) = \pi(\mu_2)$, then $\mu_1 = \mu_2$. From now on, we identify μ with $\hat{\mu}$ for every $\mu \in L^1(m)$, but we will use \hat{m} to avoid the confusion with m.

For a measure μ on X, put

 $\mu = \mu_a + \mu_s, \quad \mu_a \ll \hat{m} \quad \text{and} \quad \mu_s \perp \hat{m}.$

By (c), \hat{m} is the unique representing measure on X for ϕ_0 of \mathscr{A} . Set

$$\mathcal{A}_0 = \{ f \in \mathcal{A}; f(0) = 0 \}$$
 and $A_0 = \{ f \in A; f(0) = 0 \}.$

For a subset E of C(X) and for a measure μ on X, we write $\mu \perp E$ if

$$\int_X f d\mu = 0 \quad \text{for every } f \in E.$$

LEMMA 3.3. If a measure μ on X satisfies $\mu \perp \mathscr{A}$ (or \mathscr{A}_0), then we get the following assertions.

- (1) $\mu_a, \mu_s \perp \mathscr{A}(or \mathscr{A}_0).$ (2) If we put $d\pi(\mu_a) = fdm$, then $f \in H^1_0$ (or H^1).
- (3) $\mu_s \perp \mathscr{A} + C$.

Proof. We shall prove the case $\mu \perp \mathscr{A}$. By the same way, it is easy to get (1)-(3) for the case $\mu \perp \mathscr{A}_0$.

(1) follows from the abstract F. and M. Riesz theorem [5, p. 44].

(2) Since $\mu_a \perp \mathscr{A}, \pi(\mu_a) \perp A$ and $f \in H_0^1$.

(3) Put

$$a = \int_X \overline{z} d\mu_s.$$

Since \mathscr{A} is backward shift invariant, for $f \in \mathscr{A}$,

$$\int_X fd(\overline{z}\mu_s - a\hat{m}) = \int_X f\overline{z}d\mu_s - \int_X \overline{z}d\mu_s \int_X fd\hat{m}$$
$$= \int_X \overline{z}(f - f(0))d\mu_s$$
$$= \int_X f^*d\mu_s = 0.$$

By (1), $\overline{z}\mu_s \perp \mathscr{A}$ and $\mu_s \perp \overline{z}\mathscr{A}$. Repeating these arguments,

 $\mu_{s} \perp \overline{z}^{n} \mathscr{A}$ for every *n*.

Thus we get (3).

LEMMA 3.4. If μ is a probability measure on X and $\mu \perp q \mathscr{A}_0 + A_0$, then we have the following assertions.

(1) $\pi(\mu) = m$.

- (2) $\pi(\mu_s)$ is concentrated on supp q.
- (3) If we put $d\pi(\mu_a) = f dm$, then $q f \in H^1$.

Proof. (1) Since $\mu \perp A_0$, $\pi(\mu) \perp A_0$. Since $\pi(\mu) \ge 0$ and $||\pi(\mu)|| = 1$, $\pi(\mu) = m$.

(2) First we note that $q\mu \perp \mathscr{A}_0$. By Lemma 3.3 (3),

 $q\mu_{s} \perp \mathscr{A} + C$ and $\mu_{s} \perp q(\mathscr{A} + C)$.

Then $\mu_s \perp qC$, and thus

 $\pi(\mu_{\rm s})\perp qC\cap C.$

Consequently, $\pi(\mu_s)$ is concentrated on supp q.

(3) By Lemma 3.3 (2),

 $d\pi(q\mu_a) = qfdm$ and $qf \in H^1$.

The following lemma shows that in Theorem 3.1, (i) implies (iii).

LEMMA 3.5. Let \mathscr{A}_1 be a backward shift invariant analytic subalgebra such that $\mathscr{B} \subset \mathscr{A}_1 \subset \mathscr{C}$. Then ϕ_0 of \mathscr{A}_1 has a unique norm-preserving Hahn-Banach extension to \mathscr{C} .

Proof. Let μ be a representing measure on X for ϕ_0 of \mathscr{A}_1 . To show our assertion, it is sufficient to prove $\mu = \hat{m}$. To see this, put

 $\mu = \mu_a + \mu_s, \ \mu_a \ll \hat{m} \quad \text{and} \quad \mu_s \perp \hat{m}.$

Since $\mu \perp q \mathscr{A}_0 + A_0$, it is clear that

(1)
$$\mu_s \perp q(\mathscr{A} + C)$$

in the proof of Lemma 3.4 (2). Put $d\pi(\mu_a) = fdm$. By Lemma 3.4 (3),

(2)
$$qf \in H^1$$
.

Set

$$q(z) = \sum_{n=0}^{\infty} a_n z^n.$$

Since $q \in \mathscr{A}_1$ and \mathscr{A}_1 is backward shift invariant,

$$q^{*(n)} = \left(q(z) - \sum_{k=0}^{n-1} a_k z^k\right) / z^n \in \mathscr{A}_1 \quad (n = 0, 1, 2, \dots).$$

Hence for each n,

$$a_n = \int_X q^{*(n)} d\mu$$

= $\int_X q/z^n d\mu - \int_X \sum_{k=0}^{n-1} a_k z^{k-n} d\mu$
= $\int_X q/z^n d\mu_a + \int_X q/z^n d\mu_s$

(since $\mu \ge 0$ and $\mu \perp A_0$)

$$= \int_{\partial D} qf/z^n dm$$

by (1).

The above equations and (2) give us that qf = q. Since q is inner, f = 1 a.e. dm and $\mu = \hat{m}$.

As a corollary, we get the following.

COROLLARY 3.2. Conditions (ii) and (iv) in Theorem 3.1 are equivalent.

Proof. (ii) \Rightarrow (iv) Suppose that m(supp q) < 1. Then \mathscr{B} is backward shift invariant by Proposition 2.1(2). By Lemma 3.5 and Sarason's theorem, we get (iv).

(iv) \Rightarrow (ii) Suppose that m(supp q) = 1. Put

 $B = q(\mathscr{A} + C) + A.$

By the same way as in the proof of Lemma 2.4, *B* is a closed subalgebra with $\mathscr{B} \subset B \subset \mathscr{C}$. Since $q\overline{z}^n \notin H^{\infty}$ for some $n, B \notin H^{\infty}$. Since $q[\mathscr{A} + C] \cap C = \{0\}, C \notin B$. But this contradicts (iv).

To complete the proof of Theorem 3.1, we need to prove (iii) \Rightarrow (ii). The following lemma is its special case.

LEMMA 3.6. If m(supp q) = 1 and q(0) = 0, then ϕ_0 of \mathscr{B} does not have a unique norm-preserving Hahn-Banach extension to \mathscr{C} .

Proof. There exists a positive integer n such that

 $q/z^n \in H^{\infty}$ and $(q/z^n)(0) \neq 0$.

Put $\psi = q/z^n$, then $\psi \in \mathscr{A}$. Also put

 $\alpha: \psi \mathscr{A} + A \ni \psi h + f \to f(0).$

Then α is a non-zero complex homomorphism of $\psi \mathscr{A} + A$. Let μ be a representing measure for α on X. Since

$$\int_X (\psi + f) d\hat{m} = \psi(0) + f(0) \quad \text{for } f \in A,$$

we obtain $\mu \neq \hat{m}$. Note that for $h \in \mathscr{A}$ and $f \in A$,

$$\int_X (qh + f)d\mu = \int_X (\psi z^n h + f)d\mu = f(0) = (qh + f)(0).$$

Hence μ is a representing measure for ϕ_0 on \mathscr{B} .

To remove the assumption q(0) = 0 in Lemma 3.6, we study the structure of representing measures for a complex homomorphism α_0 of $\mathscr{B} = q\mathscr{A} + A$ with m(supp q) = 1 defined as follows;

 $\alpha_0: q \mathscr{A} + A \ni qh + f \to f(0).$

If q(0) = 0, then $\alpha_0 = \phi_0$. By the proof of Lemma 3.6, there exists a representing measure μ for α_0 such that $\mu \neq \hat{m}$. Fix such a measure μ and put $\mu = \mu_a + \mu_s$. Set

$$d\pi(\mu_a) = f dm \quad (f \in L^1(m)).$$

Then $f \neq 1$ and $0 \leq f \leq 1$. Since $\mu \perp q \mathscr{A} + A_0$, $\pi(\mu) = m$ by the same way as in the proof of Lemma 3.4. By Lemma 3.3,

 $qf \in H_0^1$ and $\mu_s \perp q(\mathscr{A} + C)$.

The following lemma shows that the converse of the above fact is affirmative. This is the key to prove our theorem.

LEMMA 3.7. Let $g \in L^1(m)$ such that $0 \leq g \leq 1$ a.e. dm and $qg \in H_0^1$. Then there exists a representing measure λ on X for α_0 such that $d\pi(\lambda_a) = gdm$.

Proof. Since

$$dm = d\pi(\mu) = d\pi(\mu_a) + d\pi(\mu_s) = f dm + d\pi(\mu_s),$$

we have

$$d\pi(\mu_s) = (1 - f)dm.$$

Since $qf \in H_0^1$ as mentioned above, $q(1 - f) \in H^1$. Thus

 $1 - f \neq 0$ a.e. dm.

Set

$$h = (1 - g)/(1 - f).$$

Then h is a non-negative Borel measurable function on ∂D , and $h \in L^{1}(\pi(\mu_{s}))$; in fact,

$$\int_{\partial D} |h| d\pi(\mu_s) = \int_{\partial D} (1 - g) dm < \infty.$$

Here there is a sequence of non-negative functions $\{f_n\}_{n=1}^{\infty}$ in C such that

 $f_n \to h(n \to \infty)$ in $L^1(\pi(\mu_s))$.

Since $||\pi(\nu)|| = ||\nu||$ for a non-negative measure ν of X,

$$||f_n\mu_s - f_k\mu_s|| \leq |||f_n - f_k|\mu_s|| = ||\pi(|f_n - f_k|\mu_s)||$$

= |||f_n - f_k|\pi(\mu_s)|| \rightarrow 0 (n, k \rightarrow \infty).

Thus $f_n \mu_s$ converges to a non-negative measure λ_s on X with $\lambda_s \ll \mu_s$. Since $||\pi(\nu)|| \leq ||\nu||$ for a measure ν on X,

$$\begin{aligned} \|\pi(\lambda_s) - (1 - g)m\| &= \|\pi(\lambda_s) - h(1 - f)m\| \\ \|\pi(\lambda_s) - (1 - g)m\| &= \|\pi(\lambda_s) - h\pi(\mu_s)\| \\ &= \lim_{n \to \infty} \|\pi(\lambda_s) - f_n\pi(\mu_s)\| \\ &= \lim_{n \to \infty} \|\pi(\lambda_s - f_n\mu_s)\| \\ &\leq \overline{\lim_{n \to \infty}} \|\lambda_s - f_n\mu_s\| = 0. \end{aligned}$$

This leads us to

 $d\pi(\lambda_s) = (1 - g)dm.$

If we put $d\lambda = gdm + d\lambda_s$, then

 $d\pi(\lambda) = gdm + d\pi(\lambda_s) = dm.$

Thus λ is a probability measure on X. Since $qg \in H_0^1$,

 $gdm \perp qA$.

Since $\mu_s \perp q(\mathscr{A} + C)$,

 $f_n\mu_s\perp q(\mathscr{A}+C).$

Since $f_n \mu_s \rightarrow \lambda_s$,

 $\lambda_s \perp q(\mathscr{A} + C).$

These facts show

 $\lambda = gdm + d\lambda_s \perp q\mathscr{A}.$

Consequently

$$\int_X (qh + f)d\lambda = f(0) \text{ for } qh + f \in q\mathscr{A} + A.$$

This completes the proof.

Proof of Theorem 3.1. (i) \Leftrightarrow (ii) follows from Proposition 2.1 (2).

(ii) \Leftrightarrow (iv) is already proved in Corollary 3.2.

(i) \Rightarrow (iii) follows from Lemma 3.5.

We shall prove (iii) \Rightarrow (ii). To see this, suppose that

 $m(\operatorname{supp} q) = 1.$

By Lemma 3.6, it is sufficient to see that if $q(0) \neq 0$, then ϕ_0 of \mathscr{B} does not have a unique representing measure on X.

Claim. There exists $g \in L^{1}(m)$ such that 0 < g < 1 a.e. $dm, qg \in H^{1}$ and $\int_{\partial D} qg dm = q(0)$.

First, on the assumption of our claim, we shall complete the proof. By our claim and Lemma 3.7, there exists a representing measure λ on X for α_0 of $qz\mathcal{A} + A$ such that $d\pi(\lambda_a) = gdm$. Then

 $\lambda \perp qz \mathscr{A}$ and $qd\lambda \perp \mathscr{A}_0$.

Hence for every $qf + h \in \mathscr{B} = q\mathscr{A} + A$, we get

$$\int_X (qf + h)d\lambda = \int_X q(f - f(0))d\lambda + f(0) \int_X qd\lambda + \int_X hd\lambda$$
$$= \int_X qzf^*d\lambda + f(0) \int_X qd\lambda + h(0)$$
$$= f(0) \int_X qd\lambda_a + f(0) \int_X qd\lambda_s + h(0)$$
$$= f(0) \int_{\partial D} qgdm + h(0)$$

(by Lemma 3.3 (3))

$$= f(0)q(0) + h(0)$$

(by our claim)

$$= \phi_0(qf + h).$$

Therefore λ is a representing measure for ϕ_0 of $q \mathscr{A} + A$. Since 0 < g < 1 and $d\pi(\lambda_a) = gdm, \lambda \neq \hat{m}$. This completes the proof of Theorem 3.1.

We shall prove our claim. Put a = q(0). We may assume that 0 < a < 1. Set

$$F = (1 + a^2)/a - (q + \overline{q}).$$

Then $F \in L^{\infty}$ and $F \neq 0$. Since $(1 + a^2)/a - 2 > 0$ and $-2 \leq q + \overline{q} \leq 2$, 0 < F a.e. *dm*. Take a small positive number *c* such that 0 < 1 - cF < 1 a.e. *dm*, and put G = 1 - cF. Since

$$qF = (1 + a^2)q/a - (q^2 + 1) \in H^{\infty},$$

 $qG \in H^{\infty}$. Since

$$(qF)(0) = (1 + a^2) - (a^2 + 1) = 0,$$

we get

$$\int_{\partial D} qGdm = \int_{\partial D} qdm - c \int_{\partial D} qFdm = q(0).$$

This completes the proof of our claim.

4. Additional properties of $qH^{\infty} + A$ type algebras. In this section, we use the same notations as the ones in Section 3. Here we discuss

(1) the maximal ideal space of \mathcal{B} ,

(2) the corona theorem for \mathcal{B} ,

(3) singular representing measures for ϕ_0 of \mathcal{B} , and

(4) Sarason's theorem when one of the conditions is dropped.

Let \mathcal{S} be an analytic subalgebra. For each z in D, put

 $\phi_z:\mathscr{S}\ni f\to f(z).$

Then ϕ_z is a complex homomorphism of \mathscr{S} . We may identify D with $\{\phi_z; z \in D\}$. Then $D \subset M(\mathscr{S})$. We say that the corona theorem holds for \mathscr{S} if D is dense in $M(\mathscr{S})$. For each λ in ∂D , put

$$M_{\lambda}(\mathscr{S}) = \{ x \in M(\mathscr{S}); \, z(x) = \lambda \}.$$

In [2, p. 43], Dawson remarked that if \mathscr{S} is backward shift invariant then

$$M(\mathscr{S}) = D \cup \{M_{\lambda}(\mathscr{S}); \lambda \in \partial D\}.$$

By Lemma 2.1, it is easy to see the above fact and that

 $M(\mathscr{G} + C) = M(\mathscr{G}) \backslash D.$

If \mathscr{S} is not backward shift invariant, it is difficult to describe $M(\mathscr{S})$, but it is easy to see

$$M([\mathscr{S} + C]) = \{x \in M(\mathscr{S}); |z(x)| = 1\}.$$

The first result in this section is to describe $M(\mathscr{B})$. Since $\mathscr{B} \subset \mathscr{A}$, there is a continuous restriction map Γ from $M(\mathscr{A})$ to $M(\mathscr{B})$. If m(supp q) = 1, for $z \in D$ we put

 $\alpha_z: \mathscr{B} = q\mathscr{A} + A \ni qh + f \to f(z).$

Then α_{z} is a complex homomorphism of \mathcal{B} .

THEOREM 4.1. (1) $\Gamma(M(\mathscr{A})) = D \cup \{x \in M(\mathscr{B}); |z(x)| = 1\}.$

(2) If the corona theorem holds for \mathcal{A} and m(supp q) < 1, then the corona theorem holds for \mathcal{B} .

(3) If m(supp q) = 1, then

$$M(\mathscr{B}) = \Gamma(M(\mathscr{A})) \cup \{\alpha_z; z \in D \text{ with } q(z) \neq 0\}$$

and the corona theorem does not hold for B.

Proof. (1) From the definition of Γ , it is easy to see that

 $\Gamma(D) = D$ and $\Gamma(M_{\lambda}(\mathscr{A})) \subset M_{\lambda}(\mathscr{B})$ for $\lambda \in \partial D$.

Since $M(\mathscr{A}) = D \cup \{x \in M(\mathscr{A}); |z(x)| = 1\},\$

 $\Gamma(M(\mathscr{A})) \subset D \cup \{x \in M(\mathscr{B}); |z(x)| = 1\}.$

To see the converse inclusion, let $x \in M(\mathscr{B})$ with $z(x) = \lambda$ and $|\lambda| = 1$.

Case 1. Suppose that $q(x) \neq 0$. Put

 $\gamma : \mathscr{A} \ni f \to (qf)(x)/q(x).$

Then γ is a non-zero complex homomorphism of \mathscr{A} . In fact, for $f, g \in \mathscr{A}$

$$\begin{aligned} \gamma(f)\gamma(g) &= (qf)(x)(qg)(x)/q(x)^2 = (qqfg)(x)/q(x)^2 \\ &= q(x)(qfg)(x)/q(x)^2 = \gamma(fg). \end{aligned}$$

Hence there is a point x' in $M(\mathscr{A})$ such that

 $\gamma(f) = f(x') \text{ for } f \in \mathscr{A}.$

Since $h(x') = \gamma(h) = h(x)$ for $h \in \mathcal{B}$, we get

$$x \in \Gamma(M(\mathscr{A})).$$

Case 2. Suppose that q(x) = 0. Since

$$(qf)^{2}(x) = q(x)(qf^{2})(x) = 0 \text{ for } f \in \mathcal{A},$$

$$\{h \in \mathcal{B}; h(x) = 0\} \supset q\mathcal{A}.$$

Since q(x) = 0, q is not constant on $M_{\lambda}(\mathscr{B})$. Hence q is not constant on $M_{\lambda}(\mathscr{A})$. Consequently there is a point x' in $M_{\lambda}(\mathscr{A})$ such that q(x') = 0. Since

$$(qf + g)(x') = g(x') = g(\lambda) = g(x) = (qf + g)(x)$$

for $f \in \mathscr{A}$ and $g \in A$, we get

 $x = \Gamma(x') \in \Gamma(M(\mathscr{A})).$

Thus we get (1). Note that Γ is one-to-one on

$$\{x \in M(\mathscr{A}); |z(x)| = 1 \text{ and } q(x) \neq 0\},\$$

and

$$\Gamma\{x \in M(\mathscr{A}); |z(x)| = 1 \text{ and } q(x) = 0\}$$

is a one point set by our proof.

(2) Suppose that the corona theorem holds for \mathcal{A} . Then by (1), D is dense in

 $D \cup \{x \in M(\mathscr{B}); |z(x)| = 1\}.$

If m(supp q) < 1, then \mathscr{B} is backward shift invariant by Theorem 3.1. So

$$M(\mathscr{B}) = D \cup \{x \in M(\mathscr{B}); |z(x)| = 1\}.$$

Thus we get (2).

(3) We have

$$M(\mathscr{B}) = \bigcup \{ M_{\lambda}(\mathscr{B}); \lambda \in \partial D \} \cup \{ x \in M(\mathscr{B}); |z(x)| < 1 \}.$$

We shall prove that

$$\{x \in M(\mathscr{B}); |z(x)| < 1\} = D \cup \{\alpha_z; z \in D \text{ with } q(z) \neq 0\}.$$

It is obvious that

$$D \cup \{\alpha_z; z \in D \text{ with } q(z) \neq 0\} \subset \{x \in M(\mathscr{B}); |z(x)| < 1\}.$$

To see the converse inclusion, take $x \in M(\mathscr{B})$ with |z(x)| < 1. If (qh + f)(x) = f(x) for every $qh + f \in \mathscr{B}$, we have $x = \alpha_{z(x)}$, because f(x) = f(z(x)). Moreover if q(z(x)) = 0, then

 $x = \alpha_{z(x)} = \phi_{z(x)}.$

Next, suppose that

 $(qh_0 + f_0)(x) \neq f_0(x)$ for some $qh_0 + f_0 \in \mathscr{B}$,

that is, $(qh_0)(x) \neq 0$ for some $h_0 \in \mathscr{A}$. We shall prove $x = \phi_{z(x)}$. We have

$$(qh)(x) = (q(h - h(z(x)))(x) + h(z(x))q(x))$$

for each $h \in \mathcal{A}$. Since \mathcal{A} is backward shift invariant, we may represent

$$h - h(z(x)) = (z - (z(x))h',$$

where $h' \in \mathcal{A}$, by Lemma 2.1. Then

$$(q(h - h(z(x)))(x) = (qh')(x)(z - z(x))(x) = 0.$$

Thus

(qh)(x) = h(z(x))q(x).

In particular

$$q(x)^2 = q(z(x))q(x)$$
 and $q(x)\{q(x) - q(z(x))\} = 0$.

Since $(qh_0)(x) \neq 0$,

 $h_0(z(x))q(x) \neq 0$ and $q(x) \neq 0$.

Then q(x) = q(z(x)) and

$$(qh + f)(x) = q(z(x))h(z(x)) + f(z(x)) = (qh + f)(z(x)).$$

Thus we get $x = \phi_{z(x)}$, and

$$M(\mathscr{B}) = \Gamma(M(\mathscr{A})) \cup \{\alpha_z; z \in D \text{ with } q(z) \neq 0\}.$$

Since $\Gamma(M(\mathscr{A}))$ is a compact subset of $M(\mathscr{B})$, the corona theorem does not hold for \mathscr{B} by (1).

If m(supp q) = 1, then $q(\mathcal{A} + C) + A$ is a closed subalgebra by the same way as in the proof of Proposition 2.1.

THEOREM 4.2. Suppose that m(supp q) = 1. Then

(1) α_0 of \mathscr{B} has a singular representing measure on X, where singular means with respect to \hat{m} .

(2) ϕ_0 of \mathscr{B} has a singular representing measure on X if and only if q(0) = 0.

(3) If q(0) = 0, then the set of singular representing measures for ϕ_0 of \mathcal{B} coincides with the set of representing measures for the complex homomorphism

$$\beta_0: \phi q(\mathscr{A} + C) + A \ni qh + f \to f(0).$$

Proof. (1) We take g = 0 as the one in Lemma 3.7. Then there is a representing measure λ on X for α_0 such that $d\pi(\lambda_a) = 0$. Thus λ is singular.

(2) If q(0) = 0, then $\alpha_0 = \pi_0$. Hence the if part follows from (1). To see the inverse direction, suppose that ϕ_0 of \mathscr{B} has a singular representing measure λ on X. Since $q\lambda \perp \mathscr{A}_0$, $\lambda \perp q(\mathscr{A} + C)$ by Lemma 3.3(3). Then

$$q(0) = \int_X q d\lambda = 0.$$

(3) Let λ be a singular representing measure on X for ϕ_0 of \mathscr{B} . Then $\lambda \perp q(\mathscr{A} + C)$, and λ becomes a representing measure for β_0 . Let ν be a representing measure on X for β_0 . ν is also a representing measure for ϕ_0 . Since $\nu \perp q\mathscr{A}$,

 $v_a \perp q \mathscr{A}$ and $v_s \perp q (\mathscr{A} + C)$

by Lemma 3.3. Moreover since $\nu \perp q(\mathscr{A} + C)$,

 $v_a \perp q(\mathscr{A} + C)$ and $qdv_a \perp C$.

Hence $qd\nu_a = 0$. Since q is inner, $\nu_a = 0$. Thus ν is singular.

For the rest of this section, denote

$$\mathscr{A}_1 = H^{\infty} \cap \{q(\mathscr{A} + C) + A\}$$
 and
 $\mathscr{A}_2 = H^{\infty} \cap \{q(\mathscr{A} + C) + C\}.$

Here we shall study some properties of \mathscr{A}_1 and \mathscr{A}_2 . If m(supp q) = 1, then \mathscr{A}_1 and \mathscr{A}_2 are analytic subalgebras with $\mathscr{B} \subset \mathscr{A}_1 \subset \mathscr{A}_2$. Since $q(\mathscr{A} + C) \cap A = \{0\}$, for each $z \in D$,

$$\gamma_z:\mathscr{A}_1 \ni q(h+g) + f \rightarrow f(z)$$

is a complex homomorphism of \mathscr{A}_1 .

THEOREM 4.3. Suppose that m(supp q) = 1. Then

(1) \mathscr{A}_1 is not a backward shift invariant analytic subalgebra.

(2) \mathcal{A}_2 is the smallest backward shift invariant analytic subalgebra containing \mathcal{B} .

(3) In the family of analytic subalgebras \mathscr{S} between \mathscr{B} and \mathscr{C} with the property that ϕ_0 of \mathscr{S} has a unique norm-preserving Hahn-Banach extension to $\mathscr{C}, \mathscr{A}_1$ is the smallest one.

(4) $\mathscr{B} \subsetneq \mathscr{A}_1 \subsetneq \mathscr{A}_2$.

(5) There are no other analytic subalgebras between \mathcal{A}_1 and \mathcal{A}_2 .

(6) $M(\mathscr{A}_1) = \{x \in M(\mathscr{B}); |z(x)| = 1\} \cup D \cup \{\gamma_z; z \in D\}.$

We need the following lemma proved essentially in [13, Lemma 3.4].

LEMMA 4.1. Let \mathscr{S} be a backward shift invariant analytic subalgebra and let ψ be a unimodular function in L^{∞} . If $\psi \mathscr{S} \cap C \neq \{0\}$, then $\psi \mathscr{S} \cap C$ is weak star dense in ψH^{∞} .

Proof of Theorem 4.3. (1) We may represent

 $\mathscr{A}_{1} = \{ H^{\infty} \cap q(\mathscr{A} + C) \} + A.$

Then $E = H^{\infty} \cap q(\mathscr{A} + C)$ satisfies

 $m(\pi_0(Z(E))) = 1.$

By Lemma 2.4, \mathscr{A}_1 is a non-backward shift invariant analytic subalgebra.

(2) By the same way as in the proof of Lemma 2.4, $q(\mathscr{A} + C) + C$ is a closed subalgebra. Since

$$\mathscr{A}_{2} \subset H^{\infty} \cap [\mathscr{A}_{2} + C] \subset H^{\infty} \cap [q(\mathscr{A} + C) + C] = \mathscr{A}_{2},$$

 \mathscr{A}_2 is backward shift invariant by Lemma 2.1 (5). Let \mathscr{A}_3 be a backward shift invariant analytic subalgebra containing \mathscr{B} . By Lemma 2.1 (4),

 $q(\mathscr{A} + C) + C = [\mathscr{B} + C] \subset \mathscr{A}_3 + C.$

Then $\mathscr{A}_2 \subset \mathscr{A}_3$.

(3) Let \mathscr{A}_4 be an analytic subalgebra between \mathscr{B} and \mathscr{C} such that ϕ_0 of \mathscr{A}_4 has a unique norm-preserving Hahn-Banach extension to \mathscr{C} . Let λ be a measure on X such that $\lambda \perp \mathscr{A}_4$, then

 $\lambda_a \perp A$ and $\lambda_s \perp q(\mathscr{A} + C)$.

These imply that

 $\lambda \perp H^{\infty} \cap \{q(\mathscr{A} + C) + A\},\$

so that

$$H^{\infty} \cap \{q(\mathscr{A} + C) + A\} \subset \mathscr{A}_{4}.$$

We shall prove that ϕ_0 of $H^{\infty} \cap \{q(\mathscr{A} + C) + A\}$ has a unique

representing measure. We may asusme $q(0) \neq 0$. Because, if $q = z^n q'$, where $q' \in \mathcal{A}$ and $q'(0) \neq 0$, then

$$q(\mathscr{A} + C) + A = q'(\mathscr{A} + C) + A.$$

Let μ be a representing measure on X for ϕ_0 . Since μ is also a representing measure for ϕ_0 of $q \mathscr{A} + A$,

$$\mu_a \perp q \mathscr{A}_0$$
 and $\mu_s \perp q (\mathscr{A} + C)$

by Lemma 3.3. Then

$$q(0) = \int_X q d\mu = \int_X q d\mu_a$$

By Lemma 4.1, $z\overline{q}\mathscr{A} \cap C$ is weak star dense in $z\overline{q}H^{\infty}$. Hence $\mathscr{A}_0 \cap qC$ is weak star dense in H_0^{∞} . Then for each $h \in H_0^{\infty}$ there exists a net $\{f_{\alpha}\}_{\alpha}$ in C such that

 $f_{\alpha}q \in \mathscr{A}_0$ and $f_{\alpha}q \to h$ (weak star topology).

Since

$$0 = \phi_0(f_\alpha q) = \int_X f_\alpha q d\mu = \int_X f_\alpha q d\mu_a = \int_{\partial D} f_\alpha q d\pi(\mu_a)$$

$$\rightarrow \int_{\partial D} h d\pi(\mu_a),$$

we have

$$\int_{\partial D} h d\pi(\mu_a) = 0 \quad \text{for } h \in H_0^{\infty}.$$

Since $\pi(\mu_a)$ is a non-negative measure on ∂D , $\pi(\mu_a) = cm$ for some constant c with $0 \le c \le 1$. Since $q(0) \ne 0$ and

$$q(0) = \int_X q d\mu_a = c \int_X q d\hat{m} = cq(0)$$

we obtain c = 1. So $\mu_a = \hat{m}$.

(4) The first inequality follows from (3) and Theorem 3.1. The second one follows from (1) and (2).

(5) Let \mathscr{A}_5 be a closed subalgebra with $\mathscr{A}_1 \subsetneq \mathscr{A}_5 \subset \mathscr{A}_2$. Then there exists a function f in \mathscr{A}_5 such that

$$f = q(h + g_1) + g_2, h \in \mathcal{A}, g_1, g_2 \in C \text{ and } g_2 \notin A.$$

Let μ be a measure on X with $\mu \perp \mathscr{A}_5$. By (3), ϕ_0 of \mathscr{A}_5 has a unique representing measure on X. Then $\mu_a \perp \mathscr{A}_5$ and $\mu_s \perp \mathscr{A}_5$. Consequently, $\mu_a \perp \mathscr{A}_2$. Since $[A, f] \subset \mathscr{A}_5$, we get $[A, f] \perp \mu_s$. Since $\mathscr{B} \perp \mu_s$,

$$q(\mathscr{A} + C) \perp \mu_s$$

by Lemma 3.3. Hence $[A, g_2] \perp \mu$. Since $g_2 \notin A$, $\mu_s \perp C$. These imply that

$$\mu_s \perp q(\mathscr{A} + C) + C$$
 and $\mu_s \perp \mathscr{A}_2$.

Thus $\mu \perp \mathscr{A}_2$ and $\mathscr{A}_5 = \mathscr{A}_2$.

(6) Since

 $\mathscr{A}_{1|M_{\lambda}(\mathscr{C})} = \mathscr{B}_{|M_{\lambda}(\mathscr{C})} \text{ for } \lambda \in \partial D,$

it is clear that $M_{\lambda}(\mathscr{A}_1) = M_{\lambda}(\mathscr{B})$. We shall show that

$$\{x \in M(\mathscr{A}_{1}); |z(x)| < 1\} = D \cup \{\gamma_{z}; z \in D\}.$$

It is obvious that

 $D \cup \{\gamma_z; z \in D\} \subset \{x \in M(\mathscr{A}_1); |z(x)| < 1\}.$

To see the converse inclusion, let $x \in M(\mathscr{A}_1)$ with |z(x)| < 1 and let x' be the restriction homomorphism of x onto \mathscr{B} . Then $x' \in M(\mathscr{B})$ and z(x) = z(x'). By Theorem 4.1, $x' = \phi_{z(x)}$ or $x' = \alpha_{z(x)}$. By the same way as in the proof of (3), we may assume that $q(z(x)) \neq 0$.

Case 1. Suppose that $x' = \phi_{z(x)}$. We shall prove that

 $x = \phi_{z(x)}.$

Let
$$g \in C$$
 with $qg \in H^{\infty}$. By Lemma 2.1, $qg \in \mathscr{A}$. Then $q^2g \in \mathscr{B}$, and

$$q(z(x))(qg)(x) = q(x')(qg)(x) = q(x)(qg)(x)$$

= $(q^2g)(x) = (q^2g)(x') = (q^2g)(z(x))$
= $q(z(x))(qg)(z(x)).$

Hence

(qg)(x) = (qg)(z(x))

and for $q(f + g) + h \in \mathscr{A}_{l}$,

$$\{q(f + g) + h\}(x) = (qf)(x') + (qg)(x) + h(x')$$
$$= \{q(f + g) + h\}(z(x)).$$

Thus $x = \phi_{z(x)}$.

Case 2. Suppose that $x' = \alpha_{z(x)}$. We shall prove that

 $x = \gamma_{z(x)}$.

Let μ be a representing measure for x on X. Then μ is also a representing measure for $x' = \alpha_{z(x)}$. Since $\mu \perp q \mathscr{A}$,

 $\mu_a \perp q \mathscr{A}$ and $\mu_s \perp q (\mathscr{A} + C)$

by Lemma 3.3. If we put

$$\phi(z) = (z - z(x))/(1 - \overline{z(x)}z),$$

then $\phi \in A$. For $g \in C$ with $qg \in H^{\infty}$,

$$0 = \phi(z(x))(qg)(x) = \phi(x)(qg)(x) = (\phi qg)(x)$$
$$= \int_X \phi qg d\mu = \int_X \phi qg d\mu_a = \int_{\partial D} \phi qg d\pi(\mu_a).$$

Since $H^{\infty} \cap qC$ is weak star dense in H^{∞} by Lemma 4.1,

$$\int_{\partial D} \phi h d\pi(\mu_a) = 0 \quad \text{for } h \in H^{\infty}.$$

We may represent

$$q = q(z(x)) + \phi h_0$$
 for some $h_0 \in H^{\infty}$

Then

$$0 = \int_X q d\mu = \int_X q d\mu = q(z(x)) ||\mu_a|| + \int_X \phi h_0 d\mu_a$$

= $q(z(x)) ||\mu_a||.$

Hence $||\mu_a|| = 0$, and $\mu = \mu_s$. Since $\mu = \mu_s \perp q(\mathscr{A} + C)$, we get

$$(q(f + g) + h)(x) = h(x) = h(z(x))$$

for $q(f + g) + h \in \mathscr{A}_{l}$. Thus $x = \gamma_{z(x)}$.

Remark 4.1. (1) In Sarason's theorem, we can't remove condition (a). Because, if m(supp q) = 1, then

$$H^{\infty} \cap \{q(\mathscr{A} + C) + A\} \subsetneq q(\mathscr{A} + C) + A,$$

$$C \not\subset q(\mathscr{A} + C) + A \text{ and } q(\mathscr{A} + C) + A \not\subset H^{\infty}.$$

While, ϕ_0 on $H^{\infty} \cap \{q(\mathscr{A} + C) + A\}$ has a unique norm-preserving Hahn-Banach extension to \mathscr{C} by Theorem 4.3.

(2) If q is a singular inner function with m(supp q) = 1, then the restriction map from $M(\mathscr{A}_1)$ to $M(\mathscr{B})$ is a homeomorphism. This follows from Theorems 4.1 and 4.3.

The authors are grateful to the referee for shortening the original proof of Lemma 2.2.

REFERENCES

- S. Y. Chang and D. Marshall, Some algebras of bounded analytic functions containing the disk algebra, Lecture Notes in Math. 604, 12-20 (Springer-Verlag, Berlin Heidelberg, 1977).
- **2.** D. Dawson, Subalgebras of H^{∞} , Thesis, Univ. of Indiana (1975).
- **3.** S. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal. 12 (1973), 236-245.
- 4. Invariant subalgebras of the backward shift, Amer. J. Math. 95 (1973), 537-552.
- 5. T. Gamelin, Uniform algebras (Prentice-Hall, Englewood Cliffs, N. J., 1969).
- 6. J. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
- 7. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, N. J., 1962).
- T. Muto and T. Nakazi, Maximality theorems for some closed subalgebras between A and H[∞], Arch. Math. 43 (1984), 173-178.
- **9.** T. Nakazi, Algebras generated by z and an inner function, Arch. Math. 42 (1984), 545-548.

K. IZUCHI AND Y. IZUCHI

- **10.** K. Nishizawa, On closed subalgebras between A and H^{∞} II, Tokyo J. Math. 5 (1982), 157-169.
- 11. D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
- 12. Function theory on the unit circle, Lecture Note (Virginia Polytec. Inst. and State Univ., Virginia, 1978).
- 13. D. Stegenga, Sums of invariant subspaces, Pacific J. Math. 70 (1977), 567-584.
- 14. T. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.

Kanagawa University, Yokohama, Japan; Kanagawa Dental College, Yokosuka, Japan