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ON CERTAIN ABELIAN VARIETIES OBTAINED FROM

NEW FORMS OF WEIGHT 2 ON Λ(3 4) AND Λ(3 5)

MASAO KOIKE

Let N be a positive integer and let Γ0(N) be the subgroup of SL(2, Z)

defined by all matrices ft hλ with c = 0(modΛ0. Let S2(Γ0(N)) be the

space of holomorphic cusp forms of weight 2 with respect to ΓQ(N) and

let S2°(Γ0(ΛO) be the "essential part" of S2(Γ0(N)), which is defined in [1].

Let / e Sl(ro(S4)) be a common eigenf unction of all the Hecke oper-

ators, which is called a new form on Γ0(34), and let A be an abelian

variety defined over Q obtained from / which is defined by Shimura in

[10, Th. 1], It is known that A is a 2-dimensional, Q-simple abelian

variety and that there exists an abelian subvariety B oί A defined over

Q(V—3) such that A is isogenous over Q(V—3) to B x Bε. Here Bε is

the transform of B by the non-trivial automorphism ε of Q(V—3).

In this paper, we shall consider the field L generated over Q{\l—3)

by the coordinates of 3-section points of B. The obtained result is as

follows:

PROPOSITION. L is the field generated by a primitive S2-th root of

unity over Q.

Moreover, we shall prove the following theorem by using the above

result:

THEOREM. B is defined up to ^-transform by the equation', y2 — Sxy

+ e2πV~1/3?/ = x3 and its conductor over Q(V—3) is (V^3)6.

We shall also make the same consideration in the case of Γ0(3δ).
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30 MASAO KOIKE

NOTATIONS. Let Z, Q, R and C be the rational integers, the rational

numbers, the real numbers and the complex numbers. Let k denote the

field Q(V=S).

1. Preliminaries in the case of JΌO4)

Ligozat [6] gave a basis of SKΓoiS*)) by using the same method as

in Honda-Miyawaki's paper [3]. The result is as follows: let η(τ) be

Dedekind's ^-function. Put fx = η(9τy/η(3τ)η(27τ) and f2 = η(3τ)η(9τ)2η(27τ).

Then we have dimc S°(Γ0(34)) = 2 and fλ and f2 form a basis of ^(Γ0(34)).

Put F ( 1 ) = fx + Λ/T/ 2 and F(2> = fλ - <Γ5f%. Let F(1> = Σ B i l αn2»,
α = e2ffv3ϊr ^ e ^ e F o u r i e r expansion. It is easily proved that F ( 1 ) and F ( 2 )

are new forms on Γ0(34). Let χ(ri) — \^—\ be the Legendre symbol.

\ n /

For / = Σn^i a(n)zn, we define / z = Σ ^ i α(?0χ(w)zn. Then it is easily

proved that F£1} = F ( 2 ) and F?> = F ( υ . Put Z = QCv̂ S"), k = βCV^1^) and

let p, ε be the non-trivial automorphisms of Ky k respectively.

By virtue of [10, Th. 1], we obtain an abelian variety A and an

isomorphism θ of K into End (A) (x) Q. A and θ(a) for every θ{a) e

0(ίf) Π End (A), are rational over Q. Since χ is the primitive character

mod 3 and it holds a = d(mod 3) for every (a , j e Γ0(34), the condition

(4.8) in [10] is satisfied. Since we have F ^ = F ( 2 ) , the condition (4.9)

in [10] is also satisfied. Therefore, by virtue of [10, Prop. 8 and Prop.

9], there exists an endomorphism η of A, defined over k, such that (i)

ηε = —Ύ], (ii) η2 = — 3id^, (iii) r]oθ{a) = 0(αO°9 for every aeK.

Put B = (η - Θ(VΊΪ))A. Since 0? - ^(v^)) 2 = ^2 + 0(3) = 0, β is an

elliptic curve defined over k and A = B + B\

PROPOSITION 1. End 0 (B) = Q.

Proof. We consider the p-th power Frobenius endomorphism φv of

jBmodj), where p is a prime ideal in K such that Np = 39, χ(p) = 1.

Take 39 = 7,13. Then we have α7 = 2 and α13 = — 1. Hence one knows

Q(φ7) ̂  Q(V^6) and QC â) ̂  Q(V-51). This completes the proof by the

same argument as that of [8, Th. 7.39]. Q.E.D.

2. The field generated by the coordinates of 3-section points of B

In the case of Γ0(53) and Γ0(73), Doi and Yamauchi [2] studied such

https://doi.org/10.1017/S0027763000024739 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024739


NEW FORMS 31

abelian varieties B and the fields generated by the coordinates of certain
points of finite order on B. Their idea comes from the work of Shimura
[8] in the case of "Neben"-type. On the other hand, in the case of
"Neben"-type, Yamauchi [12] studied another type of fields generated by
the coordinates of ^-section points of the same abelian varieties £ is an
odd prime number with respect to which Doi has found some arithmet-
ical congruences for the Fourier coefficient of new forms. However,
such arithmetical congruences are proved only in the case of prime level
(an extended result is proved in [4]).

In the following, we shall show that we have such arithmetical
congruences mod 3 for the Fourier coefficients of Fω. Hence, we shall
determine the field over k generated by the coordinates of 3-section points
of B by the same argument as in Yamauchi's paper [12].

PROPOSITION 2. Let Fω = 2 ^ i anz
n denote the Fourier expansion.

Then it holds

l + p-ap = 0 (mod 3) if χ(p) = 1 ,

a + p)2-al = 0 (mod 3) if χ(p) = - 1 ,

for every prime p Φ 3.

Proof. Let ft = Σn^i bi(ri)zn, for i = 1,2, be their Fourier expan-
sions. It is clear b^ri) e Z for all n, i = 1,2. For any prime p Φ 3, it is
obvious we have ap = bx(p) if χ(p) = 1 and we have ap = δ2(p)V~3~ ^
χ(p) = — 1. Since χ(p) = — 1 means p = 2 (mod 3), we have (1 + p)2 = 0
(mod 3) and a\ = 3&2(p), so (1) is proved to be valid if χ(p) = — 1. Let
Δ(τ) = z Π^i (1 — zn)u = Π^i τ(n)zn be Ramanujan's function. Then
fx = Δ(τ) (mod 3) holds, since (1 — z3n) = (1 — znf (mod 3). Hence we have
ap = τ(p) (mod 3) if χ(p) = 1. On the other hand, it is well known that,
for any prime p, τ(p) = 1 + p (mod 3) holds if p = 1 (mod 3). Therefore
(1) is completely proved. Q.E.D.

PROPOSITION 3. Let L be a field over Q(V^3) generated by the co-
ordinates of all 3-sectίon points of B. Then L coincides with Q(ζ9),
where ζ9 is a primitive 9-th root of unity.

Proof. The proof is entirely similar to that of Theorem in [12].
For small prime p, ap is easily calculated by hand and the following is
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a part of them**':

V
7
7

61

ap

2
2

- 7

a\- Ap

- 2 4

- 2 4

-195

r p I n d r ft>

2 2 - Λ / ^ 4

2 2 + V ^ 2
10 7-2^^3 40

Ind r V—3

2

5

36

From Proposition 2 and the above table, it follows easily that L is a
Galois extension of Q(V—3) of degree 3. In this case, the primitive 3-th
root ω — e2π^~lβ of unity is already contained in the base field G(V^3).
We know that any prime divisor p of Q(\ί~^$) is unramified in L, if
p φ (y^—3), so we have L = Q(V—3, α), where az is equal to one of ω,
V^3, ωV^S, ω2V--3. From the above table, we have α3 = α> by the same
argument as in [12]. Hence Proposition 3 is completely proved.

Q.E.D.

3. The defining equation of the elliptic curve B

In this section we shall obtain the defining equation of B. From
Proposition 3, it follows that there exists a ^-rational, proper 3-section
point on B. The conductor of B over k is obviously a power of (V—3).
Since the base field k is imaginary quadratic, the above properties yield
a finite number of elliptic curves. The precise result is as follows:

LEMMA(*\ Let E be an elliptic curve defined over k such that
(i) the conductor of E over k is a power of (V—-3),
(ii) there exists a k-rational9 proper 3-section point on E.

Then the defining equation of E is one of the followings up to k-
ίsomorphisms and ε-transform, where ε is the non-trivial automorphism
of k:

E3

y2 ± Sxy + ωy = x\

y2 — Sxy + ωV—Sy = ίc3,

τ/2 — SV—Sxy + Sωy — x\

y2 + ωy = α;3,

2/2 + 3ωτ/ = xz,

w In the table, r denotes a primitive root mod p, Ind r ® is the index of ω (mod p)
with respect to r.

<*> rpk̂ g i e m m a i s essentially due to Mr. T. Hadano.
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E7 : y2 + y = x\

E8 : y2 + V~^3y = x\

where ω is the primitive 3-th root e2πVz:ϊ/z of unity.

Proof. From (i) and (ii), the defining equation of E is wri t ten by

y2 + axy + by = x2 with some integers afb ek such t h a t the discriminant

Δ = -b\a? + 27δ) is equal to ±V^3n, ±ω^^3n or ±ωV r = Γ 3\ Up to

fc-isomorphisms and ε-transform, we may assume b is one of V—3α,

ωV^ΊΓ and α>V^3α with α = 0,1,2 and Δ is ± v / : = F or ± W ^ 3 W . The

argument being similar, we deal with only the case Δ = ±ωV^==lΓ Put

a = V—3^0 with some integer cek such that (c, V —3) = 1. Put c =

~(x + y^S) with x,yeZ. (1) b = V ^ . Since we have V ^ V -

^~^3a+6 = ±ω2V^3w~3 α, two of {3β, α + 6, n — 3α} are equal to each other.

If 3β=z a + 6 <n - 3αr, we have c3 - 1 = ±α)V : r 3 n ~ 4 α " 6 . Put » =

[(n — 4^ — 6)/2], If n — 4α — 6 is even, we have xz — 9xy — 8 = +4-

(-3) υ and 3̂ 2?/ - 3τ/3 - 8 = +4 (-3) y. If n - Aa - 6 is odd, we have

#3 - 9ίcτ/2 - 8 = +4(-3) υ + 1 and 3x2y - 3y2 - 8 = + 4 ( - 3 ) \ It is obvious

that these equations have no integral solutions x and y. In other two

cases, it is similarly proved that there is no integral solution c. (2)

b = ω v ^ r . We have V ^ V - W ^ " * 6 = ±ω2^~^3n~Za. (i) 3/3 = α + 6

< n — 3a. Hence if n — 4a — 6 is even, we have x3 — 9xy2 + 4 = =F4(—3)υ

and 3x2y — 3y3 — 4 = +4(—3)y, and if n — 4α — 6 is odd, we have #3 —

9xy2 + 4 = 4(-3)μ + 1 and 3α2# - 3ι/3 - 4 = +4(-3) υ . Then it is clear

v = 0. In the case w — 4α — 6 = 0, the solutions are a — 0, β = 2 and

c = — 1, — ω, — ω2. In the case n — 4α — 6 = 1, the solutions are a = 0,

/3 = 2 and c = 1, ω, ω2. Thus £7lf± are obtained, (ii) 3/3 = n — 3a < a + 6.

We have c3 ± ω2 = ^V^ 4 ^ 6 "" . Put ^ = [(4α + 6 - w)/2]. Then, if

4a + 6 — n is even, we have xz — 9ίt?τ/2 + 4 = — 4(—3)p/ and 3x2y — 3y3 + 4

= 4(-3)p / and, if 4a + 6 - n is odd, we have x3 - 9xy2 + 4 = 4(-3)υ '+ 1

and 3x2y — 3̂ /3 + 4 = — 4(—3)υ'. It is obvious i/ = 0, so we have 4<* +

6 — w = 1. Hence the solutions are a = 1, /3 = 2 and c = — 1, — ω, — ω2.

Thus £̂ 2 is obtained, (iii) n - 3a = α + 6 < 3/3. We have ω ± ω2 =

cSy/Z^3^-"-6. Hence the solutions are a — 2, β = 3 and c = 1, ω, ω2. Thus

£̂ 3 is obtained. (3) 6 = ω V ^ . By the same argument as above, the

solutions are c = 0 and α = 0,1,2. Thus £74, E5 and ί76 are obtained.
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E79E8 and E9 are obtained from the case Δ = ± V ^ 3 n . Q.E.D.

THEOREM 1. The defining equation of B is given by

y2 — Zxy + ωy = x3

up to ε-transform and its conductor over k is (V—3)6.

Proof. Since B satisfies the conditions (i) and (ii) in Lemma, its
defining equation is given by one of the above table. On the other hand,
L-function of the elliptic curve B over k is equal to the Euler product

Π (1 - app~s + p1- + pι~2sy

up to 3-factor, where ap is the p-tla Fourier coefficient of Fa). For
prime p Φ 3, with χ(p) = 1, we may put p = pp' with prime ideals p φp;

in fe. Since αp = ap

v holds if χ(p) = 1, the local p- and p'-factor of L-
function of B coincide to each other. The following is the table of the
number of F^-rational points of Emodp with Np = p:

E2

2 - V - 3 2 + V-3 1 - 2 V -
12
6
9

9
3

9

12
9

12

3

6
9

9
6
12

9
12

3

9

9
12

3

6

9

12
15

18

9
12

9

21

9

21
12

15
9

18
15
12

9
21

12

9

9

21
12

15

9

18
18

27
21

27
21

12

27
21
*

18

21

27
18

18
21

27
21
12

27

21
*

18

21

B

Hence the defining equation of B, up to ε-transform, is given by y2 —
3xy + ωy = x\ The conductor of B is easily calculated from this equa-
tion. Q.E.D.

COROLLARY. L-function of B over k is equal to

Π (1 - app~s + p1-28)-^ - a'pp-s + p1'28)'1 ,
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where ap is the p-th Fourier coefficient of F ( 1 ) .

Proof. The reduction mod(V—3) of the minimal model of B is

proved to be of additive type from Theorem 1, so the local (V^3)-factor

of L-function is equal to 1. Q.E.D.

4. Preliminaries in the case of Γ0(3δ)

Ligozat [6] also gave a basis of S°2(Γ0(3δ)). The result is as follows:

put θl = ?(9r)ty27τ)3/9(3τ)9(81τ), g2 = 7(9r)ty81τ)8/7(3τ)?(27r), gz = v(Sτ)2η

(81τ)2, g, = V(3τ)γ27τy/v(9τ)V(8lτ), gδ = V(3τ)η(9τ)η(27τ)η(81τ)9 g7 = η(9τ)5η

(81τ)/7(3r)?(27r), g8 = η{3τYη{9τ)η{81τ) 9 g9 = η®τ)η{2Ίτf lη(9τ)η{8lτ)9 gl0 =

η(Zτ)r]{2Ίτ)η(%lτ)2. Let Γ(2) be the Hecke operator acting on S§(Γ0(3
5)) as

a linear endomorphism which is defined by f(τ) —> f(τ) \ T(2) = f( — \ +

. P u t gQ = g5\T(2)9 gu = g7|Γ(2) and g12 =

Then {£*}, 1 < i < 12, are linearly independent over C and form a basis

of S2°(Γ0(3
5)). He also calculated the eigenvalues of Γ(2) {0,0, ± v Ί ί ,

± Vβ, ± Λ/3 + ai91 < i < 3} are all the eigenvalues of Γ(2), where aί9

1 < i < 3, are three roots of the equation X3 — 9Z — 9 = 0.

From this, we can construct new forms on Γ0(35). We are interested

in only new forms from which 2-dimensional, Q-simple abelian varieties

are obtained. Such new forms are as follows: put G(1) = gx — Sg3 +

G ( 3 ) = g1 - Sg3 -

' - f t + — ft) and G(4) = 2g, - 3g2 - ft - Vβί-g, + —ft). Then we

have G(1) |Γ(2) = / 3 " G a ) , G(3) |Γ(2) = - / 3 G ( 3 ) , G(2)|Γ(2) = V~6"G(2) and

G(4) |Γ(2) = -V"6"G(4). Hence Gα ), 1 < ί < 4, are new forms on Γ0(35).

We have also G^ = G(3), G?} = G(1), G?> - G(4) and G^4) = G(2), where

χ(n) = f-^-) is the primitive character mod 3. Let G( ί) =

for i = 1,2 denote their Fourier expansions.

Put i?! = Q(VTΓ) and Z 2 = β(VTΓ). For each i = 1,2, let Pί be the

non-trivial automorphism of Kt. For each i = l, 2, let (Ai9θi) be an

abelian variety and an isomorphism of Kt into EndQ (A )̂ which are ob-

tained from Ga) by virtue of [10, Th. 1]. Then, by the same reason as

in § 1, there exists an endomorphism ηx (resp. η2) of Ax (resp. A2), defined
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over k, such that (i) η\ = —ηi9 (ii) η\ = — 3id^, (iii) ^ o ^ ( α ) = Θi{api)oηi9

for every aeKt.

Put 5 ! = (^ — ̂ (vΠΓWA. Si is an elliptic curve defined over k such

that Aι = Bι + B{, by the same argument as in § 1.

PROPOSITION 4. EndQ (Bx) = Q.

Proof. Since we have (^(7) = — 1,0^(31) = 5, this completes the

proof by the same argument as that of Proposition 1. Q.E.D.

As for A2, we have the following:

PROPOSITION 5. A2 is a simple abelian variety and EndQ (A2) coin-

cides with a division quaternion algebra Q[#2(l), Θ2W 6), η29 η2 o θ2{\l 6)]

over Q.

Proof. Put D = Q[θ2(l),θ2(V~6),η2,7}2°02WΊ>)]. We shall show D is

a division algebra. Since D(S)QR = M2(R) and η2°θ2(\/~&) = Θ2(—

t h e r e e x i s t s a Q - i s o m o r p h i s m c:D—> M2(R) s u c h t h a t t(θ2(a +

* - -

If 02(α + &V"6") - 392 is a zero divisor of D, we have det ( a + b^ 6 ' ~P—
\ —γ, a— δV6

= (α + δVT)(α - 6V"6~) + 3 = 0. One knows the norm of the funda-

mental unit of β(VΊΓ) is 1 and (3 - vΊΓ)(3 + V1Γ) = 3, so there is no

solution a,beQ such that (a + bV~W)(a - WIT) + 3 = 0. Hence D is

proved to be a division algebra. We suppose A2 is not simple. Then

A2 is isogenous to B x Br with some elliptic curves B, B'. If B is not

isogenous to B', it follows EndQ A2 ^ EndQ i? 0 EndgB7. Since EndQ A2

Z)D, this is a contradiction. We may assume B is isogenous to B\

Then we have EndQA2 ^ M2(Ende.B). If J5 is not of CM-type, we have

EndQ A2 ^ M2(Q): this is a contradiction. If B is of CM-type, the Mellin

transform of G(2) is the L-function with a primitive Grδssencharactere

of certain imaginary quadratic field by virtue of [9, Prop. 1.6]. From

Proposition 6, it follows that a2(p) is not equal to zero if p = I(mod3).

We have α2(5) ^ 0 this is a contradiction. Hence A2 is proved to be

simple. Therefore EndQA 2 is a division algebra over Q with a positive

involution. All algebra of this type are classified in [7, Prop. 1]. Since

EndgA2Z)D, EndQA2 is not of type I. Let F be the center of EndQA2.

Suppose F ΦQ. Put d = [F: Q]. Then we have d 14 by [11, Prop. 1, § 5-
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1]. If d = 4, we have EndQA 2 = F : this is a contradiction. #2(V1T)

and ^2 are not contained in F. Let A (resp. D2) be the subalgebra over

F generated by 02(V 6) (resp. η2). If d = 2, either Z^ or D2 is a field of

degree 4 over Q. Then, by [11, Prop. 6, §5-1], EndQA2 is proved to be

a field: this is a contradiction. Hence we have F = Q. Since EndQA 2

D D, EndQ A2 is of type II and coincides with D. Q.E.D.

5. Arithmetical congruences for Gω and G{2> and the field generated by the

coordinates of 3-section points of B{

We shall make the same consideration on Bί as in § 2.

PROPOSITION 6. Let Ga) = χ;w>! α<(w)sn, i = 1,2, 6

forms on JΓ0(35). Let pίfί = 1,2, &e έfoe prime divisor of Kt lying on 3

o/ Q. Then it holds 1 + p — at{p) = 0 (mod pt) for every prime p ψ 3,

i = 1,2.

The proof is entirely similar to that of Proposition 2, so we omit

the proof.

PROPOSITION 7. Let Lγ be the field over k generated by the coordi-

nates of ?>-sectίon points of Bx. Then Gal (LJk) is isomorphic to the

cyclic group of order 3 and Lx coincides with either k(V(*>V—3) or

fc( ̂ 77^3) .

Proof. The following is the table of a^p) for certain primes p:

V
19

61

ap

- 1

2

a\ — 4p
- 7 5

- 2 4 0

r
10

10

4 -

7 -

- VT
2vΓ3~

Ind r ω
6

40

Ind r V
16

36

- 3

From this table, Proposition 7 is proved to be valid by the same argu-

ment as in the proof of Proposition 3. Q.E.D.

Remark. We can also consider the field L2 over Q generated by the

coordinates of p2-section points of A2. By using Proposition 6 and by

the same argument as in Proposition 3, L2/Q is a Galois extension of

either degree 6 or degree 2 and V—3 belongs to L2. However we can

not decide its degree over Q, because we can not apply Shimura's cri-

terion in this case; for any prime p with p = 1 (mod 3), a2(p) is a ra-

tional integer. Since K2/Q is ramified at 3, we have a2(p)2 — 4p = 0

(mod pi).
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6. The defining equation of the elliptic curve B1

From Proposition 7, it follows that there exists a fc-rational, proper

3-section point on Bx. Hence the defining equation of B2 is determined

by the same argument as in Theorem 1. We have already calculated

the number of Fp-rational points of Bx (modp) for small primes there,

so the result is as follows:

THEOREM 2. The defining equation of Bλ is given by

y2 - 3V^3xy + 3ωy = xz

up to ε-transform and its conductor over k is (V—3)8.

7. Concluding remarks

Let α b e a solution of the equation X3 - 3X2 + 3 = 0. Then Q(a) is

the maximal real subfield of the field generated by the primitive 32-th

root of unity over β. Put G = (a - ΐ)g7 + (a2 - a - 2)#8 + (α - ΐ)g, +

(3a2 — 3a — 6)g1Q + gn + g12. Then it is proved that G is a new form on

Γ0(35). Let (A3, θ3) be a 3-dimensional abelian variety A3 defined over Q

and an isomorphism θz of Q(ά) into EndQA 3 obtained from G. It is

proved that (A3, #3) is of principal type. As for G, we can prove there

exist arithmetical congruences; let p be the prime divisor of Q(a) lying

on 3 of β. Let G = X ; ^ b(n)zn denote the Fourier expansion. Then it

holds 1 + p — b(p) = 0 (mod p) for any prime p Φ 3. Moreover it is

proved that b(p)2 — 4(p) = 0 (mod jo2) for every prime p with p = 1 (mod 3).

Hence, in this case, there exists the same difficulty as in Remark in

determining the field generated by the coordinates of ^-section points of

the above abelian variety associated with G.
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