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Abstract Using variational methods, we establish the existence and multiplicity of positive solutions
for the following class of problems:

−∆u + (λV (x) + Z(x))u = βuq + u2∗−1, u > 0 in R
N ,

where λ, β ∈ (0, ∞), q ∈ (1, 2∗ − 1), 2∗ = 2N/(N − 2), N � 3, V, Z : R
N → R are continuous functions

verifying some hypotheses.
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1. The problem

In this paper, we are concerned with the existence of positive solutions for the following
class of problems:

−∆u + (λV (x) + Z(x))u = βuq + u2∗−1 in R
N ,

u > 0 in R
N ,

u in H1(RN ),

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

where λ, β ∈ (0, ∞), q ∈ (1, 2∗ − 1), 2∗ = 2N/(N − 2), N � 3 and V, Z : R
N → R are

continuous functions with V (x) � 0 for all x ∈ R
N . The function V has the property that

Int V −1(0) := Ω is an open smooth domain composed of k open connected components
denoted by Ωj , j ∈ {1, . . . , k}, which satisfy d(Ωi, Ωj) > 0 for i �= j, that is,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk,

with V −1(0) = Ω̄.
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For each j ∈ {1, 2, . . . , k}, we fix a bounded open subset Ω′
j with smooth boundary

such that

(i) Ωj ⊂ Ω′
j ,

(ii) Ω′
j ∩ Ω′

l = ∅ for all j �= l.

Moreover, we also fix a non-empty subset Γ ⊂ {1, 2, . . . , k} and set

ΩΓ =
⋃
j∈Γ

Ωj and Ω′
Γ =

⋃
j∈Γ

Ω′
j .

Let us also assume that there exist two positive constants Mo and M1 such that the
functions V and Z verify

0 < Mo � V (x) + Z(x) ∀x ∈ R
N (1.2)

and
|Z(x)| � M1 ∀x ∈ R

N . (1.3)

Many papers concerning existence and multiplicity of positive solutions for this kind of
problem have been published in recent years. For example, in the case when the function
λV (x) + Z(x) is coercive, Miyagaki [21] proved some existence results for a positive
solution to (1.1). For the case when the function λV (x) + Z(x) is 1-periodic, Alves et
al . [3] showed the existence of positive solutions to (1.1). If λV (x)+Z(x) is radial, Alves
et al . [4] also established the existence of a positive solution to (1.1). The papers cited
above proved only the existence of positive solutions; the multiplicity of solutions was
established in [6–8,10,11,22].

In [13], Ding and Tanaka considered problem (1.1) without the critical term and
assume that β = 1. Supposing that Ω has k connected components, the authors showed
that, for this case, problem (1.1) has at least 2k − 1 solutions, for large λ, establishing
the existence of solutions called multi-bumps.

In our work, due to the critical growth of the nonlinearity in R
N , standard procedures

adopted in the literature to treat the subcritical case do not hold. In view of this obstacle,
a new approach has had to be applied. For instance, we have had to prove a bootstrap
argument for the case we study (see Propositions 3.8 and 3.9). Motivated by [13] and by
some arguments developed in [1], we have proved, even for the critical case, the existence
of multiple solutions to (1.1), and that these solutions have the same characteristics
of those found in [13]. We have employed variational arguments, and our main result
completes the study made in [13], in the sense that we are working with a class of
problems involving critical growth.

Our main result is the following.

Theorem 1.1. Assume that (1.2) and (1.3) hold. Then, for any non-empty subset Γ

of {1, 2, . . . , k}, there exist constants β∗ > 0 and λ∗ = λ∗(β∗) such that, for all β � β∗

and λ � λ∗, problem (1.1) has a family {uλ} of positive solutions with the following
property: for any sequence λn → ∞, we can extract a subsequence (λni

) such that uλni
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converges strongly in H1(RN ) to a function u that satisfies u(x) = 0 for x /∈ ΩΓ , and
the restriction u|Ωj is a least-energy solution of the following problem:

−∆u + Z(x)u = βuq + u2∗−1 ∈ Ωj ,

u > 0 in Ωj ,

u = 0 on ∂Ωj

for all j ∈ Γ .

Corollary 1.2. Under the assumptions of Theorem 1.1, there exist β∗ > 0 and λ∗ =
λ∗(β∗) such that, for λ � λ∗, problem (1.1) has at least 2k − 1 positive solutions.

Notation

The integral
∫

RN ϑ dx is denoted by
∫

RN ϑ. The usual norm of H1(RN ) is denoted by
‖u‖. The usual norm of Lr(RN ) is denoted by |u|r, r > 1. The usual norm of L∞(RN ) is
denoted by |u|∞. For an open set Θ ⊂ R

N , the symbols ‖u‖Θ, |u|r,Θ, r > 1, and |u|∞,Θ

denote the usual norms in the spaces H1(Θ), Lr(Θ) and L∞(Θ), respectively.

2. Some preliminary results

In this section, we set some notation and the proper variational framework to be employed
in this work.

Let us define the space of functions

Hλ =
{

u ∈ H1(RN ) :
∫

RN

(λV (x) + Z(x))u2 < ∞
}

endowed with the norm

‖u‖λ =
( ∫

RN

(|∇u|2 + (λV (x) + Z(x))u2)
)1/2

.

For λ � 1 it easy to see that (Hλ, ‖ · ‖λ) is a Hilbert space and we have the following
continuous imbedding: Hλ ↪→ H1(RN ).

The non-negative weak solutions of (1.1) are the critical points of the functional J :
Hλ → R defined as

J(u) = 1
2

∫
RN

(|∇u|2 + (λV (x) + Z(x))u2) − β

q + 1

∫
RN

(u+)q+1 − 1
2∗

∫
RN

(u+)2
∗
,

where u+(x) = max{u(x), 0}.
For an open set Θ ⊂ R

N we analogously define

Hλ(Θ) =
{

u ∈ H1(Θ);
∫

Θ

(λV (x) + Z(x))u2 < ∞
}

and

‖u‖λ,Θ =
( ∫

Θ

|∇u|2 + (λV (x) + Z(x))u2
)1/2

.
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In view of (1.2), we have

‖u‖2
λ,Θ � Mo|u|22,Θ for all u ∈ Hλ(Θ) and λ � 1.

The next result is an immediate consequence of the last inequality.

Lemma 2.1. There exist constants δ0, ν0 > 0 with δ0 ≈ 1 and ν0 ≈ 0 such that, for
all open sets Θ ⊂ R

N ,

δ0‖u‖2
λ,Θ � ‖u‖2

λ,Θ − ν0|u|22,Θ for all u ∈ Hλ(Θ) and λ � 1. (2.1)

Once we consider the nonlinearity with critical growth, the next lemma will be useful
and it is an immediate consequence of a result due to Lions [18–20].

Lemma 2.2. Let (vn) ⊂ H1(RN ) be a bounded sequence such that vn ⇀ v in
L2∗

(RN ). If (vn) is a subsequence such that |vn|2∗
⇀ ν and |∇vn|2 ⇀ µ for some

measures ν and µ, then there are sequences of points (xn) ⊂ R
N and (νn) ⊂ [0, ∞)

satisfying

|vn|2∗
⇀ |v|2∗

+
∞∑

i=1

νiδxi
≡ ν,

∞∑
n=1

ν2/2∗

n < ∞ and µ(xn) � Sν2/2∗

n ∀n ∈ N,

where δi is the Dirac measure and S is the best Sobolev constant of the immersion
H1(RN ) ↪→ L2∗

(RN ).

3. An auxiliary problem

In this section, we adapt, for our case, some arguments developed by Ding and Tanaka
[13] and del Pino and Felmer [12].

Henceforth, let us denote by h : R → R the function given by

h(s) =

{
βsq + s2∗−1 if s � 0,

0 if s � 0,

and fix a positive constant a verifying h(a)/a = ν0, where ν0 > 0 is the constant given
in Lemma 2.1.

For technical reasons we define two functions f, F : R → R, which play an important
role in what follows:

f(s) =

⎧⎪⎨
⎪⎩

0 if s � 0,

h(s) if s ∈ [0, a],

ν0s if s � a,
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and

F (s) =
∫ s

0
f(τ) dτ.

Using the set Ω′
Γ , let us also consider the functions

χΓ (x) =

{
1 for x ∈ Ω′

Γ ,

0 for x /∈ Ω′
Γ ,

g(x, s) = χΓ (x)h(s) + (1 − χΓ (x))f(s) (3.1)

and

G(x, s) =
∫ s

0
g(x, t) dt = χΓ (x)H(s) + (1 − χΓ (x))F (s), (3.2)

where

H(s) =
∫ s

0
h(τ) dτ.

Let us denote by Φλ : Hλ → R the functional given by

Φλ(u) = 1
2

∫
RN

(|∇u|2 + (λV (x) + Z(x))u2) −
∫

RN

G(x, u). (3.3)

It is standard to prove that Φλ ∈ C1(Hλ, R) and that the critical points of Φλ are
non-negative weak solutions of the equation

−∆u + (λV (x) + Z(x))u = g(x, u) in R
N . (3.4)

Note that positive solutions of the above equation are related with positive solutions
of (1.1), once we see that if u ∈ Hλ is a positive solution of (3.4) verifying u(x) � a in
R

N \ Ω′
Γ , then it is a positive solution of (1.1).

3.1. The Palais–Smale condition and the study of some energy levels

A sequence (un) ⊂ Hλ is defined as a Palais–Smale sequence at the level c ∈ R

(hereafter referred to as a (PS)c sequence) of the functional Φλ, when

Φλ(un) → c ∈ R and Φ′
λ(un) → 0 ∈ (Hλ)′. (3.5)

Remark 3.1. By the definition of the functions f and F , the Palais–Smale sequences
may be assumed to be non-negative.

The next lemma establishes that all (PS)c sequences are bounded, and the proof follows
using well-known arguments (see [13]).

Lemma 3.2. Any (PS)c sequence (un) ⊂ Hλ of the functional Φλ is uniformly bounded
with respect to λ � 1.
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Next, for each fixed j ∈ Γ , let us denote by cj the minimax level of the mountain-pass
theorem associated with the functional Ij : H1

o (Ωj) → R, given by

Ij(u) = 1
2

∫
Ωj

(|∇u|2 + Z(x)u2) − β

q + 1

∫
Ωj

(u+)q+1 − 1
2∗

∫
Ωj

(u+)2
∗
. (3.6)

It is well known that the critical points of Ij are weak solutions of the following problem:

−∆u + Z(x)u = βuq + u2∗−1 in Ωj ,

u > 0 in Ωj ,

u = 0 on ∂Ωj .

⎫⎪⎬
⎪⎭ (3.7)

The technique we shall apply in order to prove Theorem 1.1 includes the comparison
between some energy levels of the functional associated with (1.1) with the energy levels
associated with other auxiliary problems related to (1.1), as well as the study of the
behaviour of some (PS)c sequences.

In this regard we prove the following results.

Lemma 3.3. There exists β∗ > 0 such that, for all β � β∗, we have

cj ∈
(

0,

(
1
2

− 1
q + 1

)
SN/2

k + 1

)
for all j ∈ {1, . . . , k}.

Proof. For each j ∈ {1, . . . , k}, we fix a non-negative function ϕj ∈ H1
0 (Ωj) \ {0}.

Observe that there exists tβ,j ∈ (0, +∞) such that

cj � Ij(tβ,jϕj) = max
t�0

Ij(tϕj)

and thus, the following equality holds:∫
Ωj

[|∇ϕj |2 + Z(x)|ϕj |2] = βtq−1
β,j

∫
Ωj

ϕj
q+1 + t2

∗−2
β,j

∫
Ωj

ϕj
2∗

.

This equality implies that

tβ,j �
[∫

Ωj
[|∇ϕj |2 + Z(x)|ϕj |2]

β
∫

Ωj
ϕj

q+1

]1/(q−1)

and hence
tβ,j → 0 as β → +∞.

Using the above limit, we have

Ij(tβ,jϕj) → 0 as β → +∞,

whence it follows that there exists β∗ > 0 such that

cj <

(
1
2

− 1
q + 1

)
SN/2

(k + 1)
for all j ∈ {1, . . . , k} and all β ∈ [β∗, +∞).

�
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Remark 3.4. In particular, the above lemma implies that

k∑
j=1

cj ∈
(

0,

(
1
2

− 1
q + 1

)
SN/2

)
. (3.8)

The above result is very important, as we show in the following proposition.

Proposition 3.5. For each λ � 1 and c ∈ (0, ( 1
2 −1/(q+1))SN/2), any (PS)c sequence

(un) ⊂ Hλ of the functional Φλ has a strongly convergent subsequence (in Hλ).

Proof. Let (un) ⊂ Hλ be a (PS)c sequence. By Lemma 3.3, the sequence (un) is
bounded in Hλ and we may assume that

un ⇀ u weakly in Hλ and in H1(RN ),

un → u in Lp
loc(R

N ) ∀p ∈ [1, 2∗).

First, we observe that weak limit u is a critical point of Φλ.
By hypothesis, for any bounded sequence (ϕn) ⊂ Hλ, we have Φ′

λ(un)ϕn = on(1). Let
us choose a special ϕn for our purposes:

ϕn(x) = η(x)un(x),

where η ∈ C∞(RN ) is given by

η(x) =

{
1 ∀x ∈ Bc

R(0),

0 ∀x ∈ BR/2(0),

η(x) ∈ [0, 1] with Ω′
Γ ⊂ BR/2(0).

Here and below Bc
R(0) = {x ∈ R

N ; |x| � R}. Using the above data and adapting
arguments used in [12, Lemma 1.1] one proves that, for each ε > 0, there exists R > 0
such that ∫

{x∈RN :|x|�R}
|∇un|2 + (λV (x) + Z(x))u2

n � ε for large n ∈ N. (3.9)

Claim 3.6. The sequence (νn) obtained by applying Lemma 2.2 to the sequence (un)
verifies νn = 0 for all n ∈ N.

In fact, once it is proved that (un) is a (PS)c sequence, for each φ ∈ C∞
0 (Ω) we have

that∫
RN

|∇un|2φ +
∫

RN

un∇un∇φ +
∫

RN

(λV + Z)u2
nφ =

∫
RN

g(x, un)unφ + on(1). (3.10)

If (xn) is the sequence given in Lemma 2.2, then let Φε = Φ(x−xn)/ε, x ∈ R
N , ε > 0,

where Φ ∈ C∞
0 (RN , [0, 1]) is such that Φ ≡ 1 on B1(0), Φ ≡ 0 on Bc

2(0) and |∇Φ| � 2.
Considering φ = Φε in (3.10) and using the same type of arguments explored in [16],
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we obtain µ(xn) � νn for all n ∈ N. If νn > 0, the latter inequality combined with
Lemma 2.2 implies that

νn � SN/2 ∀n ∈ N, (3.11)

whence it follows that (νn) is finite.
Next, we will prove that νn = 0 for all n ∈ N.
Again using the fact that (un) is a (PS)c sequence, we have

I(un) − 1
q + 1

I ′(un)un = c + on(1).

Consequently,

(
1
2

− 1
q + 1

) ∫
RN

|∇un|2 +
(

1
2

− 1
q + 1

) ∫
RN

(λV + Z)u2
n

+
∫

RN

[
1

q + 1
g(x, un)un − G(x, un)

]
= c + on(1).

Since ∫
RN

(λV + Z)u2
n +

∫
RN

[
1

q + 1
g(x, un)un − G(x, un)

]
� 0,

it follows that (
1
2

− 1
q + 1

) ∫
RN

|∇un|2 � c + on(1),

and then (
1
2

− 1
q + 1

)
µ(xn) � c ∀n ∈ N. (3.12)

Recalling that µ(xn) � Sν
2/2∗

n , if there exists a νn > 0 for some n ∈ N, from (3.11) and
(3.12) we obtain the inequality

c �
(

1
2

− 1
q + 1

)
SN/2,

which is a contradiction; thus, νn = 0 for all n ∈ N.
From Claim 3.6 we have

un → u in L2∗

loc(R
N ) (3.13)

and, by (3.9), it follows that∫
RN

g(x, un)un →
∫

RN

g(x, u)u as n → ∞,

which implies that
un → u in Hλ.

�
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A sequence (un) ⊂ H1(RN ) is called a (PS)∞,c sequence when the following hold:

un ∈ Hλn
,

λn → ∞, n → ∞,

Φλn
(un) → c as λn → ∞,

‖Φ′
λn

(un)‖ → 0 as λn → ∞.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(PS)∞,c

Let us study the behaviour of a (PS)∞,c sequence.

Proposition 3.7. Let (un) be a (PS)∞,c sequence with c ∈ (0, ( 1
2 − 1/(q + 1))SN/2).

Then, for some subsequence still denoted by (un), there exists u ∈ H1(RN ) such that

un ⇀ u weakly in H1(RN ).

Moreover,

(i) u ≡ 0 in R
N \ ΩΓ and u|Ωj is a non-negative solution of

−∆u + Z(x)u = β|u|q−1u + |u|2∗−2u in Ωj ,

u = 0 on ∂Ωj

}
(P)j

for each j ∈ Γ .

(ii) un converges to u in a stronger sense, namely

‖un − u‖λn → 0.

Hence,
un → u strongly in H1(RN ). (3.14)

(iii) As λn → ∞, we have the following convergences:

λn

∫
RN

V (x)u2
n → 0, (3.15)

‖un‖2
λn,RN \ΩΓ

→ 0, (3.16)

‖un‖2
λn,Ω′

j
→

∫
Ωj

|∇u|2 + Z(x)u2 for all j ∈ Γ.

Proof. As in the proof of Lemma 3.2, there is a positive constant K > 0 such that

‖un‖λn � K ∀n ∈ N.

Thus, (un) is a bounded sequence in H1(RN ) and, for some subsequence still denoted by
(un), we may assume that there exists u ∈ H1(RN ) such that

un ⇀ u weakly in H1(RN )
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and

un(x) → u(x) a.e in R
N .

Using once more similar arguments explored in Proposition 3.5, we get

un → u in H1(RN ). (3.17)

To show (i), we fix the set Cm = {x ∈ R
N : V (x) � 1/m}. Then∫

Cm

u2
n � m

λn

∫
RN

λnV (x)u2
n,

that is, ∫
Cm

u2
n � m

λn
‖un‖2

λn
.

The above inequality, together with Fatou’s lemma, implies that∫
Cm

u2 = 0 ∀m ∈ N.

Thus, u(x) = 0 on
⋃+∞

m=1 Cm = R
N \ Ω̄ and we can assert that u|Ωj

∈ H1
o (Ωj) for all

j ∈ {1, . . . , k}.
Once we have proved that Φ′

λn
(un)ϕ → 0 as n → ∞ for each ϕ ∈ C∞

o (Ωj) (and hence
for each ϕ ∈ H1

o (Ωj)), it follows from (3.17) that∫
Ωj

∇u∇ϕ + Z(x)uϕ −
∫

Ωj

g(x, u)ϕ = 0, (3.18)

showing that u|Ωj is a solution of (P)j for each j ∈ {1, 2, . . . , k}.
For each j ∈ {1, 2, . . . , k} \ Γ , setting ϕ = u|Ωj in (3.18), we have∫

Ωj

|∇u|2 + Z(x)u2 −
∫

Ωj

f(u)u = 0,

that is,

‖u‖2
λ,Ωj

−
∫

Ωj

f(u)u = 0.

By (2.1) and the fact that f(s)s � ν0s
2 for all s ∈ R, we have

δ0‖u‖2
2,Ωj

� ‖u‖2
λ,Ωj

− ν0|u|22,Ωj
� ‖u‖2

λ,Ωj
−

∫
Ωj

f(u)u = 0.

Thus, u = 0 in Ωj , for j ∈ {1, 2, . . . , k} \ Γ , proving (i).
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For (ii), we have

‖un − u‖2
λn

−
∫

RN \Ω′
Γ

(f(un) − f(u))(un − u) −
∫

Ω′
Γ

(h(un) − h(u))(un − u)

= Φ′
λn

(un)(un − u) − Φ′
λn

(u)(un − u).

Using the equalities ∫
Ω′

Γ

(h(un) − h(u))(un − u) = on(1),

Φ′
λn

(u)(un − u) =
∫

ΩΓ

∇u∇(un − u) + Z(x)u(un − u) −
∫

ΩΓ

f(u)(un − u) = on(1)

and employing the inequality

|Φ′
λn

(un)(un − u)| � ‖Φ′
λn

(un)‖(‖un‖λn
+ ‖u‖λn) = on(1),

it follows that

‖un − u‖2
λn

−
∫

RN \Ω′
Γ

(f(un) − f(u))(un − u) = on(1).

Now, using (2.1), the fact that u ≡ 0 in R
n \ Ω′

Γ and the above estimate, we obtain

‖un − u‖2
λn

→ 0 as n → ∞.

To prove (iii), note that, from (1.3),∫
RN

λnV (x)u2
n � C‖un − u‖2

λn
,

so ∫
RN

λnV (x)u2
n → 0 as n → ∞.

�

In order to establish a uniform L∞ bound result for (uλ), we need the next two propo-
sitions. The first is a version of [9, Theorem 2.3] due to Brezis and Kato (see also [23])
and we omit its proof.

Proposition 3.8. Let b be a non-negative measurable function and let the function
g : R

N × R+ → R+ satisfy the following. For each non-negative function v ∈ H1(RN )
there exists a function h ∈ LN/2(RN ) such that

g(x, v(x)) � (h(x) + Cg)v(x) ∀x ∈ R
N .

If v ∈ H1(RN ) is a weak solution of −∆v + b(x)v = g(x, v), we have v ∈ Lp(RN ) for all
2 � p < ∞. Moreover, there exists a positive constant Cp = C(p, Cg, h) such that

‖v‖p � Cp‖v‖H1 . (3.19)

Moreover, if (vk), (bk) and (hk) satisfy the above hypothesis and hk → h in LN/2(RN ),
the sequence Cp,k = C(p, Cg, hk) is bounded.
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Proposition 3.9. Suppose that b is as set in Proposition 3.8, q > N/2 and that, for
each non-negative function v ∈ H1(RN ), there exists h ∈ Lq(RN ) with

g(x, v(x)) � h(x)v(x) ∀x ∈ R
N .

Then, if v is a non-negative weak solution of −∆v + b(x)v = g(x, v), there exists C =
C(q, ‖h‖q) > 0 such that

‖v‖∞ � C‖v‖H1 .

Moreover, if (vk), (bk) and (hk) satisfy the above hypothesis and (‖hk‖q) is bounded, it
is possible to show that (Ck = C(q, ‖hk‖q)) is a bounded sequence.

Proof. We use the Moser iteration technique, adapting the arguments found in [15,17]
(see also [5]). The basic idea is as follows.

For each n ∈ N and α > 1 such that v ∈ L2αq1(RN ), consider An = {x ∈ R
N : |v|α−1 �

n}, Bn = R
N \ An and the function vn given by

vn = v|v|2(α−1) on An and vn = n2v on Bn.

Once we have proved that vn ∈ H1(RN ), we have∫
RN

(∇v∇vn + b(x)vvn) dx =
∫

RN

g(x, v)vn dx.

Considering q1 = q/(q − 1), r > 2q1,

ωn = v|v|(α−1) ∈ An and ωn = nv ∈ Bn

and repeating the arguments explored in [5,15], we obtain

|v|rα � α1/α(Sr|h|q)α/2|v|2αq1 . (3.20)

Now, we will prove the estimate involving the L∞ norm.

Step 1. Fixing χ = r/(2q1) > 1 and α = χ, we have 2q1α = r and we can rewrite
(3.20) in the following way:

|v|rχ � χ1/χ(Sr|h|q)1/2χ|v|r. (3.21)

Step 2. Considering α = χ2, we have 2q1α = rχ. Thus, by Step 1 and (3.20), we get

|v|rχ2 � χ2/χ2
(Sr|h|q)1/(2χ2)|v|rχ. (3.22)

From (3.21) and (3.21), it follows that

|v|rχ2 � χ1/χ+2/χ2
(Sr|h|q)(1/χ+1/χ2)/2|v|r. (3.23)
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Step 3. Choosing α = χ3, we have 2q1α = rχ2. Thus, by Step 2 and (3.20),

|v|rχ3 � χ3/χ3
(Sr|h|q)1/(2χ3)|v|rχ2 . (3.24)

From (3.23) and (3.24),

|v|rχ3 � χ1/χ+2/χ2+3/χ3
(Sr|h|q)(1/χ+1/χ2+1/χ3)/2|v|r. (3.25)

Repeating the above arguments, for each m ∈ N we have the following inequality:

|v|rχm � χ1/χ+2/χ2+3/χ3+···+m/χm

(Sr|h|q)(1/χ+1/χ2+1/χ3+···+1/χm)/2|v|r. (3.26)

Since
∞∑

m=1

m

χm
=

1
(χ − 1)

and 1
2

∞∑
m=1

1
χm

=
1

2(χ − 1)
,

from (3.26) we have
|v|rχm � C|v|r,

where C = χ1/(χ−1)(Sr|h|q)1/(2(χ−1)). Consequently,

|v|∞ � C|v|r.

�

Now we are ready to prove the key result in order to conclude the proof of Theorem 1.1.

Proposition 3.10. Let {uλ} be a family of positive solutions of (3.4) satisfying

sup
λ�1

{Φλ(uλ)} <

(
1
2

− 1
q + 1

)
SN/2.

Then, there exists λ∗ > 0 such that

|uλ|∞,RN \Ω′
Γ

� a ∀λ � λ∗.

Hence, uλ is a positive solution of (1.1) for λ � λ∗.

Proof. Let (λn) be a sequence with λn → ∞ and define un(x) = uλn(x). Then uλn

is a bounded sequence of positive solution of (3.4). Using Proposition 3.7, it follows that
un → u in H1(RN ), where u is the weak limit of (un) in H1(RN ). Moreover, recall that
there exists C > 0 such that

g(x, un) � un + Cu2∗−1
n � (1 + an(x))un,

where an(x) = C|un|2∗−2, which converges in LN/2(RN ) to u2∗−2. Using Proposition 3.8,
it follows that, for each r > 1, the sequence (|un|r) is uniformly bounded. In the following
we set r > 2∗. Let us rewrite (3.4) in the following way:

−∆un + (λnV (x) + Z(x) − νo)un = g̃(x, s) := g(x, un) − νoun ∈ R
N .
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Note that
g̃(x, un) � Cu2∗−1

n = an(x)un,

and we can check that an(x) = C|un|2∗−2 ∈ Lq(RN ) with q = r/(2∗ − 2) and q > N/2.
Proposition 3.9 ensures that

|un|∞ � Ko ∀n ∈ N,

for some Ko > 0.
Now let vn(x) = uλn(εnx+ x̄n), ε2

n = 1/λn and (x̄n) ⊂ ∂Ω′
Γ . Without loss of generality

we will assume that x̄n → x̄ ∈ ∂Ω′
Γ . We have |vn|∞ � Ko,

−∆vn + (V (εnx + x̄n) + ε2
nZ(εnx + x̄n))vn = ε2

ng(εnx + x̄n, vn)

and
|g(εnx + x̄n, vn)| � |vn| + C|vn|2∗−1.

These facts, together with bootstrap arguments, imply that there exists K1 > 0 such
that

‖vn‖C2(B1(0)) � K1 ∀n ∈ N.

The above estimate implies that the weak limit v of the sequence (vn) ⊂ H1(RN ) belongs
to C1(B1(0)) with

vn → v ∈ C1(B1(0)) as n → ∞.

Assuming by contradiction that there exists η > 0 verifying

uλn(x̄n) � η ∀n ∈ N,

it follows that

vn(0) � η ∀n ∈ N.

Thus, v �= 0 in B1(0).
On the other hand, the function v satisfies the equation

−∆v + V (x̄)v = 0 ∈ R
N .

This implies that v ≡ 0, and contradicts the fact that v �= 0 in B1(0). Thus, there exists
λ∗ > 0 such that

|uλ|∞,∂Ω′
Γ

� a ∀λ � λ∗.

Repeating the arguments explored in [12], we have

|uλ|∞,RN \Ω′
Γ

� a ∀λ � λ∗,

from which the proposition follows. �
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4. Positive solutions for the original problem

In this section, for each λ � 1 and j ∈ Γ , let us denote by Φλ,j : H1(Ω′
j) → R the

functional

Φλ,j(u) = 1
2

∫
Ω′

j

|∇u|2 + (λV (x) + Z(x))u2 − β

q + 1

∫
Ω′

j

(u+)q+1 − 1
2∗

∫
Ω′

j

(u+)2
∗
. (4.1)

We know that the critical points of Φλ,j are the weak solutions of the elliptic equation
with Neumann boundary condition

−∆u + (λV (x) + Z(x))u = βuq + u2∗−1 ∈ Ω′
j ,

u > 0 ∈ Ω′
j ,

∂u

∂η
= 0 on ∂Ω′

j .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.2)

It is easy to check that the Φλ,j satisfy the mountain-pass geometry. In what follows,
we denote by cλ,j the minimax level related to the functional Φλ,j and defined by

cλ,j = inf
γ∈Υλ,j

max
t∈[0,1]

Φλ,j(γ(t)),

where
Υλ,j = {γ ∈ C([0, 1], H1(Ω′

j)); γ(0) = 0, Φλ,j(γ(1)) < 0}.

Since β is small, using well-known arguments found in [2,14], it is possible to prove
that there exist two non-negative functions wj ∈ H1

o (Ωj) and wλ,j ∈ H1(Ω′
j) verifying

Ij(wj) = cj and I ′
j(wj) = 0 (Ij was defined in (3.6))

and
Φλ,j(wλ,j) = cλ,j and Φ′

λ,j(wλ,j) = 0.

4.1. A special critical value for the functional Φλ

In what follows, let us fix R > 1 such that∣∣∣∣Ij

(
1
R

wj

)∣∣∣∣ < 1
2cj ∀j ∈ Γ

and
|Ij(Rwj) − cj | � 1 ∀j ∈ Γ.

From the definition of cj , it is standard to prove the equality

max
s∈[1/R2,1]

Ij(sRwj) = Ij(wj) = cj ∀j ∈ Γ, (4.3)

where the interval [1/R2, 1] is chosen conveniently for our purposes.
Reordering the set Γ , we may consider Γ = {1, . . . , l}, l � k.
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Let us define
[1/R2, 1]l = [1/R2, 1] × · · · × [1/R2, 1]︸ ︷︷ ︸

l times

,

the l-dimensional closed cube in R
l and (1/R2, 1)l, the l-dimensional open cube in R

l.
We also need to define the application

γo : [1/R2, 1]l →
⋃
j∈Γ

H1
0 (Ωj) ⊂ H1(Ω′

Γ )

as

γo(s1, s2, . . . , sl)(x) =
l∑

j=1

sjRwj(x) (4.4)

and the number
bλ,Γ = inf

γ∈Υ∗
max

(s1,...,sl)∈[1/R2,1]l
Φλ(γ(s1, . . . , sl)),

where
Υ∗ = {γ ∈ C([1/R2, 1]l, H1(Ω′

Γ ) \ {0})γ = γo on ∂([1/R2, 1]l)}.

We remark that γo ∈ Υ∗, so that Υ∗ �= ∅ and bλ,Γ is well defined.

Lemma 4.1. For any γ ∈ Υ∗, there exists (t1, . . . , tl) ∈ [1/R2, 1]l such that

Φ′
λ,j(γ(t1, . . . , tl))(γ(t1, . . . , tl)) = 0 for j ∈ {1, . . . , l}.

Proof. For a given γ ∈ Υ∗, let us consider the map γ̃ : [1/R2, 1]l → R
l defined by

γ̃(s1, . . . , sl) = (Φ′
λ,1(γ)(γ), . . . , Φ′

λ,l(γ)(γ)),

where
Φ′

λ,j(γ)(γ) = Φ′
λ,j(γ(s1, . . . , sl))(γ(s1, . . . , sl)) ∀j ∈ Γ.

For (s1, . . . , sl) ∈ ∂([1/R2, 1]l), it follows that

γ(s1, . . . , sl) = γ0(s1, . . . , sl)

and, by (4.3), that

Φ′
λ,j(γ0(s1, . . . , sl))(γ0(s1, . . . , sl)) = 0 =⇒ sj =

1
R

∀j ∈ Γ.

Thus, (0, . . . , 0) /∈ γ̃(∂([1/R2, 1]l)). After some algebraic manipulation, we get the follow-
ing equality involving the topological degree:

deg(γ̃, [1/R2, 1]l, (0, . . . , 0)) = (−1)l.

Therefore, using topological degree properties, there exist (t1, . . . , tl) ∈ (1/R2, 1)l such
that

Φ′
λ,j(γ(t1, . . . , tl))(γ(t1, . . . , tl)) = 0 for j ∈ {1, . . . , l}. (4.5)

�
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In the following, the number cΓ :=
∑l

j=1 cj is very important in the proof of Theo-
rem 1.1. Let us analyse the interaction between

∑l
j=1 cλ,j , bλ,Γ and cΓ , using the fact

that

cΓ ∈
(

0,

(
1
2

− 1
q + 1

)
SN/2

)
(see Remark 3.4).

Proposition 4.2.

(a)
∑l

j=1 cλ,j � bλ,Γ � cΓ for all λ � 1.

(b) Φλ(γ(s1, . . . , sl)) < cΓ for all λ � 1, γ ∈ Υ∗ and (s1, . . . , sl) ∈ ∂([1/R2, 1]l).

Proof. The proof of this proposition follows by adapting some arguments found in [1,
Proposition 4.2]. �

Corollary 4.3.

(a) bλ,Γ → cΓ , as λ → ∞.

(b) bλ,Γ is a critical value of Φλ for large λ.

Proof. (a) For all λ � 1 and for each j we have 0 < cλ,j � cj . Using the same type
of idea explored in the proof of Proposition 3.7, we can prove that cλ,j → cj as λ → ∞
and thus, from Proposition 4.2, bλ,Γ → cΓ as λ → ∞.

(b) By Corollary 4.3 (a) and (3.8), we may choose a large λ such that

bλ,Γ � cΓ ∈
(

0,

(
1
2

− 1
q + 1

)
SN/2

)
.

Proposition 3.5 implies that any (PS)bλ,Γ
sequence of the functional Φλ has a strongly

convergent subsequence (in Hλ). Employing this fact, we can use the well-known argu-
ments involving the deformation lemma to conclude that bλ,Γ is a critical level of Φλ for
λ � 1. �

4.2. Proof of the main theorem

To prove Theorem 1.1, we need to find a positive solution uλ for a large λ, which
approaches a least-energy solution in each Ωj(j ∈ Γ ) and vanishes elsewhere as λ → ∞.
To this end, we will prove two propositions that, together with the estimates made in
the above section, imply that Theorem 1.1 holds.

Henceforth,

M = 1 +
k∑

j=1

√(
1
2

− 1
q + 1

)−1

cj ,

B̄M+1(0) = {u ∈ Hλ; ‖u‖λ � M + 1}
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and, for small µ > 0, we define

Aλ
µ = {u ∈ B̄M+1(0); ‖u‖λ,RN \Ω′

Γ
� µ and |Φλ,j(u) − cj | � µ for all j ∈ Γ}.

We also use the notation

ΦcΓ

λ = {u ∈ Hλ; Φλ(u) � cΓ }

and remark that w =
∑l

j=1 wj ∈ Aλ
µ ∩ ΦcΓ

λ , showing that Aλ
µ ∩ ΦcΓ

λ �= ∅. Fixing

0 < µ < 1
3 min{cj ; j ∈ Γ}, (4.6)

we have the following uniform estimate of ‖Φ′
λ(u)‖λ on the annulus (Aλ

2µ \ Aλ
µ) ∩ ΦcΓ

λ .

Proposition 4.4. Let µ > 0 satisfy (4.6). Then there exist σo > 0 and Λ∗ � 1
independent of λ such that

‖Φ′
λ(u)‖λ � σo for λ � Λ∗ and all u ∈ (Aλ

2µ \ Aλ
µ) ∩ ΦcΓ

λ . (4.7)

Proof. The proof of this proposition follows the arguments found in [1, Proposi-
tion 4.4]. �

Proposition 4.5. Let µ satisfy (4.6) and let Λ∗ � 1 be a constant given in Proposi-
tion 4.4. Then, for λ � Λ∗, there exists a positive solution uλ of (P)λ in the set Aλ

µ ∩ ΦcΓ

λ .

Proof. Assuming by contradiction that there are no critical points in Aλ
µ ∩ ΦcΓ

λ , since
the Palais–Smale condition holds for Φλ in(

0,

(
1
2

− 1
q + 1

)
SN/2

)

(see Proposition 3.9), there exists a constant dλ > 0 such that

‖Φ′
λ(u)‖ � dλ for all u ∈ Aλ

µ ∩ ΦcΓ

λ .

By hypothesis we also have

‖Φ′
λ(u)‖ � σo for all u ∈ (Aλ

2µ \ Aλ
µ) ∩ ΦcΓ

λ ,

where σo > 0 is independent of λ. In what follows, Ψ : Hλ → R and W : ΦcΓ

λ → R are
continuous functions that verify

Ψ(u) =

{
1 for u ∈ Aλ

3µ/2,

0 for u /∈ Aλ
2µ,

0 � Ψ(u) � 1 for u ∈ Hλ

and

W (u) =

{
−Ψ(u)‖Y (u)‖−1‖Y (u)‖, u ∈ Aλ

2µ,

0, u /∈ Aλ
2µ,
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where Y is a pseudo-gradient vector field for Φ′
λ on M = {u ∈ Hλ : Φ′

λ(u) �= 0}. Hence,
using the properties involving Y and Φλ, we have the following inequality:

‖W (u)‖ � 1 ∀λ � Λ∗ and u ∈ ΦcΓ

λ .

Considering the deformation flow η : [0, ∞) × ΦcΓ

λ → ΦcΓ

λ defined by

dη

dt
= W (η), η(0, u) = u ∈ ΦcΓ

λ ,

and observing that there exists K∗ > 0 such that

|Φλ,j(u) − Φλ,j(v)| � K∗‖u − v‖λ,Ω′
j

for all u, v ∈ B̄M+1(0) and all j ∈ Γ,

using similar arguments explored by Ding and Tanaka [13], we obtain two numbers
T = T (λ) > 0 and ε∗ > 0 independent of λ � Λ∗ satisfying

γ∗(s1, . . . , sl) = η(T, γo(s1, . . . , sl)) ∈ Γ∗

and
max

(s1,...,sl)∈[1/R2,1]l
Φλ(γ∗(s1, . . . , sl)) � cΓ − ε∗.

Combining the definition of bλ,Γ and the above results, we obtain the inequality

bλ,Γ � cΓ − ε∗ ∀λ � Λ∗,

which contradicts Corollary 4.3. �

We now conclude the proof of Theorem 1.1.
From Proposition 4.5 there exists a family {uλ} of positive solutions to (Aλ) verifying

the following properties.

(i) For a fixed µ > 0 there exists λ∗ such that

‖uλ‖λ,RN \Ω′
Γ

� µ ∀λ � λ∗.

Thus, from the proof of Proposition 3.10, fixed µ sufficiently small we can conclude
that

|uλ|∞,RN \Ω′
Γ

� a ∀λ � λ∗,

showing that uλ is a positive solution of (P)λ.

(ii) Fixing λn → ∞ and µn → 0, the sequence {uλn} verifies that

Φλn(uλn) = 0 ∀n ∈ N,

‖uλn
‖λn,RN \ΩΓ

→ 0,

Φλn,j(uλn) → cj ∀j ∈ Γ

and

uλn → u ∈ H1(RN ) with u ∈ H1
o (ΩΓ ),

from which the proof of Theorem 1.1 follows.
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