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Duality in topological algebra:
Addendum

B.J. Day

It has been observed by Banaschewski [1], Proposition 1, that, in the

notation of the author's paper [2], P =P' = ProP ir Pc FlU is

hereditary and finitely productive. This fact does not require the use of
injectives as in [2].

Thus, under the preceding hypotheses on P , we have the following:
PROPOSITION 1. The inclusion P < ProP is codense (that is,
AgJ {u(4, P), P} for all A € ProP ).
P
Proof. We have P« ProPc U . Let E denote the subcategory of U

whose objects are those of U and whose morphisms are the regular

epimorphisms (equals coequalisers) in U . Let H=En P . Then, because

A € ProP , we have A = J {E(4, P), P} . The canonical map
PeH

QEH
J E(A, @) x U(Q, P) » U(A, P) is an epimorphism for all A € ProP and

P € P, since eachmap f : 4 > P factorsas A~ @>+ P, Q¢P , as

P 1is hereditary. Thus there is a monomorphism
QEH
[ wa, p, 2 {77 eu, 0 < ue, ), 7}
4 p
e, 0, [ we 2, )
P

{E(4, @), &} by the representation theorem,
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By considering the appropriate diagram (see [3], Theorem 2.3) one has that

this monomorphism is left inverse to the canonical morphism

A - J {U(4, P), P} ; hence is an isomorphism. //
P

PROPOSITION 2. There is a duality between PA0P and the
G-copresentable algebras from P to Ens where G : P > Ens 1is the
forgetful functor.
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