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Abstract. One of the most exciting results of the Spitzer era has been the ability to construct
longitudinal brightness maps from the infrared phase variations of hot Jupiters. We presented
the first such map in Knutson et al. (2007), described the mapping theory and some important
consequences in Cowan & Agol (2008) and presented the first multi waveband map in Knut-
son et al. (2008). In these proceedings, we begin by putting these maps in historical context,
then briefly describe the mapping formalism. We then summarize the differences between the
complementary N-Slice and Sinusoidal models and end with some of the more important and
surprising lessons to be learned from a careful analytic study of the mapping problem.

1. Introduction
Observations of secondary eclipses in exoplanetary systems, starting with HD 209458b

(Deming et al. 2005) and TrES-1b (Charbonneau et al. 2005), made it possible to esti-
mate the integrated day-side brightness of transiting exoplanets. Constraining the global
brightness map of exoplanets, on the other hand, requires observations at various orbital
phases, involving more sophisticated calibration of observations, much longer observ-
ing campaigns, or both. The first measurements of thermal phase curves for exoplanet
systems were reported by Harrington et al. (2006), which reported a large phase func-
tion for υ Andromeda b, and Cowan, Agol & Charbonneau (2007), which detected a
phase function for HD 179949b, and obtained useful upper limits for HD 209458b and
51 Peg b. These results proved valuable in constraining the day-night brightness contrast
—and hence the energy recirculation efficiency— of those planets and indicated that hot
Jupiters represent a heterogeneous group. Those first two studies, however, had very in-
complete phase coverage (5 epochs for the Harrington et al. 2006 campaign, and 8 epochs
for each of the Cowan et al. 2007 campaigns). Furthermore, three of the four observed
planets were not in transiting systems, and the one transiting system (HD 209458) was
deliberately observed outside of transit or secondary eclipse.

The 33 hours of continuous monitoring of HD 189733b presented in Knutson et al.
(2007) differs in three important ways from those first detections of phase variations: 1)
The observed system exhibits transits, so the planet’s orbital inclination with respect to
the celestial plane is known. 2) A secondary eclipse of the planet was observed during the
course of the observations, making it possible to quantify not just the relative but the
absolute flux of the planet as a function of orbital phase. 3) The continuous observing
campaign, the system’s relative proximity to the Earth, its favorable contrast ratio, and
ingenious corrections for detector systematics conspired to produce the highest S/N light
curve of its kind ever measured. Although the observations spanned little more than half
an orbit of HD 189733b, the unprecedented quality of the light curve enabled us not only
to measure the planet’s day/night contrast, but also to generate the first ever brightness
map of an extrasolar planet.
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Figure 1. The solid line in the left panel shows the phase function response to a δ-function
in brightness (AKA “the kernel”). The dashed and and dot-dashed lines represent the contri-
butions from a single slice in 4-slice and 2-slice models, respectively. In the right panel, the
solid band shows the 1-σ range for a sample sinusoidal map, while the dotted line shows the
equivalent N-slice map and associated error bars. Both maps have 5 parameters and produce
indistinguishable light curves.

2. Necessary and Sufficient Assumptions for Mapping
There are three necessary and sufficient conditions for phase function mapping to be

feasible:
(a) One must be able to remove from the observed light curve any stellar variability

(eg: star spots rotating into and out of view) as well as detector systematics (detector
ramps, intra-pixel sensitivity, etc.). Knutson et al. (2008) presents the most sophisticated
treatment of these effects to date.

(b) One must neglect limb darkening in the planet’s atmosphere. This is a reasonable
approximation at mid-IR wavelengths, leading to errors of less than 1% (Cowan & Agol
2008).

(c) One must assume that the large-scale weather of the planet is in a steady-state.
This means that the global hot spots, cold spots and jet streams do not vary in brightness
or shift with respect to the substellar point over a single planetary orbit. This assumption
appears to hold at the 5–10% level for hot Jupiters on circular orbits (Agol et al. in prep).

3. Planet Mapping Formalism
For an edge-on system we define the phase angle ξ, which corresponds to the observer–

planet–star angle (ξ = 0 at secondary eclipse; ξ = π at transit), as well as the longitude,
φ, and latitude, θ, in a rotating frame, such that φ = 0 at the sub-stellar point, θ = 0
at the planet’s north pole, and φ increases in the same sense as ξ. The condition of a
steady-state weather pattern can be expressed as requiring that the specific intensity,
I(φ, θ), is unchanging with time.

There are no current observations which can constrain the θ-dependence of I, but for
edge-on orbits the latitudinal dependence of the intensity is unimportant since one can
define J(φ) =

∫ π

0 I(φ, θ) sin2 θdθ, which represents the flux contribution from an infinites-
imal slice of the planet when viewed face-on. The flux, F , we observe from the planet at
a given orbital phase can then be written as a convolution, F (ξ) =

∫ 2π

0 J(φ)K(φ, ξ)dφ,
with the piece-wise defined kernel, K(φ, ξ) = max (cos(φ + ξ), 0). The kernel represents
the response of the phase function to a delta function in J(φ), and it is very broad, with
a full width at half-maximum of 2π/3, as shown by the solid line in the left panel of
Figure 1.
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4. Model Longitudinal Maps
The convolution described in the previous section transforms a given longitudinal map

into an observed light curve. The more challenging problem if how to reliably de-convolve
an observed light curve to obtain the longitudinal map of a planet. In Cowan & Agol
(2008) we presented two complementary models (examples of which are shown in the
right panel of Figure 1), described below.

N-Slice Model: This model consists of equal-size longitudinal slices of uniform bright-
ness (think beach ball). Such maps simplify the convolution, enabling the use of brute
force numerical techniques (least-squares, MCMC, etc.) to determine the best-fit longi-
tudinal map given an observed light curve. This approach is versatile, easily adapted
to non-transiting planets or planets with incomplete light curves. Although an N-slice
longitudinal map is neither differentiable nor realistic, smoothing the map does not signif-
icantly change the resulting light curve. On the other hand, the brightness of the different
slices do not depend on the light curve in a linearly independent fashion, so using too
many slices to model a light curve with poor S/N makes the uncertainty in all of the
slices blow up.

Sinusoidal Model: Sinusoids are orthogonal eigenfunctions of the convolution de-
scribed in § 3. An observed light curve can therefore be decomposed via a Fourier ex-
pansion, then trivially transformed into a sinusoidal map using Equation 7 of Cowan
& Agol (2008). Sinusoidal longitudinal maps have the advantage of being imminently
believable, but for incomplete phase curves the uncertainty in the map does not have
have the properties one would like. For example, if a phase function is only obtained for
half of a planetary orbit, the uncertainty in the map is no greater for the hemisphere
which was not well observed. Fortunately, Warm Spitzer’s propensity for longer observing
campaigns will be perfectly suited for obtaining full phase curves (Deming et al. 2007).

Figure 2. The left panel shows the j = 1, j = 2 and j = 4 sinusoidal maps, while the right panel
shows the resulting phase variations. The higher-frequency modes are damped out because a
full hemisphere is visible at any point in time.

5. General Mapping Considerations
The Sinusoidal Model provides an instructive tool for studying the mapping problem,

since the maps and associated light curves are simple analytic functions. Figure 2 shows
how the smoothing kernel suppresses high-frequency spatial brightness variations. This
is a direct consequence of seeing half of the planet at a time. Technically, one only sees
1/3 of the planet particularly well at any point in time (recall the 2π/3 FWHM). This
leads to the pernicious problem shown in figure Figure 3: the kernel entirely wipes out
odd sinusoidal modes (except for j = 1). In other words, if a planet’s dominant weather
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consisted of three equally spaced hot spots near its equator, it would exhibit no phase
variations!

Figure 3. The left panel shows j = 3 and j = 5 sinusoidal maps, while the right panel shows
the resulting phase variations. All odd sinusoidal maps above j = 1 cancel out by symmetry
and are therefore invisible to observers.

The invisibility of odd modes is not merely an intellectual curiosity: it sets a hard limit
on the accuracy of longitudinal maps. If the j = 3 modes in the planet’s longitudinal
brightness profile are not visible, there is not much to be gained by extending the Fourier
expansion to j = 4, 6, etc. Those modes may well be precisely measured, but this will do
nothing to increase the accuracy of the resulting planet map. To flip this problem on its
head, a simple way to test the assumptions of § 2 is to look for j = 3 modes in the observed
light curve. The bottom line is that one can do no better than a second-order Fourier
expansion of an observed light curve: F (ξ) = F0 +F1 cos (ξ − ξ1)+F2 cos (2(ξ − ξ2)). By
the same token, a limit of 5 free parameters (4 slices + a phase offset, or just 5 slices)
applies to the N-Slice maps. Maps with many more parameters than this can be made,
but should be treated with skepticism.
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