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The development of incompressible turbulent flow through a pipe of wavy cross-
section was studied numerically by direct integration of the Navier–Stokes equations.
Simulations were performed at Reynolds numbers of 4.5 × 103 and 104 based on
the hydraulic diameter and the bulk velocity. Results for the pressure resistance
coefficient λ were found to be in excellent agreement with experimental data of
Schiller (Z. Angew. Math. Mech., vol. 3, 1922, pp. 2–13). Of particular interest is
the decrease in λ below the level predicted from the Blasius correlation, which
fits almost all experimental results for pipes and ducts of complex cross-sectional
geometries. Simulation databases were used to evaluate turbulence anisotropy and
provide insights into structural changes of turbulence leading to flow relaminarization.
Anisotropy-invariant mapping of turbulence confirmed that suppression of turbulence
is due to statistical axisymmetry in the turbulent stresses.
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1. Introduction
Schiller (1922) outlined the concept for the determination of skin-friction losses in

pipes of non-circular cross-sections based on the hydraulic diameter, Dh = 4A/P,
and the Blasius (1913) correlation for dimensionless coefficient of resistance,
λ = 1p/((1/2)ρU2

B)Dh/L = 0.3164Re−0.25
m , suggested originally to hold for pipes

of circular cross-section. Here A, P, 1p, UB, ρ, ν and Rem denote, respectively, pipe
cross-sectional area, wetted perimeter, pressure drop over the pipe length L, bulk
velocity, fluid density, kinematic viscosity of the fluid and Reynolds number Rem =
DhUB/ν. Using this correlation, Schiller succeeded in correlating the experimental data
obtained in pipes of square, equilateral triangle and rectangular cross-sections in the
Reynolds-number range up to Rem ' 6 × 104. These findings were further supported
by Nikuradse (1930) for a wider class of cross-sectional geometries to form the
basis for the determination of skin-friction losses in pipes of complex shapes. Minor
modifications to this concept have been suggested (Idelchik 1985), with marginal
improvements for particular cross-sectional geometries (Jones 1976).

Schiller (1922) pointed out that, for special geometries, deviations from the
correlation based on the concept of hydraulic diameter might occur, and demonstrated
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FIGURE 1. Resistance coefficient as a function of the Reynolds number measured by
Schiller (1922) in pipes of threaded and wavy cross-sections.

this with results obtained in pipes of threaded and wavy cross-sections, as shown in
figure 1. The notable increase in resistance above that expected is not surprising for
pipes of threaded cross-section, since in addition to friction it includes the pressure
drag, arising from non-orthogonality between the surface normal and the pipe axis,
acting in a similar manner to the surface roughness. Figure 2 shows that, for pipes of
wavy cross-section, the data lie below those expected, with a trend to deviate further
with increasing Reynolds number. Such a trend implies that a wavy cross-section
(in contrast to the cross-sectional geometries considered in figure 2) is capable of
modifying the development of turbulent dissipation ε (II), which is expected (by an
order-of-magnitude analysis) to prevail at large Reynolds numbers over the direct
dissipation (I) originating from the mean flow. These two contributions to the energy
dissipation form the total dissipation when integrated over the entire volume, V , of
the moving fluid represent the average dissipation Φ:

Φ = 1
V

∫
V
ν

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
∂Ui

∂xj︸ ︷︷ ︸
(I)

+ ν
(
∂ui

∂xj
+ ∂uj

∂xi

)
∂ui

∂xj︸ ︷︷ ︸
(II), ε

dV = AwτwUB

ρV
. (1.1)

The average dissipation Φ can be interpreted as the work done against friction forces,
Awτw, per unit mass, ρV , of the working fluid (where Aw and τw = ν(∂U1/∂x2)w are
the wetted area and wall shear stress).

The aim of this work was to verify Schiller’s experimental results obtained in a pipe
of wavy cross-section using direct numerical simulation. Of particular interest are:
(i) the trend in the development of friction resistance with increasing Reynolds
number; and (ii) anisotropy of turbulence and deviations from the statistically
axisymmetric state along bisectors corresponding to the crest and valley regions
of a wavy contour.

2. Laminar flow through pipes of square, triangular and wavy cross-sections
For numerical treatment of flows in pipes with complex geometries, the use of

unstructured grids is desirable in conjunction with computer programs that offer
great flexibility. Following such a plan, the wavy cross-sectional geometry from
Schiller’s study was discretized in the original dimensions with unstructured cells
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FIGURE 2. Experimental results for the resistance coefficient as a function of the Reynolds
number from the original publication of Schiller (1922) and data fits of λ=aRe−b

m for each
pipe cross-sectional configuration.

using a grid generation program implemented in the numerical program STAR-CCM+
(http://www.cd-adapco.com/products/star-ccm-plus). The great advantage of unstruc-
tured cells was fully explored by automatic discretization of pipe cross-sections with
polyhedral cells in the pipe core region, and prismatic cells for the near-wall region.
This grid arrangement across the pipe cross-section is extended in the streamwise
direction. Such a cell arrangement allows flexible mesh refinement at critical positions.

Figure 3 shows the grid generation of the wavy pipe cross-section employed in
Schiller’s work. The structure of the grid cells is further elaborated in figure 4,
showing details of the cell arrangement in the near-wall region.

Utilizing the generated grids, computations were performed with the numerical
program OpenFOAM (http://www.openfoam.com). To evaluate the numerical accuracy,
discretization errors were considered by carrying out computations for a few
systematically refined grids. The results for the pressure gradient along the pipe,
summarized in table 1, differ by less than 1 % and suggest that the numerical errors
are fairly small. Computations for pipes of square and equilateral triangle-shaped
cross-sections at Rem = 500 and Rem = 1000 were found to differ from the
corresponding analytical solutions (λ = 57/Rem and λ = 53/Rem according to
Schlichting 1968) by only 0.2 % and 0.68 %, respectively.

3. Numerical methodology for simulation of turbulent flow through a wavy pipe
3.1. Computational flow domain

For numerical simulation of turbulent flow through a wavy pipe, the flow domain
in the streamwise direction, Lx1 , has to be chosen to capture flow features of prime
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(a) (b)

FIGURE 3. (a) Cell generation for a pipe of wavy cross-section used for calculation of
laminar and turbulent flow development; and (b) comparison of the wavy pipe contour
with the contour of an Erlangen pipe from Lammers et al. (2012).

(a) (b)

FIGURE 4. Non-structured grid arrangement generated for simulations of laminar and
turbulent flow through a pipe of wavy cross-section (a) with enlarged detail (b).

Mesh Cells −dP/dx1

Fine 1144 129 1.49759
Modest 61 570 1.49318
Initial 16 776 1.48601

TABLE 1. Streamwise pressure gradient for a pipe of wavy cross-section for three
different grid levels at Rem = 1000.

importance. For the purpose of this study, these are the mean flow and to a lesser
extent the second-order turbulence statistics. Since the flow is homogeneous in the
streamwise direction, periodic boundary conditions were used along this direction.

The dependence of turbulence quantities on Lx1 was analysed by Chin et al. (2010),
who suggested a minimum computational pipe length for convergence of different
turbulence statistics. Following the results from this study, we fixed Lx1 = 5Dh, which
corresponds to L+x1

= Lx1uτ/ν = 1700 and 2150 in viscous wall units (where uτ =
(τw/ρ)

1/2 is the wall friction velocity) for simulations performed at Rem = 4.5 × 103

and 104, respectively. This domain size ensures convergence of the mean flow for
both Reynolds numbers and second-order statistics for Rem = 104 but not entirely for
Rem = 4.5× 103 (see Gavrilakis 1992).
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3.2. Spatial and temporal discretization
From previous studies of turbulence in wall-bounded flows (Grötzbach 1983;
Wagner et al. 2001), it appears that very good agreement with experiments (if
details that are not of great importance are omitted) can be achieved rationally
by integrating the Navier–Stokes equations employing the finite-volume technique
of second-order accuracy with an implicit integration scheme in time of the same
accuracy by requiring resolutions of 1x1 = (5–6)ηK in the streamwise direction and
1x2=1x3= (2–3)ηK in the normal and spanwise directions, with three or four points
located within the region of the viscous sublayer, provided that the time step 1t is
restricted by the value of the Courant number of 0.2:

C=1t max
∣∣∣∣ |u1|
1x1
+ |u2|
1x2
+ |u3|
1x3

∣∣∣∣6 0.2. (3.1)

Here ηK = (ν3/ε)1/4 corresponds to the Kolmogorov scale.
By estimating the value for ηK , η+K = (0.25Reτuτ/UB)

1/2 with Reτ =uτDh/ν, obtained
from (1.1), the grid resolution of 1x+1 = 9.5, 1x+2 = 1x+3 = 5 was chosen for the
flow core region and 1x+2 =1x+3 = 5/3 for the region of the viscous sublayer. Using
the Blasius correlation to estimate the magnitude of O(u1) and assuming magnitudes
O(u2)= O(u3)= uτ , a computational time step of 1t 6 0.064ν/u2

τ results from (3.1).

3.3. Initial conditions
For simulations of turbulence development in circular pipe flows, the starting field
usually shows a tendency towards laminarization if numerical integration is started
with random uncorrelated disturbances superimposed on a laminar solution or the
universal law of the wall (Gavrilakis 1992). In order to avoid laminarization and
ensure development of turbulence, we initialized simulations as is done experimentally
by tripping the flow at the pipe inlet with tripping plates or wires, which block the
flow in the near-wall region to create conditions leading to the rapid development of
turbulence (Schlichting 1968). For a blockage ratio greater than 10 %, defined as the
ratio of the blocked area to the pipe cross-sectional area, development towards the
fully developed turbulent state (in a plane channel) is fairly rapid (Durst et al. 1998;
Fischer 1999).

Following experimental practice, we initialized simulations by blocking the flow
across 15 % of the pipe cross-sectional area near the wall and specifying a uniform
velocity distribution with random uncorrelated disturbances having a 10 % root mean
square (r.m.s.) magnitude of UB across the rest of the pipe cross-section.

4. Validation of the numerical procedure
To examine the adequacy of the applied numerical method and discretization,

extensive studies were conducted by computing fully developed flows in a plane
channel, circular pipe and square duct at low Reynolds numbers. For these canonical
flows, reliable experimental data exist for the resistance coefficient as a function
of the Reynolds number and also numerical results obtained with higher resolution
compared with the present study by Kim et al. (1987) for a plane channel, Wu &
Moin (2008) for a circular pipe and Gavrilakis (1992) and Lammers et al. (2012)
for a square duct. Of special interest is the accuracy of the computed resistance
coefficient, since the emphasis is placed on the influence of cross-sectional geometry
on relaminarization of turbulence leading to drag reduction.

The computed λ for plane channel flow at Reτ = 180 (where Reτ = δuτ/ν is based
on the channel half-height δ) was found to be in very good agreement with Dean’s
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FIGURE 5. Comparison of turbulent stresses in a plane channel flow with simulation
results from (Kuroda 1990). Stresses are normalized with the wall friction velocity uiuj

+=
uiuj/u2

τ and the wall distance x2 with uτ and ν as x+2 = uτx2/ν.

(1978) correlation and results obtained by Kim et al. (1987). For circular pipe flow at
Reτ = Duτ/ν = 360, the difference between the numerical result for λ and the value
deduced from the Blasius correlation was within 1 %. Similar agreement was found
for a square duct when compared with Jones’s (1976) correlation and simulations by
Gavrilakis (1992).

To examine the capability of the employed numerical method, with details outlined
in § 3, to resolve turbulence, figure 5 presents comparisons of the turbulent stresses
uiuj in a fully developed plane channel flow with results obtained by Kuroda (1990)
at Reτ = 150 using a pseudo-spectral numerical method. The good overall agreement
of these results establishes confidence in the method employed for handling flows with
complex wall boundaries involved in engineering.

Further evidence supporting numerical issues in § 3 is presented in figure 6, which
shows turbulent stresses in a fully developed flow through a square duct against
the results obtained by Gavrilakis (1992). Apart from the good agreement between
these results, the computations have a notable implication: independence of computed
stresses from the computational cell arrangement and the length of the computational
domain.

Supplementary validation was carried out by computing a fully developed flow
through a triangular duct with small apex angle. Experiments performed by Eckert
& Irvine (1956) showed laminarization of turbulence in the corner region of the duct
and coexistence of laminar and fully developed turbulent regimes over a wide portion
of the duct cross-section. The results of computations for the resistance coefficient λ
as a function of the Reynolds number Rem are shown in figure 7 along with those
corresponding to experimental data. Very good agreement for all duct cross-sections
is evident. The results for λ show a tendency to fall below the Blasius correlation if
the angle of the duct α is reduced. For a triangular duct with α = 11.5◦, a constant
reduction in λ of 20 % is seen over the entire turbulent regime investigated by Eckert
& Irvine (1956).

For a triangular duct flow the energy spectra shown in figure 8 confirm that the
resolution of simulation is sufficient since the energy associated with small scales is a
few orders of magnitude smaller in comparison with the energy content at large scales.
In the turbulence-dominated region near the triangle base, corresponding to x3/H= 0.5
and x3/H = 0.7, the spectra collapse when scaled on the Kolmogorov’s variables,
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FIGURE 6. (a) The computational domain for simulations of turbulent flow through a
square duct, and (b,c) comparisons of turbulent stresses for different domain lengths and
computational cells with simulation results from Gavrilakis (1992).

indicating that the spectral transfer is establishing (at very low Rem) towards features
common for the turbulent energy cascade: in very narrow bands the spectra fall off
as −1 and −5/3 with increasing frequency or wavenumber. Approaching the corner
region x3/H = 0.3, where laminarization occurs, the spectra are significantly reduced,
which results in a decrease of the turbulent dissipation rate ε and consequently
in reduced spectral separation in the flow Dh/ηK . Anisotropy-invariant mapping of
turbulence shown in figure 7(d) reveals that the laminarization process is accompanied
by a tendency for turbulence to reach the statistically axisymmetric state, as discussed
in § 5.2 and in more detail by Jovanović et al. (2006a,b).

5. Simulation results for turbulent flow through a wavy pipe

The computations were performed for two Reynolds numbers, Rem = 4.5× 103 and
Rem = 104.
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FIGURE 7. Development of turbulent flow through a triangular duct (Daschiel, Frohnapfel
& Jovanović 2013). (a) Cross-section of the duct with (b) contour plot of the turbulent
kinetic energy normalized with the wall friction velocity for a duct with α = 11.5◦.
(c) Comparisons of λ versus Rem from measurements (open symbols) and computations
(solid symbols) for different duct configurations: A, square duct, measurements from
Hartnett et al. (1962); B, equilateral triangular duct, measurements from Nikuradse
(1930); C, triangular duct with α = 11.5◦, measurements from Eckert & Irvine (1956,
1960); D, triangular duct with α = 4◦, measurements from Carlson & Irvine (1961).
(d) Anisotropy-invariant mapping of turbulence in a triangular duct with α = 11.5◦:
trajectories corresponding to different cross-sections 0.256 x3/H 6 0.8 indicate a tendency
towards axisymmetry in the region of flow laminarization x3/H 6 0.3, which is followed
by suppression of the turbulence development along the two-component state. Such an
evolution of trajectories across the invariant map, in wall-bounded flows, implies a
reduction of the turbulent dissipation rate at and away from the wall, leading to viscous
drag reduction.
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FIGURE 8. The turbulence energy spectra of the streamwise velocity fluctuations at
different locations along the x3 axis of a triangular duct with α = 11.5◦ normalized with
Kolmogorov variables ηK , uK = ν/ηK and fK = uK/ηK : (a) time spectra; (b) spectra in the
streamwise direction.

Starting from the initial field, equations were integrated in time until the
field reached the statistically stationary state. By monitoring the development of
the streamwise pressure gradient dP/dx1, the stationary state was reached after
approximately five turnover times of turbulence Dh/uτ . After the flow field had
reached this state, equations were further integrated for an additional 20 turnover
times to obtain averages of the statistical quantities of interest.

Fourteen simulation runs were performed to study the influence of initial conditions
and discretization errors on the flow development; a few runs were made at
Rem= 4.5× 103 with increased spatial resolution (compared with § 3.2) to examine the
influence of discretization errors on the computed turbulence statistics, which turned
out to be negligible for the quantities of interest. Only a selected sample of the
computed results is presented, which provides synergy between theory, experiments
and simulations, where computation results complement the description of the physical
phenomena involved (Krieger 2012).

5.1. Influence of the Reynolds number on the resistance coefficient
We consider in some detail the influence of Rem on the pressure resistance
coefficient λ. In light of the data shown in figure 2 and considering (1.1), Schiller’s
(1922) results imply that a wavy cross-section decreases the turbulent dissipation
rate, ε, as Rem increases. Such a tendency is favourable for achieving turbulent drag
reduction. The possibility that turbulence can be altered by the pipe cross-sectional
geometry was recently proposed by our group using the tools of the invariant theory
and by exploring numerical databases of wall-bounded flows. In the context of the
above-mentioned work, Schiller’s experimental results provide proof of the concept
that we termed the ‘Erlangen pipe’ (Lammers et al. 2012).

Initial attempts to reproduce Schiller’s experimental result for λ at Rem = 4.5× 103

revealed strong damping of turbulence by the wavy cross-section, which led after a
few turnover times to complete flow relaminarization. Only with significant tripping
of the initial flow, by blocking the flow over 30 % of the pipe cross-sectional area,
was it possible to realize a fully developed turbulent state with the pressure resistance
coefficient in very close agreement with experiments (see table 2).

Unlike the simulation performed at Rem = 4.5 × 103, a fully developed turbulent
state for Rem = 104 was achieved by blocking the initial flow over a much smaller
portion (15 %) of the pipe cross-sectional area. Table 2 and figure 9 show that the
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Circular pipe, 15 % blockage
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Experimental data

Numerical data

10–1

10–2

104

FIGURE 9. Variation of λ against Rem for a wavy pipe cross-section: comparisons between
experiments and simulations.

λ λ λ
Rem Schiller simulation Blasius

4.5× 103 0.038957 0.038716 0.038631
104 0.027432 0.028834 0.031640

TABLE 2. Comparison of simulation and experimental results for the resistance
coefficients in a wavy pipe.

computational results obtained for λ agree fairly well with Schiller’s experimental
findings and therefore support the trend in the data in figure 2 as Rem increases, which
implies a potential for turbulent drag reduction.

The CPU time required for simulation of flow at Rem = 104 was approximately
1200 h. Calculations were processed in parallel utilizing 128 processors of the
Woodcrest Cluster of the Erlangen Regional Computer Center, which has an overall
peak performance of 10.4 Tflop s−1 (6.62 Tflop s−1 LINPACK). The enormous
demand for required CPU time prevented computations at higher Reynolds numbers.

5.2. Anisotropy-invariant mapping of turbulence and its implications
In order to elucidate the mechanism responsible for the reduction of λ (and therefore
ε) below the level expected from the Blasius correlation, anisotropy-invariant mapping
of turbulence was performed along bisectors of the wavy pipe cross-section. Analytic
considerations based on the equations for the mean flow led to the conclusion that
turbulence in wall-bounded flows can be completely suppressed if it is forced towards
the statistically axisymmetric state, resulting in significant reductions of ε and λ.

The above fundamental deduction, which is supported by all databases from direct
numerical simulations (Frohnapfel et al. 2007a), logically follows from the Reynolds
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equations for the mean flow,

∂Ui

∂t
+Uk

∂Ui

∂xk
=− 1

ρ

∂P
∂xi
+ ∂

∂xk

[
ν
∂Ui

∂xk
− uiuk

]
, i, k= 1, 2, 3, (5.1)

in simple parallel wall-bounded flows, by demanding statistical axisymmetry in the
turbulent stress tensor uiuj = Aδij + Bkikj, where A and B are scalar functions and ki

is the unit vector defined in such a way that uiuj is invariant under rotation about the
axis defined by its scalar arguments, say ki= (1, 0, 0). For such a stress configuration,
(5.1) transforms from unclosed to closed form:

∂Ui

∂t
+Uk

∂Ui

∂xk
=− 1

ρ

∂

∂xi

(
P+ 1

3
ρq2 + 2

3
ρB
)

︸ ︷︷ ︸
modified pressure P∗

+ ν ∂
2Ui

∂xk∂xk
, i, k= 1, 2, 3, (5.2)

where q2 denotes the trace of uiuj. For fully developed flow, (5.2) obviously leads to
solutions that coincide with the corresponding solutions for laminar flows. From these
results, it appears that statistical axisymmetry in the turbulent stresses leads to flow
relaminarization and therefore to a large viscous drag reduction effect.

Figure 10 shows that trajectories across the anisotropy-invariant map, constructed
from invariants of the anisotropy tensor, aij = uiuj/q2 − δij/3, IIa = aijaji and IIIa =
aijajkaki, along bisectors corresponding to the crest and valley regions of a wavy pipe
cross-section are substantially different. This figure also includes the distribution of
the production of turbulence kinetic energy Pk = −uiuk ∂Ui/∂xk across a wavy pipe
cross-section in order to provide an understanding of the influence of anisotropy on
the generation of Pk.

The trajectory corresponding to the crest bisector shows that turbulence in this
region develops along the two-component state near the wall and deviates from
the axisymmetric state away from the wall. Analysis of such turbulence shows that
it permanently destabilizes the flow owing to promotion of the turbulent dissipation
generated initially at the wall and subsequently developing away from the wall, which
enables self-maintenance of the turbulent state.

The trajectory corresponding to the valley region coincides with the boundary of
the anisotropy map, which corresponds to the statistically axisymmetric state. In light
of (5.1) and (5.2), it is not surprising that turbulence is strongly reduced and even
entirely suppressed across the entire valley region of the wavy cross-section.

Distributions of turbulence stresses along bisectors corresponding to valley and crest
regions shown in figure 11 preserve the same character as the stresses along corner
and wall normal bisectors of a square pipe. Reduction of the turbulence level along
the valley bisector where turbulence reaches an almost statistically axisymmetric state
is substantial.

Spectral distributions, shown in figure 12, further elucidate the turbulence
development along two characteristic bisectors of a wavy pipe cross-section. No
noticeable effect on the energy transfer can be observed when approaching the
pipe centreline from different radial directions. This, however, is altered on moving
towards the pipe wall, where a significant reduction in the energy content can be
observed across the valley region. This is in agreement with deductions made from
anisotropy-invariant mapping shown in figure 10 and from the analysis involving (5.1)
and (5.2) by exploring the concept of statistical axisymmetry.
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FIGURE 10. Anisotropy-invariant mapping of turbulence in a wavy pipe cross-section:
trajectories along (a) the crest region and (b) the valley region display substantially
different flow behaviour, which can be readily seen in the distribution of the turbulence
energy production (c).

–1
0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1.0
–1
0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1.0

Square duct

B

(a) (b)

FIGURE 11. Distributions of turbulent stresses along (a) valley and (b) crest bisectors of
the wavy pipe and comparisons with the stress distributions in a square duct.

From the distribution of Pk shown in figure 10 and results presented in figures 11
and 12, it appears that the underlying physical mechanism responsible for self-
maintenance and suppression of turbulence across a wavy pipe cross-section is
localized in the region very close to the pipe wall. Therefore, the necessary
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FIGURE 12. Turbulence energy spectra of the streamwise velocity fluctuations across a
wavy pipe cross-section. Distributions correspond to locations on crest and valley bisectors
measured from the pipe centreline r relative to distance rB from the pipe centreline up to
the wall: (a,b) time spectra; (c,d) spectra in the streamwise direction.

understanding of this process can be inferred from the asymptotic behaviour of
the velocity fluctuations near the wall enforced to satisfy the continuity equation for
the instantaneous fluctuations ∂ui/∂xi = 0,

u1 = a1x2 + a2x2
2 + · · ·

u2 = + b2x2
2 + · · ·

u3 = c1x2 + c2x2
2 + · · ·

 as x2→ 0, (5.3)

to yield the asymptotic behaviour of turbulent stresses and the dissipation rate near
the wall,

u2
1 = a2

1x2
2 + · · ·

u2
2 = b2

2x4
2 + · · ·

u2
3 = c2

1x2
2 + · · ·

ε = ν(a2
1 + c2

1)+ · · ·

 as x2→ 0. (5.4)

The above results lead to the conclusion that the kinetic energy of turbulence k=
uiui/2 increases in proportion to the magnitude of the dissipation rate at the wall
(ε)wall = ν(a2

1 + c2
1):

k= 1
2
(ε)wall

ν
x2

2 + · · · . (5.5)

This suggests that turbulence can be entirely suppressed, leading to flow laminarization,
if and only if εwall→ 0. The behaviour of εwall as a function of turbulence anisotropy
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FIGURE 13. Turbulent dissipation rate at the wall, εwall, normalized with uτ and ν versus
the anisotropy of turbulence IIa at the wall extracted from available numerical databases.
A best fit through the numerical data extrapolates well the trend predicted by Jovanović
& Hillerbrand (2005) as the one-component limit (IIa= 2/3) is approached. Amplification
of the kinetic energy of turbulence k close to the wall is in the direction of the sketched
arrow.

at the wall (IIa)wall, shown in figure 13, reveals that εwall decreases monotonically
with increasing anisotropy and vanishes at the one-component state, which is the
state of maximum anisotropy. We conclude from (5.5) and figures 10 and 13 that
production of turbulence in the crest region and damping of turbulence and flow
laminarization in the valley region of a wavy pipe cross-section are logical and not
surprising considering the evolution of anisotropies near the wall, which lie on the
two-component boundary of the anisotropy map as shown in figure 10(a,b).

5.3. Suppression of the turbulence development by wavy cross-section
The above-discussed evidence suggests the possibility of modulating the essential
features of turbulence (ε) by the wall topology and in this way stabilize the laminar
flow development if axisymmetry in the disturbances across the valley region prevail
over the crest region and expand to the entire pipe cross-section. For the original
pipe configuration used by Schiller (1922), this might be possible, but only under
special circumstances, which must be considered as exceptional and not the rule.

Owing to the complex shape of the cross-sectional geometry, the velocity profiles
in a wavy pipe exhibit curvature with inflection points. Such profiles are inviscidly
unstable and are suspected to lead to the rapid production of turbulence (Gupta,
Laufer & Kaplan 1971; Blackwelder & Kaplan 1976; Blackwelder 1989). As long as
axisymmetry in the turbulence stresses uiuj prevails, such instability cannot develop
owing to (5.2). Away from the valley and towards the crest region, axisymmetry is
not preserved and development of turbulence is expected, as can be seen for the
results shown in figure 10(c). Analysis of velocity profiles along radial and tangential
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FIGURE 14. Segment of the cross-sectional plane of a wavy pipe with a cylindrical
coordinate system and bisectors corresponding to crest (rB) and valley (Rb) regions.
Circular arcs at positions r/rB = 0.9 (square symbol), r/rB = 0.95 (circle symbol), r/rB =
0.99 (rectangle symbol) and B(r) denotes the length of a circular arc.
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FIGURE 15. Analysis of velocity profiles in the radial direction: profiles along crest and
valley regions in (a) laminar and (b) turbulent flow regimes; (c) first derivative ∂Uz/∂r
and (d) second derivative ∂2Uz/∂r2 of the profiles shown at the top. There is no sign of
inflectional instability ∂2Uz/∂r2 = 0 for the laminar velocity profile.

directions carried out for the laminar (Rem = 1000) and turbulent (Rem = 4500) flow
regimes shown in figures 15 and 16 reveal that the appearance of instability is likely
to start along the tangential direction (Holmes et al. 1996) and is more critical for
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FIGURE 16. Analysis of velocity profiles in the tangential direction: profiles for
(a) laminar and (b) turbulent flow regimes; (c) first derivative ∂Uz/∂φ and (d) second
derivative ∂2Uz/∂φ

2 of profiles shown at the top. There is weak evidence of inflectional
instability ∂2Uz/∂φ

2 for laminar flow.

turbulent than for laminar flow conditions. These results hold promise in attempts
to maintain the laminar regime in a wavy pipe under circumstances that lead to the
appearance of turbulence in pipes of circular cross-section.

This approach was applied in previous work on fully developed turbulent
channel flows and promising results were obtained by: (i) virtual forcing of the
axisymmetric state in the region close to the wall (Frohnapfel et al. 2007a); (ii) using
surface-embedded grooves to produce turbulent drag reduction by flow laminarization
(Frohnapfel, Jovanović & Delgado 2007b); and (iii) employing microgroove surface
topology to stabilize the laminar boundary layer development (Jovanović et al. 2011).
Following the results of these studies, we decided to carry out parallel simulations
of the flow development in pipes of circular and wavy cross-sections with the same
initial conditions corresponding to flow blockage over 15 % of the pipe cross-sectional
area at Rem = 4.95× 103.

Simulation results revealed that the cross-sectional geometry of a wavy pipe used
by Schiller (1922) was resistant to the appearance of transition and did not show any
sign of onset of turbulence, which was not the case, however, for the circular pipe,
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FIGURE 17. Time development of the streamwise pressure gradient normalized with the
corresponding value for the laminar flow regime as a function of the turnover time of
turbulence for pipes of circular and wavy cross sections for Rem = 4.95 × 103 and the
same level of flow blockage corresponding to 15 % of the pipe cross-sectional area.

λ λ λ
Rem simulation Blasius laminar

Circular pipe 4.955× 103 0.037820 0.03766 0.012920
Wavy pipe 4.952× 103 0.009695 0.03767 0.009673

TABLE 3. Comparison of the pressure resistance coefficients for pipes of circular and wavy
cross-sections for the same level of flow blockage corresponding to 15 % of the pipe cross-
sectional area.

where turbulence was fully developed after just a few turnover times. Table table 3
summarizes computational results showing significant differences in λ for two different
cross-sectional configurations and figure 17 emphasizes the huge gain in terms of
viscous drag reduction of DR≈ 66 %.

6. Conclusions
Direct numerical simulation of turbulent flow through a pipe of wavy cross-section

confirmed experimental results obtained by Schiller (1922), which display the trend in
the resistance coefficient λ to fall below the level that is expected to hold universally
for pipes with non-circular cross-sections. These findings are supported by anisotropy-
invariant mapping of turbulence and supplementary calculations aimed at simulating
onset and breakdown to fully developed turbulence in pipes of different cross-sectional
configurations.

An interpretation based on the manner in which wavy cross-sectional geometry
modulates near-wall turbulence leads to the conclusion that Schiller’s experimental
results and complementary numerical simulations support the concept of the ‘Erlangen
pipe’ developed by the authors, which forces near-wall turbulence to approach the
state when it must be completely suppressed, leading to significant viscous drag
reduction (Lammers et al. 2012). Implications of the above work for drag reduction
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FIGURE 18. Turbulence development in pipes of non-circular cross-section. Note that the
minimum in Pk corresponds to the Erlangen design shown in panel (c).

and control of laminar to turbulence transition at high Reynolds number are the
subject of current research efforts, as illustrated in figure 18.
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DURST, F., FISCHER, M., JOVANOVIĆ, J. & KIKURA, H. 1998 Methods to set-up and investigate
low Reynolds number fully developed turbulent plane channel flows. J. Fluids Engng 120,
496–503.

ECKERT, E. & IRVINE, T. 1956 Flow in corners of passages with noncircular cross sections. Trans.
ASME 78, 709–718.

ECKERT, E. & IRVINE, T. 1960 Pressure drop and heat transfer in a duct with triangular cross
section. J. Heat Transfer 82 (2), 125–138.

EGGELS, J. G. M., UNGER, F., WEISS, M. H., WESTERWEEL, J., ADRIAN, R. J., FRIEDRICH, R. &
NIEUWSTADT, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between
direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209.

FISCHER, M. 1999 Turbulente wandbebundene Strömungen bei kleinen Reynoldszahlen. Friedrich-
Alexander Universität Erlangen-Nürnberg.
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DELGADO, A. 2011 Micro-flow-based control of near-wall fluctuations for large viscous drag
reduction. Mirofluid Nanofluid 11, 773–780.

KIM, J., MOIN, P. & MOSER, R. D. 1987 Turbulence statistics in fully developed channel flow at
low Reynolds number. J. Fluid Mech. 177, 133–166.

KRIEGER, V. 2012 Direkte numerische Simulation der Strömung durch ein Rohr mit sternförmigen
Querscnitt – Eine Wiederaufnahme von Schillers zukunftsweisendem Experiment in Hinblick auf
die Reibungsreduktion. Bachelorarbeit, Lehrstuhl für Strömungsmechanik, Universität Erlangen-
Nürnberg.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.thtlab.t.u-tokyo.ac.jp/
https://doi.org/10.1017/jfm.2014.619


260 G. Daschiel, V. Krieger, J. Jovanović and A. Delgado

KURODA, A. 1990 Direct numerical simulation of Couette–Poiseuille flows. PhD thesis, University
of Tokyo.

KURODA, A. & KASAGI, N. 1990 Establishment of the Direct Numerical Simulation Data Bases of
Turbulent Transport Phenomena, Research No. 02302043, Ministry of Education and Science,
Japan.

KURODA, A. & KASAGI, N. 1992 Establishment of the Direct Numerical Simulation Data Bases of
Turbulent Transport Phenomena, Research No. 02302043, Ministry of Education and Science,
Japan.
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