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The Nilpotent Regular Element Problem

Pere Ara and Kevin C. O’'Meara

Abstract. We use George Bergman’s recent normal form for universally adjoining an inner inverse
to show that, for general rings, a nilpotent regular element x need not be unit-regular. This contrasts
sharply with the situation for nilpotent regular elements in exchange rings (a large class of rings),
and for general rings when all powers of the nilpotent element x are regular.

Questions concerning nilpotent elements are often central in both linear algebra
and ring theory. The problem we shall consider here, of whether a nilpotent (von
Neumann) regular element x of a general ring S must be unit-regular, may not have
quite reached “central” status to date, although its answer was important in Ara’s proof
of [1, Theorem 4] that strongly n-regular rings (in particular, algebraic algebras over
fields) have stable range one. The problem is also relevant to certain possible direct
limit constructions of non-separative regular rings. (This was shown in a privately
circulated note by the second author in June 2015. See [2] for a description of the
fundamental separativity problem). Our nilpotent regular element problem is also
discussed in the forthcoming book of Lam [6]. Thus it is more than just a pesky little
problem that has bothered some of us for a number of years. To settle the question,
we turn to the recent description by George Bergman [3] of universally adjoining an
inner inverse (quasi-inverse) of an element in an arbitrary algebra over a field. This is
possibly the first application of Bergman’s lovely result (but surely not the last).

Ara showed [1, Theorem 2] that nilpotent regular elements of exchange rings must
be unit-regular. Beidar, Raphael, and O’Meara showed [4, Theorem 3.6] that in ar-
bitrary rings, if a nilpotent element has all its powers regular, then it is unit-regular.
(See [8, Chapter 4] for a more leisurely account of this result and how its parent result
fits into linear algebra.) It is interesting to note that there are even finite-dimensional
algebras in which nilpotent regular elements do not have all their powers regular [9].
But in our case, the first possible case of a nilpotent regular element x of an algebra
S that is not unit-regular requires x to be of index at least 3 (otherwise its powers are
regular) and S to be infinite-dimensional and lacking the manners of “good” algebras.
Of course, with many problems in ring theory, if there are counter-examples, then
there must be a “free” one, S. However, without a good normal form for the members
of S, viewing the free object as the solution can be delusional. Fortunately for us, the
free object we use has such a nice normal form.

To construct our counter-example, we apply Bergman’s normal form [3] in the
following situation. Start with the algebra R = F[x]/(x>) where x is an indeterminate
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and F is any field. We identify x with its image in R (whence x is a nilpotent element
of index 3). Nextlet S = R(q | xqx = x, gxq = q) be the algebra obtained from R by
freely adjoining a generalised inverse g of x. We use the normal form to show that x
is not unit-regular in S.

After we submitted an earlier version of our paper, we learned that Pace Nielsen
and Janez Ster have independently (and at about the same time) also discovered an
example of a nilpotent regular element that is not unit-regular. At first glance, their
method appears quite different from ours: start with the algebra R = F(a, b | a* = 0)
and its left ideal I = R(1 - ba), and form the subalgebra T of M, (R) given as

R 1
T:[R F+I]

By a clever argument, the authors show directly that for the elements

a 0 b 1-ba
ol el
X is nilpotent of index 3 and Q is a generalized inverse of X, but X is not unit-regular
in T. See [7, Example 3.19]. Surprisingly, the two algebras S and T are actually iso-
morphic under the correspondence x — X, g — Q. This we show in Section 3.

The Nielsen-Ster argument is shorter than our original one, and in Section 3 we
give an even shorter argument but in a similar spirit to theirs. On the other hand, we
feel our method was a surer bet. Indeed, on first seeing a preprint of Bergman’s paper
in February 2015, we quickly realised that, with a fair measure of confidence, we could
use Bergman’s normal form to resolve the regular nilpotent element problem, one way
or the other. (Without the observation that the algebras S and T are isomorphic, this
luxury is missing using 7' in isolation.) Also, we hope our method is a flag-bearer
for George Bergman’s results on adjoining a universal inner inverse, which have the
potential to be used for attacking other problems such as the fundamental separativity
problem for regular rings.

1 Preliminaries

We refer the reader to Goodearl [5] and the upcoming book by Lam [6] for back-
ground on (von Neumann) regular rings and related element-wise properties in more
general rings. Thus, in a general ring R (assumed associative with identity), an ele-
ment a € R is (von Neumann) regular if there is an element b € R such that a = aba.
Following Lam, we call any such b an inner inverse of a. The more established term
is “quasi-inverse” (and there are also competing terms for this within linear algebra),
but Lam’s term is perhaps more suggestive and does not conflict with other uses of
quasi-inverse in ring theory. If a = aba and b = bab (so that a is also an inner inverse
of b), we shall call any such b a generalised inverse of a. Again, there are competing
terms for this. Notice that if b is an inner inverse of a, then bab is a generalised in-
verse of a. If there exists an inner inverse u of a € R that is a unit, then we say a is
unit-regular in R.

Suppose a is a regular element of a ring R and b is an inner inverse of a. Let e = ab
and f = ba. Then e and f are idempotents with aR = eR and Rf = Ra, whence
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(1-e)Risacomplement of aR and (1 - f)R is the right annihilator ideal of a. Unit-
regularity of a is equivalent to (1 - f)R = (1 - e)R, “kernel isomorphic to cokernel”
See the proof of Theorem 4.1 in [5]. In turn, the latter condition is equivalent to the
existence of c € (1-e)R(1- f)andd € (1- f)R(1 - e) such that c¢d = 1- e and
dc=1-f.

Now let us introduce our ring S and Bergman’s normal form for its members. We
start with the polynomial ring F[x] in the indeterminate x and over a field F, and take
R = F[x]/(x*). Thus we may regard R as the 3-dimensional algebra over F containing
a nilpotent element x of index 3 and with a basis {1, x, x*}. Let

S=R(q|xgx =x,q9xq = q)

be the algebra obtained from R by freely adjoining a generalised inverse g of x.

Proposition 1.1  The algebra S has a basis A (over F) consisting of 1 and words (prod-
ucts) alternating in powers x* for i = 1,2, and q’ for j > 1 (either power can begin or
end) but with the restriction that a power of x or q to exponent one can occur only at the
beginning or end of a word. For instance, q°x*q*x is a basis word as described whereas
x2q*xq? is not (without further reduction).

Proof This is a direct application of Bergman’s Corollary 19 of [3] (see also Lemma
20) to the following situation. Start with the algebra R = F[x]/(x’) and the basis
Bu {1} for R, where B = B,, = {x,x?}. Fix the element p = x and note that 1 ¢
PR + Rp. Then the basis A for our algebra S is that described for the algebra R” in
Corollary 19 but with occurrences of p replaced by x. ]

However, there is one important philosophical difference in our statement and that
of Corollary 19. We have opted for a more informal statement. George Bergman’s de-
scription of the basis A is described (very precisely, to avoid any possible ambiguities
in terms such as “words” or “expressions”) in terms of a certain subset B of the free
algebra T on B U {q}, which is then mapped faithfully to our A under the natural
algebra homomorphism T — §.

Our algebra S is generated by B U {q}, and hence members of S are linear combi-
nations of words in this generating set, where by word we simply mean a product of
members of the generating set. Given such an expression, to write it as a linear combi-
nation of the basis elements in A, we apply the following reduction rules: repeatedly
replace subwords x? by 0, subwords xqx by x, and subwords gxq by q. We need not
worry about replacing a subword uv for u, v € B according to the strict formalism in
Corollary 19 of [3], because in our case uv is already in B unless it is 0. In the former
case, just leave uv unchanged; in the latter, drop the word completely.

We call the unique expression of a member of S as a linear combination of basis
words described in the proposition its normal form. This applies, in particular, to any
word in the letters x and g. Thus the normal form of g>xqxq>x*q is q*x*q (just keep
replacing subwords xgx by x, and gxq by q). Hereafter, when we refer to a basis word
w in S, we shall implicitly assume w is written in normal form.

From our earlier equivalent condition for unit-regularity, the following must hold.
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Proposition 1.2 If our x € S is unit-regular in S, then there are elements

a = (1-xq)(> aw;)(1-gx)
B= (1-gx)(3 bjy;)(1-xq),

of S, where the w; are distinct basis words of the form 1, q, q* or qzq for some (nonempty)
word z, the y; are distinct basis words of the form 1, x,x*, or xzx, and the a;, b; are
nonzero scalars in F, such that aff =1 - xq and fa =1 - gx.

Proof We know that unit-regularity of x requires the existence of members of S of
the form o = (1 - xq)u(1-gx) and f = (1 - gx)v(1 - xq) (for some u,v € §) such
that af =1-xq and Ba = 1-gx. In normal form, write u = 3" a;w; andv = 3 b;y; as
a linear combination of basis words. Inasmuch as (1 - xq)x = 0 = x(1 - gx), a word
w; that begins or ends in x will be annihilated in the expansion of a. Likewise, since
(1-gx)q =0=q(1-xq),any word y; that begins or ends in g will be annihilated in
the expansion of 8. Thus we can assume that the w; and y; have the stated form. W

Our strategy is to deny unit-regularity of x by showing that even the equation aff =
1 — xq in Proposition 1.2 is not possible (so x € S does not even have an inner inverse
that is one-sided invertible). To do this, we need to examine in detail products of basis
words and how certain words in the expansion of a8 must occur at least twice.

Recall that the only reductions required to put a word in letters x, g in normal
form are (repeated) uses of replacing a subword x> by 0, a subword xqx by x, and a
subword gxq by g. The product yz of two basis words (in normal form) is either 0 or
is again a basis member (in normal form) after possibly one further reduction at the
interface of y and z. The product yz will involve reduction when y = y'st and z = sZ/,
or y = y'sand z = tsz’, where s, t are distinct members of {x, q}. In either case,
the reduction simply involves deleting the last letter of y and the first letter of z. For
instance, (¢°x*q) (xg*x*) = g°x*q*x? in normal form. Note that once one reduction
is made, no further reductions occur. For example, suppose y = y'x and z = qxz’
with yz # 0, so that after one reduction we have z = y’xz’. Since z is in normal form,
either 2’ = 1 or 2’ = xz" where z” is in normal form. In the former case y'xz’ = y is

in normal form, while in the latter y'xz’ = y'x*z" is also in normal form.

Notation  For the remainder of the paper, we fix some a;, w; and bj, y; as in the
statement of Proposition 1.2.

Let £ = {w;} and R = {y;}, where for convenience we will not formally intro-
duce sets I, ] for the homes of the indices i, j. Let C denote the set of nonzero words
expressed in normal form that occur in the expansion of «f and begin in g and end
in x. To be clear, by the expansion of a8 we mean before one collects terms, but to
simplify matters we may as well take the product of the last (1-gx) in a with the first
(I1-gx)in f to be 1 — gx (it is idempotent). Then if there are m terms a;w; and n
terms b;y;, the formal expansion of af involves 8mn terms.

Observe that 1 must occur as some w;, say wy, and as some yj, say y;, otherwise 1
can not appear in af8 = 1 - xq. Therefore 1 - xq — gx + xq*x is part of the expansion of
a3 because this comes from multiplying out (1-xq) (a;w; ) (1) (a7 y1) (1-gx). Hence
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gx € C. In particular, the set € is nonempty. Now each pair (w, y) € £ x R produces

at most two words in the expanded a3 that, after reduction, belong to C: wy, which

we call a type I word, and wqxy, which we call a type II word. Some of these words

may be zero, but otherwise the only exception to these two types not producing an

element of C (again after reduction) is for the type I word wy whenw =1ory =1.
The next lemma shows what type I and II words look like in normal form.

Lemma 1.3 (i) A type Iword wy is zero exactly when w ends in x*q and y begins
in x2.

(ii) A type Il word wqxy is zero exactly when y begins in x*.

(iii) A nonzero type I word wy involves reduction exactly when w ends in xq and y
begins with x, or w ends in q and y begins in xq. The reduced word is obtained by
deleting q and x.

(iv) A nonzero type Il word never involves reduction.

Proof (i) The only way wy = 0 is when reduction takes place at the interface of w
and y, and after deleting the last letter of w (it must be q) and the first letter of y (it
must be x), at the new interface we are left with x™ for some m > 3. Therefore, after
the deletions, we must be left with x? at the end of w and a single x at the beginning
of y.

(ii), (iii), and (iv) follow similarly. [ |

2 Main Result

Theorem 2.1 Let F[x] be the polynomial ring in the indeterminate x and over a field
F, and let R = F[x]/(x?). Let S = R(q | xqx = x,qxq = q) be the algebra obtained
from R by freely adjoining a generalised inverse q of x. Then x is a nilpotent regular
element of S which is not unit-regular in S.

We now proceed to the key elements of the proof via two lemmas. Order the set
of words in C by the left lexicographic order, taking g > x. Then C is a finite set with
a total order, so there is a largest word 7 in C. We need to analyze the ways in which
the word 7 can appear as type I and II products coming from £ x R. These arguments
usually take the form of working out what the product looks like in reduced form
(and what reduction was involved) and then using the observation (from uniqueness
of the normal form) that if a word z in normal form is written as a product uv of two
words in normal form in which the product does not involve reduction, then u and v
must be a two-part partitioning of the string z. Also, our arguments often play off 7
occurring as a type I word (respectively, type II word) against the corresponding type
II word (respectively, type I word) being bigger unless certain conditions are met.

Lemma 2.2 Let
T=q"x*q"x* - q"xS, (n21, 021 0p,..., 0, 22, c€{1,2})

be the largest element of C with respect to the lexicographic order. For T to occur as a
type I or IT word (after reduction) from (w, y) € £ x R, only the following are possible:
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(i) 7 is the type I word wy with no reduction and

w=q"x2q"x*--q", y=x*q"x*-g""x", 1<r<n.

(ii) 7 is the type I word wy with reduction and
w=q"x%--q'0x2q%, y=xq"x*q" K g xt, 1<r<n,
wherea+b —-1=1i,,a>1,b>2and either b > 2, orb = 2 and i; > 2 for some
t>r.
(iii) 7 is the (nonzero) type II word wqxy where either

W:qzleqzzxZ_“qzr—l, y:xqz,ﬂxZ_”qz,,xc’ 1ST’<?’Z,

andi; =2 forallt > r, orw=q'x*q"2x*--- g7, y = x.
Proof We begin by eliminating the possibility that 7 could come from a pair (w, y)
with w = 1 or y = 1. Observe that we must have g € £ and x € R, otherwise the
term gx, which comes from the type II product involving the pair (1,1), could not
be cancelled. However, gx is not cancelled by any type II word coming from a pair
(w, y) # (1,1), so gx must be cancelled by a type I word wy. If there is no reduction
involved, then w = g and y = x. However, if w = w'q and y = xy’ involves reduction,
then gx = wy = w'y’ implies w’ = g, y' = x, whence w = g* and y = x?, contradicting
any reduction. Thus g € £ and x € R. Now suppose 7 comes from a pair (w, 1), which
must be the type II product wqx because 7 begins in g and ends in x. However, the
type II product from (w, x) is wqx? > 1, a contradiction. Similarly, if 7 comes from
(1, y), it must be the type II product 7 = gxy, but the pair (g, y) produces the bigger
type IT product q*xy. Henceforth, we can assume 7 comes only from pairs (w, y)
withw#1, y#1.

Suppose that (w, y) € £ xR gives rise to 7 (through a type I or IT word). If y begins
in x?, then the type Il word wqxy is 0, so T = wy is the type I word without reduction
by Lemma 1.3 (iii). Therefore, we must have the form stated in (i) because w ends in
q and y begins in x.

Next consider the case where y = xy’, where y’ does not start in x. If ¥’ = 1, then
wy = wx < wqxy = wqx>. Therefore 7 can only be the type II word wqxy, because 7
is the largest element of C in the lexicographic order. Thus

2 i -1

(w,y) = (q"x*q"x* -+ q"
and we are in the second instance of case (iii).
It therefore suffices to consider the case where (w, y) = (w'q%, xq®y") witha > 1,

b > 2, w’ not ending with g, and y" not starting with q. First, suppose 7 occurs as the

type Il word wgxy = w'q**'x2q%y". Then there is some 1< r < n such that a +1= i,,

w/q* = ghx? .- x%q', and x2qby" = x2q"+1x? -+ g’ x. We thus obtain

,X)

i

(w.y) = (q"x*---q" 7, xq"x? - g™ xF).
But now observe that the type I word
wy = qiix?... qirixlqUrtim=2) 2ginay? . ginye
which we have written in normal form according to Lemma 1.3 (iii), will be greater
than 7 unless i; = 2 for all ¢ > r. Indeed, i,,; = 2 otherwise the exponent of the r-th
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group of ¢’s will be greater in wy than in 7, and if i; > 2 for some t > r + 2, the least
such t will give a bigger exponent of ¢’s than the matching group of ¢’s in 7 (because
the groupings after the r-th group have been pulled back one place in wy). Therefore
to obtain 7 as a type II word, we must be in the first instance of case (iii).

! a+b-1_11

Secondly,if 7 = w'q y"" is the type [ word obtained from (w, y) after reduction,
then there exist 1 < 7 < nsuch that a + b — 1 = i,, w'q**?™! = giix?-..x2q", and
y" = x*q'+1x%- . g'x¢. Therefore

(w,y) = (¢"%% - q" %", xq"x*q" %" - g7 xF).
From this (w, y) we also get the type I word

waxy = q'x? ._.qi,.,leqa+1x2qu2qu1x2_“qi,,xc‘
But now observe that the latter word is greater than 7 unless a +1 < i, (whence b > 2),
or a +1=1i, (whence b = 2) and there is some t > r such that i; > 2. Hence we are in
case (ii). This concludes the proof of the lemma. [ |

Lemma 2.3  The greatest element T of C can occur at most once in the form (ii) or (iii)
of Lemma 2.2 but not both.

Proof We first show that there is at most one pair of the form given in Lemma 2.2 (ii).
Suppose we have two different pairs (w, y), (w1, y1) of that form. Note that if y = y,,
then by the nature of the reduction that is taking place in the two products wy = w; y;
(= 7), we must have w = w;. Hence either y > y; or y; > y. If y > yj, then the pair
(w1, y) gives the type I word w1 y in € which (after reduction) is bigger than 7. On the
other hand, if y; > y, then the pair (w, y;) gives the type I word wy; in € which (after
reduction) is bigger than 7. In either case we get a contradiction. This establishes that
there is at most one pair of form (ii) in Lemma 2.2.

Next we show that there is at most one pair of the form given in Lemma 2.2 (iii).
Suppose we have two different pairs (g, xy’) and (w;q"!, xy;) of that form.
Without loss of generality, we can suppose that s > r. Then from the condition that i; =
2 for all t > r, we must have y; < y'. So we arrive at a contradiction after considering
the type I word associated with pair (w;q"™*, xy"), which gives the element in C

Gx xRt g > 7

Finally, assume that we have a pair (w, y) of the form given in Lemma 2.2 (ii), with
corresponding (a, b) satisfying a + b — 1 = i,, and a pair (wy, y1) = (w'q*"1, xy") of
the form given in Lemma 2.2 (iii) Assume first that 7 = s. The only way this is possible
is to have b > 2 and i; = 2 for all ¢ > r. In this case, both the type I and type II words
arising from the pair (w;, y) = (w'q""", y) are bigger than 7 in C. Therefore r # s.

Suppose now that < s. Then y = xq’x?q'+1x?---q"x¢, with b > 2 and either
s<nand y, = xg"'x?---q"xand i; = 2 forall t > s, or s = n and y; = x. But now
the pair (wy, y) = (w'q™™', y) gives rise to the type Il word

P P PR PP NP S

a contradiction. Hence we must have r > s. Necessarily from the form of (iii) we have
i, =2(andso b = 2) and i; = 2 for all t > r. This clearly violates the stipulated form in
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(ii). Thus this final case is not possible either, which establishes there is at most one
pair (w, y) that produces either (ii) or (iii) [ |

Proof of Theorem 2.1 'The closing argument of our proof is the most enjoyable part.
Suppose x is unit-regular in our ring S. By Proposition 1.2, there are elements o, f € S
of the form described such that a3 = 1 — xq. After expanding «af as a linear com-
bination of words in x and g (but not necessarily in normal form and allowing for
repetition of words), Lemmas 2.2 and 2.3 tell us how the largest (in the lexicographic
order) member 7 in the subset € (of nonzero words from the expansion, expressed
in normal form, and beginning in g and ending in x) can occur. Inasmuch as 7 defi-
nitely resides in C, it must occur in the expansion of af at least twice. Otherwise the
linear combinations of 7 could not be zero in the final simplification of ¢ to 1-xq in
normal form, which involves no terms from €. Therefore, from Lemma 2.3, it must
be that T occurs at least once as a type I word T = wy without reduction. But now
when we form the type IT word from the pair (w,1) we have wgx > wy = 7, because
y begins in x and g > x. This contradiction shows x cannot be unit-regularin S. H

We close this section by noting that our result implies the non-separativity of S.
Corollary 2.4  The ring S is non-separative.

Proof Observe that since x> = 0, we have

(1-xq) +x(1-xq)g+x*(1-xq)q" =1= (1-qx) + q(1 - qx)x + g°(1 - gx)x*,

so that both 1 - xq and 1 — gx are full idempotents in S (they generate S as a two-sided
ideal). Therefore we have S = (1-x¢q)S ® xqS = (1 - qx)S & xS with xqS = gx$,
and x¢$ is isomorphic to both a direct summand of copies of (1 - xq)S and a direct
summand of copies of (1 - gx)S. Since (1-xg)S 2 (1 - gx)S by our main result, it
follows from [2, Lemma 2.1] that S is non-separative. [ |

3 Another Approach

Here we unify the Nielsen-Ster example described in the introduction with our own
example. It is always gratifying when two camps have worked quite independently of
each other, with different approaches, and yet come up with the same counterexample.

Proposition 3.1 Let R = F(a, b) be the free F-algebra on a, b. Let
S =F(q,x | q = qxq,x = xqx).
Let I = R(1—ba) and let T be the subalgebra of M,(R) given as

R I
T= [R F+1 ]
where F + I means F1 + I. Then there is a natural isomorphism S = T under which

g Q= [g 1‘(5’“] and x — X = [ 4 ]. Moreover, the same conclusion holds if for some
fixed n > 3, we impose the extra relation x" = 0 on S and replace R by F(a, b | a"™* = 0).

https://doi.org/10.4153/CMB-2016-005-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-005-8

The Nilpotent Regular Element Problem 469

Proof Let ¢:S — T be the homomorphism defined by ¢(q) = Q and ¢(x) = X,
which is well defined because QXQ = Q and XQX = X. By the argument in Proposi-
tion 1.1, Bergman’s normal form for S provides a basis consisting of words alternating
in powers of q and powers of x, but with the restriction that powers to exponent 1 can
occur only at the beginning or end. From this we see that gxSqx is freely generated
by the elements q*x and gx? because q'x/ = (g%x)*"'(qx*)7~! and gxSqx has a basis
consisting of gx (its identity) and all words in normal form that begin in q and end in
x. Since ¢(gx*) = [89], 9(g°x) = [g 8], it follows that ¢ induces an isomorphism
from gxSqx onto [ R ].
It is easily checked that an F-basis for (1 - gx)S(1 - gx) is given by

{1-gx} U {(1- gx)x" (g%x)" (qx*) -+ (qx*)/ g™ (1- qx)},
where jo, i1, j1, .. ., in > 1. The image by ¢ of this basis is
{en} U{epa® b al - ai1p"" 1 (1-ba)},

which is an F-basis of 5, Te;,. (Here e;; denote the usual matrix units in T.) Similar
arguments show that a basis of (1 — gx)Sqx is mapped onto a basis of e;; Te;; and a
basis of gxS(1 — gx) is mapped onto a basis of e;; Tey,. Thus ¢ is an isomorphism.

Alternatively, having verified (as in the first paragraph) that ¢ induces an isomor-
phism of eSe onto f T'f, where e, f are the idempotents gx, e;; in S and T, respec-
tively, we could complete the proof as follows. First, we observe that S is a prime ring.
Note that for any nonzero z € §, either gz or xz is nonzero. For if gz = 0, there must
be reduction involved with products of g and all words in z of greatest length, so all
such words must begin in x. And if xz = 0 also, they must all begin in g, a contradic-
tion. Hence for z # 0, either gz # 0 or gxz # 0. Similarly for 0 # y € S, either yg # 0
or yxq # 0. Hence in showing ySz # 0, we can assume y is a left multiple of g and
z is a right multiple of q. But now yz # 0 because there is no reduction involved in
multiplying a basis word in y of greatest length with one in z of greatest length. Thus
S is prime. If K = ker ¢ # 0, primeness of S gives Ke # 0, whence Ke € (1-¢)Se
because ¢ is faithful on eSe. This makes the left ideal Ke nilpotent, a contradiction.
Hence K = 0. Also ¢ is onto because in addition to f Tf € ¢(S), we have that

fTA=f)=fTfQU-f), O-NHTf=Q1-)XfTS,
A-HTA-f)=0-HXfTA-f)+(1-f)F
are all in the image of ¢.

If we impose x" = 0, the basis words in the normal form for S are now allowed
to involve the powers x’ for i = 1,2,...,n — 1. This is just the obvious extension of
Proposition 1.1. And for words in a, b when we impose a"~! = 0, powers of a allowed
are a,a’,...,a" . Itis easy to show that when n > 3, the same ¢ sends the basis for
S to the basis for T, so our first proof also works here. Alternatively, we can check
primeness of S when #n > 3. For any nonzero z with gz = xz = 0, we deduce from
gz = 0 that all the greatest length terms in z must begin in x. Then xz = 0 shows these
terms begin in x”~!. But now since n > 3, there is no reduction in left multiplying
such words by g, contradicting gz = 0. Hence qz = xz = 0 implies z = 0. Similarly,
yq = yx = 0 implies y = 0. Thus S is prime and the statements in the proposition
remain true when x” =0 and n > 3. [ |
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Remark 3.2  As it stands, Proposition 3.1 fails for n = 2. The homomorphism ¢ is
still onto but has a nonzero kernel, because

@(1-qx —xq+xq°x)=1-QX - XQ+XQ*X = 0.

Our proof fails because S is no longer prime (1-gx—xg+xq*x is a central idempotent).
Note that when n = 2, we have a = 0 and R is the polynomial algebra F[b]. The
problem with a = 0 is that 1 and 1 — ba become the same. However, if we set T’ =
M, (F[b]) x F, we can show S = T’ via the (unital) mapping that sends

(R e ()

From now on, we set R = F{a, b | a* = 0). A basis for R is the set
B = {a"b ab2a---b"a"},

where ig, i, € {0,1}, 7 > 0,and iy, ..., i,_; > 1. A product of two basis elements af3 is
a basis element (without reduction) or 0, and it is zero if and only if « ends in a and
B starts in a. Observe that b is a non-zero-divisor in R.

Theorem 3.3 Let T be the algebra in Proposition 3.1 for the choice of n = 3. Then X
is a regular nilpotent element that is not unit-regular in T.

Proof Suppose X is unit-regular in T. Then (1- XQ)T = (1- QX)T and therefore
there exist u € I, t,v € F + I, z € R such that

0 0]|0 u 0 0 0 ulfo 0O 1-ab -a(l1-ba)

In particular, we have zu + tv = 1, vz = =b, vt = ba. Hence v = (vz)u + (vt)v = by
for some v; € R and, since v € F + I, we conclude that v € [ = R(1 — ba). Therefore,
vy = v5(1 - ba) for some v, € R. Inasmuch as b is a non-zero-divisor in R, from -b =
vz = bv,(1 - ba)z we deduce that the equation ¢(1- ba)d = 1 has a solution ¢, d € R.
Consider the homomorphism 7: R — M, (F) obtained by mapping a ~ [?¢ ] and
b [§4]. From n(c)n(1 - ba)n(d) = n(1) this implies the equation C[§¢]D =1
has a solution C, D € M,(F). We have reached a desired contradiction (look at the
determinant of each side). This completes the proof. ]

Corollary 3.4 LetS = F(q,x | x> = 0,xqx = x,qxq = q). Then x is a regular
nilpotent element of S that is not unit-regular.

Proof Apply the isomorphism in Proposition 3.1. ]
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