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ALGEBRAS OF BOUNDED ANALYTIC FUNCTIONS 
CONTAINING THE DISK ALGEBRA 

KEIJI IZUCHI AND YUKO IZUCHI 

1. Introduction. Let D be the open unit disk and let 3D be its boundary. 
We denote by C the algebra of continuous functions on 3Z>, and by L°° the 
algebra of essentially bounded measurable functions with respect to 
the normalized Lebesgue measure m on dD. Let H°° be the algebra of 
bounded analytic functions on D. Identifying with their boundary 
functions, we regard H°° as a closed subalgebra of L°°. Let A = 
H°° Pi C, which is called the disk algebra. The algebras A and H°° have 
been studied extensively [5, 6, 7]. In these fifteen years, norm closed 
subalgebras between H°° and L°°, called Douglas algebras, have received 
considerable attention in connection with Toeplitz operators [12]. A norm 
closed subalgebra between A and H°° is called an analytic subalgebra. In 
[2], Dawson studied analytic subalgebras and he remarked that there are 
many different types of analytic subalgebras. One problem is to study 
which analytic subalgebras are backward shift invariant. Here, a subset E 
of H°° is called backward shift invariant if 

/ * = (f(z) - / (0 ) )/z e E for every/ in E. 

Backward shift invariant subspaces of the Hardy space Hp are studied in 
[3, 4]. The other problems come from Sarason's theorem [11, Theorem 2]. 
It is well known that if B is a Douglas algebra with H°° Ç B, then B 
contains C Sarason studied its generalization. For an analytic subalgebra 
J2< let <j>0 be the evaluation homomorphism of J / at the origin; 

* O : J * 3 / - > / ( 0 ) . 

SARASON'S THEOREM. Let stf be an analytic subalgebra and ^ be a 
C*-subalgebra of L°° with s/ c « If 

(a) s/ is backward shift invariant, and 
(b) 4>o of stf has a unique norm-preserving Hahn-Banach extension to % 

then every closed subalgebra B with stf c B c fé7 and B (£. H°° con
tains C. 

Sarason's theorem provides us the following problems. For an analytic 
subalgebra se and a C*-subalgebra #: 
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(1) When does <j>0 of s/ have a unique norm-preserving Hahn-Banach 
extension to #? 

(2) When does every closed subalgebra B with s/ c B c fé7 and 5 £ 
# ° ° contain C? 

It is difficult to answer these problems completely. In this paper, we 
shall study a special type of algebras qH°° + A, where q is an inner 
function, which is studied by Stegenga [13]. For an inner function q, we 
put 

supp q = {X e 3D; there is a sequence {zn} in D such that 

z w - > \ a n d ^ ( z w ) - > 0 } , 

Then supp q is a closed subset of 3D. Stegenga proved that qH°° + A is 
norm closed if and only if m (supp #) = 0 or 1. Our results are 
continuations of Stegenga's works [13] concerning the questions men
tioned above. The following is a main theorem proved in Section 3 
(actually we shall prove it under more general situations). 

THEOREM. Let 38 be the norm closure of qH°° + A. Then 38 is an analytic 
subalgebra and the following assertions are equivalent. 

(i) 38 is backward shift invariant. 
(ii) m (supp q) < 1. 

(iii) <f>Q of 36 has a unique norm-preserving Hahn-Banach extension to 
L°°. 

(iv) If B is a closed subalgebra with 38 c B c L°° and B £ H°°, then B 
contains C. 

Some partial assertions in this theorem have been already proved in 
[2, 8, 10]. In Section 2, we shall study backward shift invariant analytic 
subalgebras. Proposition 2.1 answers Dawson's question in [2, p. 94]. In 
Section 4, we shall give more precise properties of 38. We shall describe 
the maximal ideal space of 38 and study representing measures for <j>0 

of 38. Our final result is that condition (a) in Sarason's theorem can not 
be removed. In [11], Sarason remarked that condition (b) can not be 
removed. 

We give some notations and definitions. F o r / G L°°, let | | / | | denote the 
essential sup-norm of/. For a subset E of L°°, [E] denotes the norm closed 
subalgebra generated by E. For a closed subalgebra B between A and L°°, 
we denote by M(B) the maximal ideal space of B. Identifying a function in 
B with its Gelfand transform, we regard B as a subalgebra of C(M(B) ), 
the space of continuous functions on M(B). For X e 32), put 

MX(B) = {x G M(B); z(x) = \ } , 

which we call the fiber at X. We note that 

M(H°°)\D = M(H°° + C) = {x G M(H°°); \z(x) 1 = 1}. 
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The map 

7T0:M(H°° + C) 3 x -> z(x) e 32) 

is called the fiber projection. For a subset E of H°° + C, put 

Z(£) = {x e M(Jf°° + C ) ; / ( J C ) = 0 for every/ <E £ } . 

A function g in H°° with |g| = 1 a.e. on dD is called inner. If q is inner, 
then 

supp q = 7T0(Z(q) ). 

Let Hl be the classical Hardy space. We denote by Hl
0 the space of func

tions in H1 which vanish at the origin. For regular Borel measures JU and X, 
jit <C X means that JU is absolutely continuous with respect to X, \i _L À 
means that ju, and X are mutually singular, and ||/x|| means the total 
variation norm of /z. 

2. Backward shift invariant analytic subalgebras. It is well known that 
H°° + C is a closed subalgebra of L°° [12]. In [10], Nishizawa pointed out 
that s/ + C is a closed subspace for every analytic subalgebra se. Using 
this fact, it is easy to give some characterizations of backward shift 
invariant analytic subalgebras as follows [2, 10]. 

LEMMA 2.1. Let s^ be an analytic subalgebra, then the following conditions 
are equivalent. 

(1) s/ is backward shift invariant. 
(2) For each a in 2), (f(z) — f(a) )/(z — a) e sefor every f e stf. 
(3) For each a in D, (z — a)sé + A = srf. 
(4) se + C is a closed subalgebra. 
(5) s/ = H°° n [s/ + C]. 

But these characterizations are not sufficient to check whether a given s/ 
is backward shift invariant or not. In [14], Wolff proved that if se contains 
QA then s/ is backward shift invariant, where 

QC = (H°° + C) n (H°° + C) and QA = H°° n (?C. 

The following lemma is also available to check whether a given J ^ is 
backward shift invariant or not. 

LEMMA 2.2. Let a e D. Suppose that \p e H°° is continuous on an open 
subarc V of 3D and \p(a) = 0. Then \p/(z — a) belongs to the uniform 
closure ofxpA + A. 

Proof. Let W be an open subarc of 3D whose closure is contained in V. 
For a given € > 0, find / e A such that 

f(z) - — < c/|MI forz G W\W. 

https://doi.org/10.4153/CJM-1986-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-005-9


90 K. IZUCHI AND Y. IZUCHI 

Set 

* = * ( / - — — ) • 
V z — a> 

Then h G H°°, \h(z)\ < c for almost all z in dD\W, and h is continuous 
on V. Hence if g is a Cesaro mean of h with sufficiently high index, we 
have g G A and 

*(/"—) "J I <£• 
v z — a> ' ' 

LEMMA 2.3. Le/ stf be a backward shift invariant analytic subalgebra. 
Suppose that \p G i/°° is continuous on an open subarc of 3D. Then \sé, \p] 
and [\pstf + A ] are backward shift invariant. 

Proof \p(z) — \p(0) satisfies the assumptions of Lemma 2.2 (for a = 0). 
Hence yp* G [A, i//]. Note that 

(/*)* =f*g + / ( 0 ) g * and ||/* || ^ 2II/H f o r / g G //°°. 

Then it is easy to see that [A, \p] and [\ps/ 4- v4] are backward shift 
invariant. 

The following lemma shows the existence of non backward shift 
invariant analytic subalgebras. 

LEMMA 2.4. Let E be a closed subspace of H°° with 

m(^(Z(E))) = 1. 

Then s# = E + A is a closed non backward shift invariant subspace. 
Moreover, if E is an algebra and AE c E, then stf becomes a non backward 
shift invariant analytic subalgebra. 

Proof L e t / + gn G sf(fn G E, gn G A9 n = 1, 2, . . . ) be a Cauchy 
sequence. Then {gn}^L\ is a Cauchy sequence on Z(£) . Since 

m(7T0(Z(E))) = 1, 

{g„}^Li is a Cauchy sequence on dD. Hence {fn}^L\ is also a Cauchy 
sequence. Thus JS/ is closed. To see that stf is not backward shift invariant, 
suppose that s£ is backward shift invariant. Let f + g Œ s/(f Œ E, g G 
.4) w i t h / ^ 0. Put 

oo 

Then 

/•<*>(0) = ak and / * ^ + 1 ) = - ^ z on Z(E), 
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where f*(> = / * ( \ Since si is backward shift invariant, we can 
represent 

/•(*+,) =/, + *„ 
where/, e E and g, e A. Hence g, = -%z on Z(E). Since 

m ( ^ 0 ( Z ( £ ) ) ) = l, 

gi(z) = — akI and z G i . But this is a contradiction, soj^is not backward 
shift invariant. 

By our lemmas, we get easily the following proposition. 

PROPOSITION 2.1. Let q be an inner function. 
(1) IfE is a backward shift invariant subspace of i/°°, then [qE, A] is 

backward shift invariant if and only if m (supp q) < 1. 
(2) If si is a backward shift invariant analytic subalgebra, then [qsi 4- A ] 

is backward shift invariant if and only if m (supp q) < 1. 
(3) [A, q] is backward shift invariant if and only if m (supp q) < 1. 

Remark 2.1. The above results are proved in [2, 8, 9, 10] when 
w(supp q) = 0 or 1. 

3. Proof of the main theorem. We will prove a more generalized version 
of our theorem given in the introduction. To state the new version, assume 
that J ^ fé7 and q satisfy the following conditions throughout the rest of this 
paper. 

(a) J / is a backward shift invariant analytic subalgebra. 
(b) ^ i s a C*-algebra with si c <g c L°°. 
(c) The evaluation functional $0 of si has a unique norm-preserving 

Hahn-Banach extension to #. 
(d) q is an inner function in si. 

We give some examples of si and ^satisfying (a), (b) and (c). 

Example 3.1. (1) si = H°° and # = L°°. 
(2) For an inner function \p, put ^ t h e C*-algebra generated by [A, \p] 

and put si = H°° n ^. It is easy to check that si is backward shift 
invariant. By [9, Theorem 3], si becomes a Dirichlet subalgebra of %>. This 
implies (c). 

(3) Let B be a Douglas algebra and let fé'be the C*-algebra generated by 
invertible inner functions in B. Put si = H°° Pi % then J ^ is a logmod-
ular subalgebra of #[1]. It is easy to see (a) and (c). 

Under the above assumptions (a)-(d) for J < ^ a n d q, we will investigate 
the algebra qsi + A. In [13], Stegenga proved that qH°° 4- 4̂ is closed if 
and only if m (supp q) = 0 or 1. We shall show that the same assertion is 
true for qsi 4- A. The proof is the same as the one in [13]. 
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LEMMA 3.1 ([13, Lemma 3.5]). If \p is an inner function with 
ra(supp \p) = 0, then 

\\g + M n c\\ ^ \\g + 4,H°°\\ + ||g||supp^ 

for every g G C, where 

Hsllsupp* = S UP( l^(X) li X G SUPP * } • 

Proo/1 This is a slight generalization of Stegenga's lemma. We can prove 
the above estimate by the same way as the one in [13]. 

LEMMA 3.2 [13, Lemma 2.3]. Suppose that X and Y are closed subspaces 
of a Banach space Z. Then X + Y is closed if and only if there exists a 
positive constant K with 

\\y + X n Y\\ ^ K\\y + X\\ for ally in Y. 

PROPOSITION 3.1. Let & be an analytic subalgebra and \l/ be an inner 
function. Then \pS? + A is closed if and only if m (supp \p) = 0 or 1. 

Proof Case 1. Suppose that m (supp \p) = 0. By Lemma 3.1, 

\\g + wr\ c\\ ^ \\g + *An c\\ ^ \\g + m + ||g||supp̂  

for every g £ C. Since \\g + ^9\\ ^ llg||supp^ 

\\g + $SfCi C\\ ^ 2||g + ^\\ for every g e C. 

By Lemma 3.2, \p£f + C is closed. Hence 

^ + ^ = H°° n ( ^ -f C) 

is closed. 
Case 2. Suppose that m (supp \p) = 1. Since 

| | # + g|| ^ ||g|| for every / i G ^ a n d g e ^ 

it is easy to see that \p£P + A is closed. 
Case 3. Suppose that 0 < m (supp \p) < 1. Note that 

^ n A = {0}. 

Let i7 be a closed subarc of 3D such that 

F n supp ^ = <J>. 

Since \p is continuous on F and m(F) < 1, there exists a function /z„ in A 
such that 

| « , - hn)(X)\ < \ln 

for every X e F (« = 1 , 2 , . . . ) . Fix a point a in F. Then |i//(a) | = 1. 
Choose a function g in A such that g (a) = 1 and \g(X) | < 1 for every 
X e 8Z)\{<z}. Then for each «, there exists a positive integer kn such 
that 
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|| y - hn)g
k»\\ < l/n. 

Hence 

\\K%K + ^11 < l/n-
But 

\\hng
k*\\ ^ \hn(a)\ ^ \xP(a)\ - l/n = 1 - l/n. 

By Lemma 3.2, r//^ + 4̂ is not closed. 

COROLLARY 3.1. qs/ + yl z's a« analytic subalgebra if and only if 
w(supp q) = 0 or 1. 

From now on, let put X = M(^) , the maximal ideal space of % and put 
& the closure of # J / 4- A. Then ^ is an analytic subalgebra. Now we can 
state our theorem. 

THEOREM 3.1. The following assertions are equivalent. 
(i) 38 is backward shift invariant. 

(ii) m(supp q) < 1. 
(iii) The evaluation functional <j>0 of & has a unique norm-preserving 

Hahn-Banach extension to fé7. 
(iv) If B is a closed subalgebra with 38 C B c ^ and B £ H°°9 then B 

contains C. 

By Proposition 2.1(2), (i) and (ii) are equivalent. To see (iii), we regard 
38 as a closed subalgebra of C(X). Then the study of norm-preserving 
Hahn-Banach extensions of <f>0 of 38 to ^ is the same as the study of 
representing measures for <j>0 on X. We start out to study some properties 
of measures on X. 

For ju G L (m), there exists a unique measure JU. on X such that 

/ r /<# = JdD fdfi for every/ e « 

The map /i —» /i is one-to-one and norm-preserving from L (m) onto 
L (m). For a given JU, G L (W), /X is determined uniquely by the following 
conditions; 

/x G Ll(m) and 

A ^ = Xz) ^ for e v e fy/ G c 

For a measure /A on X, there is a unique measure 77(/x) on 82) such that 

JdD f ^ ) = Jx fdV f o r every/ e C. 

The measure 77(11) is the image of JU, by the fiber projection u from X onto 
82); TT(X) = z(x) for x e X If /x e Ll(m), then 7T(JU,) = /x. If two meas-
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ures /Xj and LX2 in Ll(m) satisfy n^) = 7r(/x2), then JXX = /x2. From now on, 
we identify /x with jx for every /x G L (ra), but we will use m to avoid the 
confusion with m. 

For a measure /x on X, put 

it = ^ + /Ay, [ia <. m and /x5 _L ra. 

By (c), m is the unique representing measure on X for <£0 of stf. Set 

^ 0 = {/ G j * ; / ( 0 ) = 0} and A0 = {/ G ^ ; / ( 0 ) = 0}. 

For a subset £ of C(X) and for a measure ii on X, we write LI _L £ if 

x . fd\i = 0 for every/ G 1?. 

LEMMA 3.3. 7/a measure LX on Xsatisfies xx _L s/(ors/0), then we get the 
following assertions. 

0) f t , , / ^ -L sf(ors%). 
(2) If we put dir(na) = fdm, then f G / ^ (or 7/1). 
(3) ixs JL J * + C. 

iVoo/ We shall prove the case /x _L J ^ By the same way, it is easy to get 
(l)-(3) for the case /x _L s/0. 

(1) follows from the abstract F. and M. Riesz theorem [5, p. 44]. 
(2) Since na ± sf, ir(jia) J_ A a n d / G ^ . 
(3) Put 

a= Jxzdps. 

Since se is backward shift invariant, f o r / G J ^ 

/ r /^(2/*5 ~ am) = Jx fId^s ~ Jx zdps Jx fdm 

L x f*dfls = 0. 

By (1), ~z\is _L j ^ a n d /x5 _L Z J ^ Repeating these arguments, 

fis _L ZWJ^ for every n. 

Thus we get (3). 

LEMMA 3.4. If /x w a probability measure on X and /x _L g j ^ 4- A0, then 
we have the following assertions. 

(1) TT(/X) = m. 

(2) 7r(/x5) W concentrated on supp #. 
(3) If we put dir{ixa) = fdm, then qf G if1. 
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Proof. (1) Since /i J_ A0, 7r(/x) _L A0. Since 7T(JLI) ^ 0 and ||TT(/X) || = 1, 

77(jii) = ra. 

(2) First we note that q\i _L s/0. By Lemma 3.3 (3), 

qns±st + C and /i5 ± # ( J / + O-

Then ju,5 _L gC, and thus 

TTOO 1. ?C n C. 

Consequently, ^(/f?) is concentrated on supp q. 
(3) By Lemma 3.3 (2), 

dir{qika) = qfdm and qf e if1. 

The following lemma shows that in Theorem 3.1, (i) implies (hi). 

LEMMA 3.5. Letstfx be a backward shift invariant analytic subalgebra such 
that ^ c i , c fé7. Then <£0 of s/x has a unique norm-preserving 
Hahn-Banach extension to (€. 

Proof. Let f ibea representing measure on X for <f>0 of s/}. To show our 
assertion, it is sufficient to prove JU = m. To see this, put 

JU = \ia + ju5, \ia < m and /x5 _L ra. 

Since /i _L qj^ + ^40, it is clear that 

(1) ft _L 9 ( j * + C) 

in the proof of Lemma 3.4 (2). Put d7r(fia) = fdm. By Lemma 3.4 (3), 

(2) <?/ G / / ' . 

Set 
OO 

Since q e j ^ and J ^ is backward shift invariant, 

4*(") = L ( z ) - 2 a*z*)/z" e j*J (/i = 0, 1, 2 , . . . ). 
v k=o ' 

Hence for each n, 
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(since jit â 0 and \i _L A0) 

= L if/z"dm 

by( l ) . 
The above equations and (2) give us that qf = #. Since q is inner , / = 1 

a.e. dm and /x = m. 

As a corollary, we get the following. 

COROLLARY 3.2. Conditions (ii) tf«<i (iv) /« Theorem 3.1 are equivalent. 

Proof, (ii) => (iv) Suppose that m(supp q) < 1. Then J* is backward shift 
invariant by Proposition 2.1(2). By Lemma 3.5 and Sarason's theorem, we 
get (iv). 

(iv) => (ii) Suppose that m(supp q) = 1. Put 

5 = ? ( i+C) + ^. 

By the same way as in the proof of Lemma 2.4, B is a closed sub-
algebra with âS c £ c « Since #zn £ i/°° for some «, 5 £ i/°°. Since 
q[sf + C] n C = {0}, C £ B. But this contradicts (iv). 

To complete the proof of Theorem 3.1, we need to prove (iii) =̂> (ii). The 
following lemma is its special case. 

LEMMA 3.6. Ifra(supp q) = 1 and q(0) = 0, then <j>0 of & does not have a 
unique norm-preserving Hahn-Banach extension to <&. 

Proof There exists a positive integer n such that 

q/zn e H°° and (q/zn)(0) ¥* 0. 

Put i// = q/zn, then \p e J ^ Also put 

a : ^ + ,4 3 # + / - > / ( 0 ) . 

Then a is a non-zero complex homomorphism of ^ J ^ + A Let /x be a 
representing measure for a on X. Since 

^ (* + f)dfh = #0) + /(0) for/ e A 

we obtain p ¥= m. Note that for /* G j ^ a n d / e J4, 

fx {qh + fW = fx (iznh + fW = /(0) = {qh + /)(0). 

Hence JU, is a representing measure for <f>0 on ^ . 

To remove the assumption q(0) = 0 in Lemma 3.6, we study the 
structure of representing measures for a complex homomorphism a0 of 
& = qstf + A with m(supp q) = 1 defined as follows; 

https://doi.org/10.4153/CJM-1986-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-005-9


BOUNDED ANALYTIC FUNCTIONS 97 

a0:qs/ + A ^ qh + / - > / ( 0 ) . 

If g(0) = 0, then a0 = <J>0. By the proof of Lemma 3.6, there exists a 

representing measure \i for a0 such that fi ¥= m. Fix such a measure \i 

and put (x = na ± ns. Set 

T h e n / ^ 1 and 0 ^ / ^ 1. Since fi _L # j / + ^40, A-(/A) = m by the same 

way as in the proof of Lemma 3.4. By Lemma 3.3, 

qf e J/J and /iv _L 0(jtf + C). 

The following lemma shows that the converse of the above fact is 
affirmative. This is the key to prove our theorem. 

LEMMA 3.7. Let g e L[(m) such that 0 ^ g ^ 1 a.e. dm and 
qg e / /Q. 77ze« //iere ejràto « representing measure X on X for a0 such that 

Proof. Since 

dm = dirdi) = d7r(fia) + dir{ixs) = fdm + dir(iLs), 

we have 

dTrQt,) = (l -f)dm. 

Since qf G. Hl
0 as mentioned above, q(\ — / ) e Z/1. Thus 

1 — / ¥= 0 a.e. dm. 

Set 

A = (1 - g ) / ( l - / ) . 

Then /i is a non-negative Borel measurable function on 3D, and 
/z e L\7T(JJLS) ); in fact, 

Li^^) = L(i-^m<o°-
Here there is a sequence of non-negative functions {/}^Li in C such 
that 

fn^h(n-> oo) in L ^ O O ). 

Since IkO) || = HHI for a non-negative measure *> of X, 

ItfX - /^n ^ IM/„ - / > J I = ikd/„ -/,K)|| 
= \\\fn ~ .£1*00 I I - 0 (n,k^oo). 

Thus fnixs converges to a non-negative measure Xs on X with A5 < [is. Since 
||7r(^) II ^ | H | for a measure *> on X, 
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|k(As) - (1 - g)m\\ = \\w(Xs) - h(\ -f)m\\ 

\H\) - ( 1 - g)m\\ = |k(As) - M M , ) || 

= lim lk(X,) - / „ * % ) || 

= lim \W(\S - fnlxs) || 
n—»oo 

^ lim MX, - y > j | = o. 

This leads us to 

d7r(Xs) = (1 — g)dm. 

If we put dX = gdm + dXs, then 

d<n(X) = gdm + d7r(Xs) = dm. 

Thus À is a probability measure on X. Since gg G i/0 , 

gdm JL #v4. 

Since JU5 _L q(s/ + C), 

/ > , -L 9 ( 5 / + C). 

Since/„/x5 -> X„ 

\y JL ^(jtf + C). 

These facts show 

À = gdm + dXs _L qstf. 

Consequently 

Jx (qh + />/A = / (0 ) for qh + f ^ qs? + A. 

This completes the proof. 

Proof of Theorem 3.1. (i) <̂> (ii) follows from Proposition 2.1 (2). 
(ii) <=> (iv) is already proved in Corollary 3.2. 
(i) => (iii) follows from Lemma 3.5. 

We shall prove (iii) => (ii). To see this, suppose that 

ra(supp q) = 1. 

By Lemma 3.6, it is sufficient to see that if q(0) ¥= 0, then <j>0 of 2 does not 
have a unique representing measure on X. 
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Claim. There exists g G L {m) such that 0 < g < 1 a.e. dm, qg G H 
a n d /az) ^ m = ^0 )* 

First, on the assumption of our claim, we shall complete the proof. By 
our claim and Lemma 3.7, there exists a representing measure X on X for 
«0 of qzstf + A such that d7r(Xa) = gdra. Then 

X _L #ZJ/ and #dA _L ja .̂ 

Hence for every qf + h G ^ == gjs/ + >1, we get 

fx (qf + h)d\ = fxq(f~ /(0) )d\ + /(0) Jxqd\+ Jx hdX 

= jxqzf*d\+f(0) jxqd\ + h(0) 

= /(0) ^ <z</Aa + /(0) jf <?<A, + A(0) 

= /(°)I •8Z> ^ w + A(0) 

(by Lemma 3.3 (3) ) 

= f(0)q(0) + A(0) 

(by our claim) 

= 4>o(<?/ + * ) • 

Therefore À is a representing measure for <f>0 of g j / + A Since 0 < g < 1 
and d7r(\a) = gdm, X ¥= m. This completes the proof of Theorem 3.1. 

We shall prove our claim. Put a = q(0). We may assume that 
0 < a < 1. Set 

F = (1 -h a2)/a - (q + #). 

Then F G L°° and F * 0. Since (1 + a2)/'a - 2 > 0 and - 2 ^ q + 
g ^ 2, 0 < i7 a.e. dm. Take a small positive number c such that 
0 < 1 — cF < 1 a.e. dm, and put G = 1 — cF. Since 

qF = (1 + a2)4/tf - fa2 + 1) G H°°, 

qG G #°°. Since 

(qF)(0) = (1 + a2) - (o2 + 1) = 0, 

we get 

L <?GJw = jdD qdm - c jdD qFdm = q(0). 

This completes the proof of our claim. 
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4. Additional properties of qH°° + A type algebras. In this section, we 
use the same notations as the ones in Section 3. Here we discuss 

(1) the maximal ideal space of 96, 
(2) the corona theorem for 9&, 
(3) singular representing measures for 4>0 of 96, and 
(4) Sarason's theorem when one of the conditions is dropped. 
Let Sf be an analytic subalgebra. For each z in D, put 

Then <j>z is a complex homomorphism of Sf. We may identify D with 
{<pz; z G D). Then D c M(Sf). We say that the corona theorem holds for 
c^if D is dense in M(£f). For each X in dD, put 

MX(ST) = {x G M{&)\ z(x) = X}. 

In [2, p. 43], Dawson remarked that if £f is backward shift invariant 
then 

M{ST) = D U {Mx(y); X G dD}. 

By Lemma 2.1, it is easy to see the above fact and that 

M(Sf + C) = M(Sf)\D. 

If 5^ is not backward shift invariant, it is difficult to describe M(Sf), but it 
is easy to see 

M( \<f + C] ) = {x G M ( ^ ) ; 1*00 I = !} • 

The first result in this section is to describe M{96). Since 96 c J ^ there is a 
continuous restriction map T from M ( J ^ ) to M(96). If m(supp #) = 1, for 
z G Z> we put 

<V^ = ^ + ^ 3 f̂/l + / - > / ( z ) . 

Then a2 is a complex homomorphism of ^ . 

THEOREM 4.1. (1) T(M(st)) = D U {x G M(^?); |Z(X) | = 1}. 
(2) 7/7/ze corona theorem holds for stf and m(supp q) < 1, r/ie« f/ze corona 

theorem holds for 96. 
(3) / / ra(supp g) = 1, then 

M(96) = T(M(s/) ) U {az; z G D with q(z) ¥= 0} 

and the corona theorem does not hold for 96. 

Proof. (1) From the definition of T, it is easy to see that 

T(D) = D and Y(Mx(sf)) c Mx(96) for A G dD. 

Since M ( J / ) = D U {* G M « ) ; \Z(X) 1 = 1}, 

r (M(j*) ) c 2) U {x G M ( ^ ) ; |z(x) | = 1}. 
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To see the converse inclusion, let x G M(&) with z(x) = X and 

IM = l . 

Case 1. Suppose that q(x) # 0. Put 

r.s/3f^(qf)(x)/q(x). 

Then y is a non-zero complex homomorphism of s/. In fact, for / , g G S/ 

y(f)y(g) = (qf)(x)(qg)(x)/q(x)2 = (qqfg)(x)/q(xf 

= q(x)(qfg)(x)/q(x)2 = y(fg). 

Hence there is a point xf in M(stf) such that 

Y(/) = / (* ' ) f o r / e ^ 

Since /z(V) = y(/z) = h(x) for h G ^ , we get 

JC G r ( M K ) ). 

Case 2. Suppose that g(jt) = 0. Since 

(qf)\x) = q(x)(qf)(x) = 0 for/ G j * 

{/z G ^ ; /Z(JC) = 0} z> qs/. 

Since #(JC) = 0, # is not constant on Mx(&). Hence q is not constant 
on Mx(s/). Consequently there is a point xf in Mx(s/) such that 
g(-x') = 0. Since 

(qf + g)(*') = g(*') = g(X) = g(x) = (^ / + g)(*) 

f o r / G j ^ and g G i , we get 

x = T(x') G T(M(s/) ). 

Thus we get (1). Note that T is one-to-one on 

{x G M ( 0 ; \z(x) | = 1 and q(x) * 0}, 

and 

T{x G M ( J * ) ; |Z(JC)| = 1 and q(x) = 0} 

is a one point set by our proof. 
(2) Suppose that the corona theorem holds for s/. Then by (1), D is dense 

in 

D U {x G M ( # ) ; |Z(JC)| = 1}. 

If m(supp q) < 1, then ^ is backward shift invariant by Theorem 3.1. 
So 

M ( ^ ) = D U {x G M ( ^ ) ; \z(x) 1 = 1}. 

Thus we get (2). 
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(3) We have 

M ( ^ ) = U{MX(^); X G dD} U {x G M(J>); |z(x) | < 1}. 

We shall prove that 

{x G M(^); |z(x) | < 1} = D U {a2; z G 2) with #(z) * 0}. 

It is obvious that 

D U (<xz; z G D with q(z) ¥= 0} c {x G Af(^); |z(x) | < 1}. 

To see the converse inclusion, take x G M(@) with |z(x) | < 1. If 
(qh + / ) (x ) = / ( * ) for every g/z + / G ^ we have x = az(x), 
because/(x) = f(z(x) ). Moreover if g(z(x) ) = 0, then 

Next, suppose that 

(4*o + /oX*) ^ /o(*) f o r s o m e 4*0 + /o G ^ 

that is, (qh0)(x) ¥= 0 for some h0 ^ s/. We shall prove x = ^ z ( x ) . We 
have 

(^ ) (x ) = (q(h - h(z(x)))(x) + *(*(*))*(*) 

for each h G J ^ Since J ^ is backward shift invariant, we may represent 

h - h(z(x)) = (z - (z(x))/z', 

where /z' G j ^ by Lemma 2.1. Then 

(<?(/* - /z(z(x)))(x) = (?/i')(x)(z - *(*)X*) = 0. 

Thus 

(qh)(x) = h(z(x))q(x\ 

In particular 

q(x)2 = q(z(x) )q(x) and q(x){q(x) - q(z(x) ) } = 0. 

Since (qh0)(x) ¥= 0, 

h0(z(x) )q(x) ¥= 0 and q(x) ¥* 0. 

Then q(x) = q(z(x) ) and 

(qh + / ) (* ) = q(z(x))h(z(x)) + / ( z (x ) ) = ( ^ + / ) (z(x) ). 

Thus we get x = 4>z(jc), and 

M ( ^ ) = T(Af(j^) ) U {az; z G 2) with #(z) ^ 0}. 

Since r(M(j^) ) is a compact subset of M ( ^ ) , the corona theorem does 
not hold for ^ b y (1). 
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If m(supp q) = 1, then q(sé + C) + A is a closed subalgebra by the 
same way as in the proof of Proposition 2.1. 

THEOREM 4.2. Suppose that ra(supp g) = 1. 7%e« 
(1) «o of & has a singular representing measure on X, where singular 

means with respect to m. 
(2) <f>0 of 3S has a singular representing measure on X if and only if 

q(0) = 0. 
(3) If q(0) = 0, then the set of singular representing measures for 

CJ>Q of £8 coincides with the set of representing measures for the complex 
homomorphism 

J 8 0 : ^ ( J * + C) + A 3 qh + / - > / ( 0 ) . 

Proof. (1) We take g — 0 as the one in Lemma 3.7. Then there is a 
representing measure X on X for a0 such that dir(Xa) = 0. Thus X is 
singular. 

(2) If q(0) = 0, then a0 = 7T0. Hence the if part follows from (1). To see 
the inverse direction, suppose that <j>0 of SS has a singular representing 
measure X on X. Since qX A. s/0, X _L q(sf + C) by Lemma 3.3(3). Then 

9(0) = JxVdX = 0. 

(3) Let X be a singular representing measure on X for <f>0 of ^ . Then 
À _L q(srf + C), and X becomes a representing measure for /}0. Let P be a 
representing measure on X for /?0. j> is also a representing measure for <J>0. 
Since v _J_ gj^ 

pfl _L qsf and i>5 J_ q(s# + C) 

by Lemma 3.3. Moreover since v _L q(stf + C), 

?fl -L <?(J/ + C) and ^ ^ _L C. 

Hence gd*>a = 0. Since q is inner, *>a = 0. Thus v is singular. 

For the rest of this section, denote 

s/x = H°° n {q(s? 4- C) + v4 } and 

jtf2 = H°° C\ {q{sf + C) + C}. 

Here we shall study some properties of J ^ and J3^. If w(supp #) = 1, 
then s0x and J ^ a r e analytic subalgebras with ^ c stx c j ^ . Since 
# ( J ^ + C) n ^ = {0}, for each z e D9 

yz:s/x 3 <?(/* + g) + / - > / ( * ) 

is a complex homomorphism of J^J . 
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THEOREM 4.3. Suppose that m(supp q) = 1. Then 
(1) s/x is not a backward shift invariant analytic subalgebra. 
(2) jtf2 ™ the smallest backward shift invariant analytic subalgebra 

containing Si. 
(3) In the family of analytic subalgebras £f between Si and ^ with the 

property that <J>0 of y has a unique norm-preserving Hahn-Banach extension 
to % stfx is the smallest one. 

(4) i ç i j ç s^. 
(5) There are no other analytic subalgebras between stfx and sé2. 
(6) M(s/X) = {x e M ( # ) ; |Z(JC) | = 1} U D U {yz; z e £>}. 

We need the following lemma proved essentially in [13, Lemma 3.4]. 

LEMMA 4.1. Let Sfbe a backward shift invariant analytic subalgebra and 
let \p be a unimodular function in L°°. IfypS? n C ¥= {0}, then \py n C is 
weak star dense in xpH""0. 

Proof of Theorem 4.3. (1) We may represent 

j*j = {H°° O q(s/ + C) } + ^ . 

Then E = H°° n q(s/ 4- C) satisfies 

m(77 0 (Z(£ ) ) ) = 1. 

By Lemma 2.4, J ^ is a non-backward shift invariant analytic subalgebra. 
(2) By the same way as in the proof of Lemma 2.4, q(s/ + C) + C is a 

closed subalgebra. Since 

jtf2 a H°° n [s/2 + C] c r n fo(j* + C) + C] = J^2, 

J ^ is backward shift invariant by Lemma 2.1 (5). Let J ^ be a backward 
shift invariant analytic subalgebra containing Si. By Lemma 2.1 (4), 

q(stf + C) + C = [Si + C] c j*3 + C. 

Thenja^ c j ^ . 
(3) LetJ^ be an analytic subalgebra between ^ and ^such that <f>0 of J ^ 

has a unique norm-preserving Hahn-Banach extension to #. Let À be a 
measure on X such that X _L j ^ , then 

Xa ± A and À5 _L qÇs/ + C). 

These imply that 

X± H°° C\ {q(jtf + C) + >*}, 

so that 

# ° ° n {4(j3f + C) 4- v4 } c j ^ 4 . 

We shall prove that <j>0 of H°° n { # ( J ^ 4- C) + A} has a unique 
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representing measure. We may asusme #(0) ¥= 0. Because, if q = znq\ 
where q' G S/ and ^(0) =£ 0, then 

q(sf + C) + A = 4(J* + C) + A. 

Let /x be a representing measure on X for <J>0. Since JU is also a representing 
measure for <f>0 of g j^ + A, 

\ia _L guâ  and /x5 _L #(ja/ + C) 

by Lemma 3.3. Then 

= Jxqd^ = Jx 4 ( 0 ) = Jx qd[X = Jx qd^' 
By Lemma 4.1, zqs/ Pi C is weak star dense in zqH°°. Hence s/0 n qC is 
weak star dense in H^. Then for each h G H^ there exists a net {fa}a in C 
such that 

^ G j ^ and /*# ""* h (weak star topology). 

Since 

0 = <¥/«<? ) = J ^ / a ? * = ^ / « 4 ^ = JdD faQdrfaa) 

JdL 
we have 

f 
JdL 

hdir(iia) = 0 for A G #£°. 
78Z) 

Since ^(/x^) is a non-negative measure on 9Z>, ^(ju^) = cm for some 
constant c with 0 ^ c ^ 1. Since #(0) ^ 0 and 

^ ° ) = Jx qd^ = c Jx qd™ = cq^ 
we obtain c = 1. So [ia = m. 

(4) The first inequality follows from (3) and Theorem 3.1. The second 
one follows from (1) and (2). 

(5) Let ss?5 be a closed subalgebra with J ^ Ç J / 5 C S/2. Then there exists 
a function/ins/5 such that 

/ = qih + gj) + g2, A G j ^ g l , g2 G C and g2 £ ^ . 

Let / i b e a measure on X with JU, _L s/5. By (3), <J>0 of stf5 has a unique 
representing measure on X. Then \ia _L ja^ and /x5 _L JS^. Consequently, 
jua _L J ^ . Since [A,f] c J^5, we get [^4,/] _L /v Since ^ J_ /i5, 

(̂jaf 4- C) J- [is 

by Lemma 3.3. Hence [A, g2] _L /x. Since g2 € ^4, jn5 _L C. These imply 
that 

ixs _L #(jaf + C) + C and /x, _L J / 2 . 
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Thus [i A. s#2 and s/5 = s02. 
(6) Since 

^\\MX(V) = ®\MX(V) f o r X G 9 i ) > 

it is clear that Mx(s/X) = Mx{38). We shall show that 

{x G M(sfx)\ \z(x) | < 1} = D U (yz; z G D). 

It is obvious that 

D U {yz; z G D) c {x G M(j*j); |z(x) | < 1}. 

To see the converse inclusion, let x G M(stfx) with |z(x) | < 1 and let xf 

be the restriction homomorphism of x onto <%. Then x' G M(&) and 
Z(JC) = z(x'). By Theorem 4.1, x' = <f>zW or JC' = az(x). By the same way 
as in the proof of (3), we may assume that q(z(x) ) ¥* 0. 

Case 1. Suppose that xf = 4>Z(Xy We shall prove that 

x = <>z(xy 

Let g e C with #g G #°° . By Lemma 2.1, çg G J ^ Then <?2g G ^ , and 

q(z(x))(qg)(x) = q(x')(qg)(x) = q(x)(qg)(x) 

= (^g)(x) = (^g)(x0 = (q1g)(z(x)) 

= q(z(x))(qg)(z(x)y 
Hence 

fog)(x) = (qg)(z(x)) 

and for # ( / 4- g) + A G s/l9 

{ ? ( / + g) + *}(*) = (qf)(*f) + ( « ) ( * ) + A(x') 

Thus x = $z(jc). 
Case 2. Suppose that JC' = az(x). We shall prove that 

x = yZ(Xy 

Let JU be a representing measure for x on X. Then /A is also a representing 
measure for x' = az^xy Since fi _L qs/, 

lia JL qjtf and fis _J_ q(s/ + C) 

by Lemma 3.3. If we put 

j-OO 

<#z) = (Z - 2(JC) ) / ( l - Z(X)Z), 

then 4» G ^4. For g e C with ^g e ff° 

0 = #z(x)X$g)(*) = <Kx)(qg)(x) = (^g) (x) 

= Jx 4>qgdfi = Jx <t>qgdpa = JSD MgMPa)-
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Since H°° D qC is weak star dense in H°° by Lemma 4.1, 

JSD <f>hdTT(na) = 0 for h e H°°. 

We may represent 

q = q(z(x) ) + # 0 for some h0 e H°°. 

Then 

0 = Jx qdli = Jx qd[i = 4(z(-*) )l Wl + Jx *MMfl 

= ?(z(x))| | , i j | . 

Hence | | / i j | = 0, and \x = \is. Since ju = ^ _L q(s/ + C), we get 

for <?(/ + g) + A G J^J. Thus x = y2(jc). 

Remark 4.1. (1) In Sarason's theorem, we can't remove condition (a). 
Because, if ra(supp q) = 1, then 

7/°° n { # ( J ^ + C) + A) c ^ + C) + A, 

C <£ q(^ + C) + A and q(s/ + C) + A <£ H°°. 

While, <j>0 on H°° n {q(s/ + C) + 4̂ } has a unique norm-preserving 
Hahn-Banach extension to ^ b y Theorem 4.3. 

(2) If g is a singular inner function with m(supp q) = 1, then the 
restriction map from M ( J ^ ) to M(&) is a homeomorphism. This follows 
from Theorems 4.1 and 4.3. 

The authors are grateful to the referee for shortening the original proof 
of Lemma 2.2. 
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