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The Nilpotent Regular Element Problem

Pere Ara and Kevin C. O’Meara

Abstract. We use George Bergman’s recent normal form for universally adjoining an inner inverse
to show that, for general rings, a nilpotent regular element x need not be unit-regular. _is contrasts
sharply with the situation for nilpotent regular elements in exchange rings (a large class of rings),
and for general rings when all powers of the nilpotent element x are regular.

Questions concerning nilpotent elements are o�en central in both linear algebra
and ring theory. _e problem we shall consider here, of whether a nilpotent (von
Neumann) regular element x of a general ring S must be unit-regular, may not have
quite reached “central” status to date, although its answerwas important inAra’s proof
of [1, _eorem 4] that strongly π-regular rings (in particular, algebraic algebras over
ûelds) have stable range one. _e problem is also relevant to certain possible direct
limit constructions of non-separative regular rings. (_is was shown in a privately
circulated note by the second author in June 2015. See [2] for a description of the
fundamental separativity problem). Our nilpotent regular element problem is also
discussed in the forthcoming book of Lam [6]. _us it is more than just a pesky little
problem that has bothered some of us for a number of years. To settle the question,
we turn to the recent description by George Bergman [3] of universally adjoining an
inner inverse (quasi-inverse) of an element in an arbitrary algebra over a ûeld. _is is
possibly the ûrst application of Bergman’s lovely result (but surely not the last).
Ara showed [1,_eorem 2] that nilpotent regular elements of exchange rings must

be unit-regular. Beidar, Raphael, and O’Meara showed [4, _eorem 3.6] that in ar-
bitrary rings, if a nilpotent element has all its powers regular, then it is unit-regular.
(See [8, Chapter 4] for amore leisurely account of this result and how its parent result
ûts into linear algebra.) It is interesting to note that there are even ûnite-dimensional
algebras in which nilpotent regular elements do not have all their powers regular [9].
But in our case, the ûrst possible case of a nilpotent regular element x of an algebra
S that is not unit-regular requires x to be of index at least 3 (otherwise its powers are
regular) and S to be inûnite-dimensional and lacking themanners of “good” algebras.
Of course, with many problems in ring theory, if there are counter-examples, then
theremust be a “free” one, S. However, without a good normal form for themembers
of S, viewing the free object as the solution can be delusional. Fortunately for us, the
free object we use has such a nice normal form.

To construct our counter-example, we apply Bergman’s normal form [3] in the
following situation. Startwith the algebra R = F[x]/(x3)where x is an indeterminate
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and F is any ûeld. We identify x with its image in R (whence x is a nilpotent element
of index 3). Next let S = R⟨q ∣ xqx = x , qxq = q⟩ be the algebra obtained from R by
freely adjoining a generalised inverse q of x. We use the normal form to show that x
is not unit-regular in S.
A�er we submitted an earlier version of our paper, we learned that Pace Nielsen

and Janez Šter have independently (and at about the same time) also discovered an
example of a nilpotent regular element that is not unit-regular. At ûrst glance, their
method appears quite diòerent from ours: start with the algebra R = F⟨a, b ∣ a2 = 0⟩
and its le� ideal I = R(1 − ba), and form the subalgebra T of M2(R) given as

T = [R I
R F + I]

By a clever argument, the authors show directly that for the elements

X = [a 0
1 0] , Q = [b 1 − ba

0 0 ] ,

X is nilpotent of index 3 and Q is a generalized inverse of X, but X is not unit-regular
in T . See [7, Example 3.19]. Surprisingly, the two algebras S and T are actually iso-
morphic under the correspondence x ↦ X, q ↦ Q. _is we show in Section 3.

_e Nielsen–Šter argument is shorter than our original one, and in Section 3 we
give an even shorter argument but in a similar spirit to theirs. On the other hand, we
feel our method was a surer bet. Indeed, on ûrst seeing a preprint of Bergman’s paper
in February 2015,we quickly realised that,with a fairmeasure of conûdence,we could
use Bergman’s normal form to resolve the regular nilpotent element problem, oneway
or the other. (Without the observation that the algebras S and T are isomorphic, this
luxury is missing using T in isolation.) Also, we hope our method is a �ag-bearer
for George Bergman’s results on adjoining a universal inner inverse, which have the
potential to be used for attacking other problems such as the fundamental separativity
problem for regular rings.

1 Preliminaries

We refer the reader to Goodearl [5] and the upcoming book by Lam [6] for back-
ground on (vonNeumann) regular rings and related element-wise properties in more
general rings. _us, in a general ring R (assumed associative with identity), an ele-
ment a ∈ R is (von Neumann) regular if there is an element b ∈ R such that a = aba.
Following Lam, we call any such b an inner inverse of a. _e more established term
is “quasi-inverse” (and there are also competing terms for this within linear algebra),
but Lam’s term is perhaps more suggestive and does not con�ict with other uses of
quasi-inverse in ring theory. If a = aba and b = bab (so that a is also an inner inverse
of b), we shall call any such b a generalised inverse of a. Again, there are competing
terms for this. Notice that if b is an inner inverse of a, then bab is a generalised in-
verse of a. If there exists an inner inverse u of a ∈ R that is a unit, then we say a is
unit-regular in R.

Suppose a is a regular element of a ring R and b is an inner inverse of a. Let e = ab
and f = ba. _en e and f are idempotents with aR = eR and R f = Ra, whence
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(1 − e)R is a complement of aR and (1 − f )R is the right annihilator ideal of a. Unit-
regularity of a is equivalent to (1 − f )R ≅ (1 − e)R, “kernel isomorphic to cokernel”.
See the proof of _eorem 4.1 in [5]. In turn, the latter condition is equivalent to the
existence of c ∈ (1 − e)R(1 − f ) and d ∈ (1 − f )R(1 − e) such that cd = 1 − e and
dc = 1 − f .

Now let us introduce our ring S and Bergman’s normal form for its members. We
startwith the polynomial ring F[x] in the indeterminate x and over a ûeld F, and take
R = F[x]/(x3). _uswemay regard R as the 3-dimensional algebra over F containing
a nilpotent element x of index 3 and with a basis {1, x , x2}. Let

S = R⟨q ∣ xqx = x , qxq = q⟩

be the algebra obtained from R by freely adjoining a generalised inverse q of x.

Proposition 1.1 _e algebra S has a basisA (over F) consisting of 1 and words (prod-
ucts) alternating in powers x i for i = 1, 2, and q j for j ≥ 1 (either power can begin or
end) butwith the restriction that a power of x or q to exponent one can occur only at the
beginning or end of a word. For instance, q3x2q2x is a basis word as described whereas
x2q4xq2 is not (without further reduction).

Proof _is is a direct application of Bergman’s Corollary 19 of [3] (see also Lemma
20) to the following situation. Start with the algebra R = F[x]/(x3) and the basis
B ∪ {1} for R, where B = B++ = {x , x2}. Fix the element p = x and note that 1 ∉
pR + Rp. _en the basis A for our algebra S is that described for the algebra R′′ in
Corollary 19 but with occurrences of p replaced by x.

However, there is one important philosophical diòerence in our statement and that
of Corollary 19. We have opted for amore informal statement. George Bergman’s de-
scription of the basisA is described (very precisely, to avoid any possible ambiguities
in terms such as “words” or “expressions”) in terms of a certain subset B of the free
algebra T on B ∪ {q}, which is then mapped faithfully to our A under the natural
algebra homomorphism T → S.

Our algebra S is generated by B ∪ {q}, and hencemembers of S are linear combi-
nations of words in this generating set, where by word we simply mean a product of
members of the generating set. Given such an expression, towrite it as a linear combi-
nation of the basis elements in A, we apply the following reduction rules: repeatedly
replace subwords x3 by 0, subwords xqx by x, and subwords qxq by q. We need not
worry about replacing a subword uv for u, v ∈ B according to the strict formalism in
Corollary 19 of [3], because in our case uv is already in B unless it is 0. In the former
case, just leave uv unchanged; in the latter, drop the word completely.

We call the unique expression of a member of S as a linear combination of basis
words described in the proposition its normal form. _is applies, in particular, to any
word in the letters x and q. _us the normal form of q2xqxq3x2q is q4x2q (just keep
replacing subwords xqx by x, and qxq by q). Herea�er, when we refer to a basis word
w in S, we shall implicitly assume w is written in normal form.
From our earlier equivalent condition for unit-regularity, the following must hold.
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Proposition 1.2 If our x ∈ S is unit-regular in S, then there are elements

α = (1 − xq)(∑ a iw i)(1 − qx)
β = (1 − qx)(∑ b j y j)(1 − xq),

of S,where thew i are distinct basiswords of the form 1, q, q2 or qzq for some (nonempty)
word z, the y j are distinct basis words of the form 1, x , x2, or xzx, and the a i , b j are
nonzero scalars in F, such that αβ = 1 − xq and βα = 1 − qx.

Proof We know that unit-regularity of x requires the existence of members of S of
the form α = (1 − xq)u(1 − qx) and β = (1 − qx)v(1 − xq) (for some u, v ∈ S) such
that αβ = 1− xq and βα = 1− qx. In normal form,write u = ∑ a iw i and v = ∑ b j y j as
a linear combination of basis words. Inasmuch as (1 − xq)x = 0 = x(1 − qx), a word
w i that begins or ends in x will be annihilated in the expansion of α. Likewise, since
(1− qx)q = 0 = q(1− xq), any word y j that begins or ends in q will be annihilated in
the expansion of β. _us we can assume that the w i and y j have the stated form.

Our strategy is to deny unit-regularity of x by showing that even the equation αβ =
1 − xq in Proposition 1.2 is not possible (so x ∈ S does not even have an inner inverse
that is one-sided invertible). To do this,we need to examine in detail products of basis
words and how certain words in the expansion of αβ must occur at least twice.

Recall that the only reductions required to put a word in letters x , q in normal
form are (repeated) uses of replacing a subword x3 by 0, a subword xqx by x, and a
subword qxq by q. _e product yz of two basis words (in normal form) is either 0 or
is again a basis member (in normal form) a�er possibly one further reduction at the
interface of y and z. _e product yz will involve reduction when y = y′st and z = sz′,
or y = y′s and z = tsz′, where s, t are distinct members of {x , q}. In either case,
the reduction simply involves deleting the last letter of y and the ûrst letter of z. For
instance, (q3x2q)(xq4x2) = q3x2q4x2 in normal form. Note that once one reduction
is made, no further reductions occur. For example, suppose y = y′x and z = qxz′
with yz /= 0, so that a�er one reduction we have z = y′xz′. Since z is in normal form,
either z′ = 1 or z′ = xz′′ where z′′ is in normal form. In the former case y′xz′ = y is
in normal form, while in the latter y′xz′ = y′x2z′′ is also in normal form.

Notation For the remainder of the paper, we ûx some a i ,w i and b j , y j as in the
statement of Proposition 1.2.

Let L = {w i} and R = {y j}, where for convenience we will not formally intro-
duce sets I, J for the homes of the indices i , j. Let C denote the set of nonzero words
expressed in normal form that occur in the expansion of αβ and begin in q and end
in x. To be clear, by the expansion of αβ we mean before one collects terms, but to
simplifymatterswemay aswell take the product of the last (1− qx) in α with the ûrst
(1 − qx) in β to be 1 − qx (it is idempotent). _en if there are m terms a iw i and n
terms b j y j , the formal expansion of αβ involves 8mn terms.

Observe that 1 must occur as some w i , say w1, and as some y j , say y1, otherwise 1
can not appear in αβ = 1− xq. _erefore 1− xq− qx + xq2x is part of the expansion of
αβ because this comes frommultiplying out (1−xq)(a1w1)(1)(a−1

1 y1)(1−qx). Hence
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qx ∈ C. In particular, the set C is nonempty. Now each pair (w , y) ∈ L ×R produces
at most two words in the expanded αβ that, a�er reduction, belong to C: wy, which
we call a type I word, and wqxy, which we call a type II word. Some of these words
may be zero, but otherwise the only exception to these two types not producing an
element of C (again a�er reduction) is for the type I word wy when w = 1 or y = 1.

_e next lemma shows what type I and II words look like in normal form.

Lemma 1.3 (i) A type I word wy is zero exactly when w ends in x2q and y begins
in x2.

(ii) A type II word wqxy is zero exactly when y begins in x2.
(iii) A nonzero type I word wy involves reduction exactly when w ends in xq and y

begins with x, orw ends in q and y begins in xq. _e reduced word is obtained by
deleting q and x.

(iv) A nonzero type II word never involves reduction.

Proof (i) _e only way wy = 0 is when reduction takes place at the interface of w
and y, and a�er deleting the last letter of w (it must be q) and the ûrst letter of y (it
must be x), at the new interface we are le� with xm for some m ≥ 3. _erefore, a�er
the deletions, wemust be le� with x2 at the end of w and a single x at the beginning
of y.

(ii), (iii), and (iv) follow similarly.

2 Main Result

_eorem 2.1 Let F[x] be the polynomial ring in the indeterminate x and over a ûeld
F, and let R = F[x]/(x3). Let S = R⟨q ∣ xqx = x , qxq = q⟩ be the algebra obtained
from R by freely adjoining a generalised inverse q of x. _en x is a nilpotent regular
element of S which is not unit-regular in S.

We now proceed to the key elements of the proof via two lemmas. Order the set
of words in C by the le� lexicographic order, taking q > x. _en C is a ûnite set with
a total order, so there is a largest word τ in C. We need to analyze the ways in which
theword τ can appear as type I and II products coming fromL×R. _ese arguments
usually take the form of working out what the product looks like in reduced form
(and what reduction was involved) and then using the observation (from uniqueness
of the normal form) that if a word z in normal form is written as a product uv of two
words in normal form in which the product does not involve reduction, then u and v
must be a two-part partitioning of the string z. Also, our arguments o�en play oò τ
occurring as a type Iword (respectively, type IIword) against the corresponding type
II word (respectively, type I word) being bigger unless certain conditions aremet.

Lemma 2.2 Let

τ = q i1x2q i2x2 ⋅ ⋅ ⋅ q in x c , (n ≥ 1, i1 ≥ 1, i2 , . . . , in ≥ 2, c ∈ {1, 2})

be the largest element of C with respect to the lexicographic order. For τ to occur as a
type I or II word (a�er reduction) from (w , y) ∈ L×R, only the following are possible:
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(i) τ is the type I word wy with no reduction and

w = q i1x2q i2x2 ⋅ ⋅ ⋅ q ir , y = x2q ir+1x2 ⋅ ⋅ ⋅ q in x c , 1 ≤ r ≤ n.
(ii) τ is the type I word wy with reduction and

w = q i1x2 ⋅ ⋅ ⋅ q i(r−1)x2qa , y = xqbx2q ir+1x2 ⋅ ⋅ ⋅ q in x c , 1 ≤ r ≤ n,
where a + b − 1 = ir , a ≥ 1, b ≥ 2 and either b > 2, or b = 2 and it > 2 for some
t > r.

(iii) τ is the (nonzero) type II word wqxy where either

w = q i1x2q i2x2 ⋅ ⋅ ⋅ q ir−1 , y = xq ir+1x2 ⋅ ⋅ ⋅ q in x c , 1 ≤ r < n,
and it = 2 for all t > r, or w = q i1x2q i2x2 ⋅ ⋅ ⋅ q in−1, y = x.

Proof We begin by eliminating the possibility that τ could come from a pair (w , y)
with w = 1 or y = 1. Observe that we must have q ∈ L and x ∈ R, otherwise the
term qx, which comes from the type II product involving the pair (1, 1), could not
be cancelled. However, qx is not cancelled by any type II word coming from a pair
(w , y) /= (1, 1), so qx must be cancelled by a type I word wy. If there is no reduction
involved, then w = q and y = x. However, if w = w′q and y = xy′ involves reduction,
then qx = wy = w′y′ impliesw′ = q, y′ = x,whencew = q2 and y = x2, contradicting
any reduction. _us q ∈ L and x ∈ R. Now suppose τ comes from a pair (w , 1),which
must be the type II product wqx because τ begins in q and ends in x. However, the
type II product from (w , x) is wqx2 > τ, a contradiction. Similarly, if τ comes from
(1, y), it must be the type II product τ = qxy, but the pair (q, y) produces the bigger
type II product q2xy. Henceforth, we can assume τ comes only from pairs (w , y)
with w /= 1, y /= 1.

Suppose that (w , y) ∈ L×R gives rise to τ (through a type I or IIword). If y begins
in x2, then the type IIwordwqxy is 0, so τ = wy is the type Iwordwithout reduction
by Lemma 1.3 (iii). _erefore, wemust have the form stated in (i) because w ends in
q and y begins in x.

Next consider the case where y = xy′, where y′ does not start in x. If y′ = 1, then
wy = wx < wqxy = wqx2. _erefore τ can only be the type II word wqxy, because τ
is the largest element of C in the lexicographic order. _us

(w , y) = (q i1x2q i2x2 ⋅ ⋅ ⋅ q in−1 , x)
and we are in the second instance of case (iii).

It therefore suõces to consider the case where (w , y) = (w′qa , xqb y′′) with a ≥ 1,
b ≥ 2, w′ not ending with q, and y′′ not starting with q. First, suppose τ occurs as the
type II wordwqxy = w′qa+1x2qb y′′. _en there is some 1 ≤ r < n such that a + 1 = ir ,
w′qa+1 = q i1x2 ⋅ ⋅ ⋅ x2q ir , and x2qb y′′ = x2q ir+1x2 ⋅ ⋅ ⋅ q in x c . We thus obtain

(w , y) = (q i1x2 ⋅ ⋅ ⋅ q ir−1 , xq ir+1x2 ⋅ ⋅ ⋅ q in x c).
But now observe that the type I word

wy = q i1x2 ⋅ ⋅ ⋅ q ir−1x2q(ir+ir+1−2)x2q ir+2x2 ⋅ ⋅ ⋅ q in x c ,
which we have written in normal form according to Lemma 1.3 (iii), will be greater
than τ unless it = 2 for all t > r. Indeed, ir+1 = 2 otherwise the exponent of the r-th

https://doi.org/10.4153/CMB-2016-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-005-8


_e Nilpotent Regular Element Problem 467

group of q’s will be greater in wy than in τ, and if it > 2 for some t ≥ r + 2 , the least
such t will give a bigger exponent of q’s than thematching group of q’s in τ (because
the groupings a�er the r-th group have been pulled back one place in wy). _erefore
to obtain τ as a type II word, wemust be in the ûrst instance of case (iii).

Secondly, if τ = w′qa+b−1 y′′ is the type Iword obtained from (w , y) a�er reduction,
then there exist 1 ≤ r ≤ n such that a + b − 1 = ir , w′qa+b−1 = q i1x2 ⋅ ⋅ ⋅ x2q ir , and
y′′ = x2q ir+1x2 ⋅ ⋅ ⋅ q in x c . _erefore

(w , y) = (q i1x2 ⋅ ⋅ ⋅ q ir−1x2qa , xqbx2q ir+1x2 ⋅ ⋅ ⋅ q in x c).
From this (w , y) we also get the type II word

wqxy = q i1x2 ⋅ ⋅ ⋅ q ir−1x2qa+1x2qbx2q ir+1x2 ⋅ ⋅ ⋅ q in x c .

But now observe that the latterword is greater than τ unless a+ 1 < ir (whence b > 2),
or a + 1 = ir (whence b = 2) and there is some t > r such that it > 2. Hence we are in
case (ii). _is concludes the proof of the lemma.

Lemma 2.3 _e greatest element τ of C can occur atmost once in the form (ii) or (iii)
of Lemma 2.2 but not both.

Proof We ûrst show that there is atmost onepair of the formgiven in Lemma 2.2 (ii).
Suppose we have two diòerent pairs (w , y), (w1 , y1) of that form. Note that if y = y1,
then by the nature of the reduction that is taking place in the two productswy = w1 y1
(= τ), we must have w = w1. Hence either y > y1 or y1 > y. If y > y1, then the pair
(w1 , y) gives the type Iwordw1 y in Cwhich (a�er reduction) is bigger than τ. On the
other hand, if y1 > y, then the pair (w , y1) gives the type Iwordwy1 in Cwhich (a�er
reduction) is bigger than τ. In either casewe get a contradiction. _is establishes that
there is at most one pair of form (ii) in Lemma 2.2.

Next we show that there is at most one pair of the form given in Lemma 2.2 (iii).
Suppose we have two diòerent pairs (w′q ir−1 , xy′) and (w′

1q is−1 , xy′1) of that form.
Without loss of generality,we can suppose that s > r. _en from the condition that it =
2 for all t > r, wemust have y′1 < y′. So we arrive at a contradiction a�er considering
the type II word associated with pair (w′

1q is−1 , xy′), which gives the element in C

q i1x2 ⋅ ⋅ ⋅ x2q is x2q ir+1x2 ⋅ ⋅ ⋅ q in x c > τ.

Finally, assume thatwe have a pair (w , y) of the formgiven in Lemma 2.2 (ii),with
corresponding (a, b) satisfying a + b − 1 = ir , and a pair (w1 , y1) = (w′q is−1 , xy′) of
the formgiven in Lemma 2.2 (iii)Assume ûrst that r = s. _e only way this is possible
is to have b > 2 and it = 2 for all t > r. In this case, both the type I and type II words
arising from the pair (w1 , y) = (w′q ir−1 , y) are bigger than τ in C. _erefore r /= s.

Suppose now that r < s. _en y = xqbx2q ir+1x2 ⋅ ⋅ ⋅ q in x c , with b ≥ 2 and either
s < n and y1 = xq is+1x2 ⋅ ⋅ ⋅ q in x c and it = 2 for all t > s, or s = n and y1 = x. But now
the pair (w1 , y) = (w′q is−1 , y) gives rise to the type II word

q i1x2 ⋅ ⋅ ⋅ x2q is x2qbx2q ir+1x2 ⋅ ⋅ ⋅ q in x c > τ,

a contradiction. Hencewemust have r > s. Necessarily from the form of (iii)we have
ir = 2 (and so b = 2) and it = 2 for all t > r. _is clearly violates the stipulated form in

https://doi.org/10.4153/CMB-2016-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-005-8


468 P. Ara and K. C. O’Meara

(ii). _us this ûnal case is not possible either, which establishes there is at most one
pair (w , y) that produces either (ii) or (iii)

Proof of_eorem 2.1 _e closing argument of our proof is themost enjoyable part.
Suppose x is unit-regular in our ring S. By Proposition 1.2, there are elements α, β ∈ S
of the form described such that αβ = 1 − xq. A�er expanding αβ as a linear com-
bination of words in x and q (but not necessarily in normal form and allowing for
repetition of words), Lemmas 2.2 and 2.3 tell us how the largest (in the lexicographic
order) member τ in the subset C (of nonzero words from the expansion, expressed
in normal form, and beginning in q and ending in x) can occur. Inasmuch as τ deû-
nitely resides in C, it must occur in the expansion of αβ at least twice. Otherwise the
linear combinations of τ could not be zero in the ûnal simpliûcation of αβ to 1−xq in
normal form, which involves no terms from C. _erefore, from Lemma 2.3, it must
be that τ occurs at least once as a type I word τ = wy without reduction. But now
when we form the type II word from the pair (w , 1) we have wqx > wy = τ, because
y begins in x and q > x. _is contradiction shows x cannot be unit-regular in S.

We close this section by noting that our result implies the non-separativity of S.

Corollary 2.4 _e ring S is non-separative.

Proof Observe that since x3 = 0, we have

(1 − xq) + x(1 − xq)q + x2(1 − xq)q2 = 1 = (1 − qx) + q(1 − qx)x + q2(1 − qx)x2 ,

so that both 1−xq and 1−qx are full idempotents in S (they generate S as a two-sided
ideal). _erefore we have S = (1 − xq)S ⊕ xqS = (1 − qx)S ⊕ qxS with xqS ≅ qxS,
and xqS is isomorphic to both a direct summand of copies of (1 − xq)S and a direct
summand of copies of (1 − qx)S. Since (1 − xq)S ≇ (1 − qx)S by our main result, it
follows from [2, Lemma 2.1] that S is non-separative.

3 Another Approach

Here we unify the Nielsen–Šter example described in the introduction with our own
example. It is always gratifying when two camps have worked quite independently of
each other,with diòerent approaches, and yet come upwith the same counterexample.

Proposition 3.1 Let R = F⟨a, b⟩ be the free F-algebra on a, b. Let

S = F⟨q, x ∣ q = qxq, x = xqx⟩.

Let I = R(1 − ba) and let T be the subalgebra ofM2(R) given as

T = [R I
R F + I]

where F + I means F1 + I. _en there is a natural isomorphism S ≅ T under which
q ↦ Q = [ b 1−ba

0 0 ] and x ↦ X = [ a 0
1 0 ]. Moreover, the same conclusion holds if for some

ûxed n ≥ 3,we impose the extra relation xn = 0 on S and replace R by F⟨a, b ∣ an−1 = 0⟩.
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Proof Let φ∶ S → T be the homomorphism deûned by φ(q) = Q and φ(x) = X,
which is well deûned because QXQ = Q and XQX = X. By the argument in Proposi-
tion 1.1, Bergman’s normal form for S provides a basis consisting of words alternating
in powers of q and powers of x, butwith the restriction that powers to exponent 1 can
occur only at the beginning or end. From this we see that qxSqx is freely generated
by the elements q2x and qx2 because q ix j = (q2x)i−1(qx2) j−1 and qxSqx has a basis
consisting of qx (its identity) and allwords in normal form that begin in q and end in
x. Since φ(qx2) = [ a 0

0 0 ], φ(q2x) = [ b 0
0 0 ], it follows that φ induces an isomorphism

from qxSqx onto [ R 0
0 0 ].

It is easily checked that an F-basis for (1 − qx)S(1 − qx) is given by

{1 − qx} ∪ {(1 − qx)x j0(q2x)i1(qx2) j1 ⋅ ⋅ ⋅ (qx2) jn−1q in(1 − qx)},
where j0 , i1 , j1 , . . . , in ≥ 1. _e image by φ of this basis is

{e22} ∪ {e22a j0−1b i1a j1 ⋅ ⋅ ⋅ a jn−1b in−1(1 − ba)},
which is an F-basis of e22Te22. (Here e i j denote the usual matrix units in T .) Similar
arguments show that a basis of (1 − qx)Sqx is mapped onto a basis of e22Te11 and a
basis of qxS(1 − qx) is mapped onto a basis of e11Te22. _us φ is an isomorphism.
Alternatively, having veriûed (as in the ûrst paragraph) that φ induces an isomor-

phism of eSe onto f T f , where e , f are the idempotents qx , e11 in S and T , respec-
tively,we could complete the proof as follows. First,we observe that S is a prime ring.
Note that for any nonzero z ∈ S, either qz or xz is nonzero. For if qz = 0, theremust
be reduction involved with products of q and all words in z of greatest length, so all
such words must begin in x. And if xz = 0 also, theymust all begin in q, a contradic-
tion. Hence for z /= 0, either qz /= 0 or qxz /= 0. Similarly for 0 /= y ∈ S, either yq /= 0
or yxq /= 0. Hence in showing ySz /= 0, we can assume y is a le� multiple of q and
z is a right multiple of q. But now yz /= 0 because there is no reduction involved in
multiplying a basis word in y of greatest length with one in z of greatest length. _us
S is prime. If K = kerφ /= 0, primeness of S gives Ke /= 0, whence Ke ⊆ (1 − e)Se
because φ is faithful on eSe. _is makes the le� ideal Ke nilpotent, a contradiction.
Hence K = 0. Also φ is onto because in addition to f T f ⊆ φ(S), we have that

f T(1 − f ) = f T fQ(1 − f ), (1 − f )T f = (1 − f )X f T f ,
(1 − f )T(1 − f ) = (1 − f )X f T(1 − f ) + (1 − f )F

are all in the image of φ.
If we impose xn = 0, the basis words in the normal form for S are now allowed

to involve the powers x i for i = 1, 2, . . . , n − 1. _is is just the obvious extension of
Proposition 1.1. And for words in a, b when we impose an−1 = 0, powers of a allowed
are a, a2 , . . . , an−2. It is easy to show that when n ≥ 3, the same φ sends the basis for
S to the basis for T , so our ûrst proof also works here. Alternatively, we can check
primeness of S when n ≥ 3. For any nonzero z with qz = xz = 0, we deduce from
qz = 0 that all the greatest length terms in z must begin in x. _en xz = 0 shows these
terms begin in xn−1. But now since n ≥ 3, there is no reduction in le� multiplying
such words by q, contradicting qz = 0. Hence qz = xz = 0 implies z = 0. Similarly,
yq = yx = 0 implies y = 0. _us S is prime and the statements in the proposition
remain true when xn = 0 and n ≥ 3.
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Remark 3.2 As it stands, Proposition 3.1 fails for n = 2. _e homomorphism φ is
still onto but has a nonzero kernel, because

φ(1 − qx − xq + xq2x) = I − QX − XQ + XQ2X = 0.

Ourproof fails because S isno longerprime (1−qx−xq+xq2x is a central idempotent).
Note that when n = 2, we have a = 0 and R is the polynomial algebra F[b]. _e
problem with a = 0 is that 1 and 1 − ba become the same. However, if we set T ′ =
M2(F[b]) × F, we can show S ≅ T ′ via the (unital) mapping that sends

q ↦ Q = ([b 1
0 0] , 0) and x ↦ X = ([0 0

1 0] , 0) .

From now on, we set R = F⟨a, b ∣ a2 = 0⟩. A basis for R is the set

B = {a i0b i1ab i2a ⋅ ⋅ ⋅ b ir−1a ir},

where i0 , ir ∈ {0, 1}, r ≥ 0, and i1 , . . . , ir−1 ≥ 1. A product of two basis elements αβ is
a basis element (without reduction) or 0, and it is zero if and only if α ends in a and
β starts in a. Observe that b is a non-zero-divisor in R.

_eorem 3.3 Let T be the algebra in Proposition 3.1 for the choice of n = 3. _en X
is a regular nilpotent element that is not unit-regular in T .

Proof Suppose X is unit-regular in T . _en (1 − XQ)T ≅ (1 −QX)T and therefore
there exist u ∈ I, t, v ∈ F + I, z ∈ R such that

[0 0
z t] [

0 u
0 v] = [0 0

0 1] , [0 u
0 v] [

0 0
z t] = [1 − ab −a(1 − ba)

−b ba ] .

In particular, we have zu + tv = 1, vz = −b, v t = ba. Hence v = (vz)u + (v t)v = bv1
for some v1 ∈ R and, since v ∈ F + I, we conclude that v ∈ I = R(1 − ba). _erefore,
v1 = v2(1 − ba) for some v2 ∈ R. Inasmuch as b is a non-zero-divisor in R, from −b =
vz = bv2(1 − ba)z we deduce that the equation c(1 − ba)d = 1 has a solution c, d ∈ R.
Consider the homomorphism π∶R → M2(F) obtained by mapping a ↦ [ 0 0

1 0 ] and
b ↦ [ 0 1

0 0 ]. From π(c)π(1 − ba)π(d) = π(1) this implies the equation C [ 0 0
0 1 ]D = I

has a solution C ,D ∈ M2(F). We have reached a desired contradiction (look at the
determinant of each side). _is completes the proof.

Corollary 3.4 Let S = F⟨q, x ∣ x3 = 0, xqx = x , qxq = q⟩. _en x is a regular
nilpotent element of S that is not unit-regular.

Proof Apply the isomorphism in Proposition 3.1.
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