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ON THE HOLOMORPHIC AUTOMORPHISM GROUPS
OF COMPLEX SPACES
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§1. Introduction.

For a complex space X we consider the group Aut(X) of all automor-
phisms of X, where an automorphism means a holomorphic automorphism,
l.e. an injective holomorphic mapping of X onto X itself with the holomor-
phic inverse. In 1935, H. Cartan showed that Aut(X) has a structure of a
real Lie group if X is a bounded domain in C¥([7]) and, in 1946, S. Bochner
and D. Montgomery got the analogous result for a compact complex mani-
fold X (2] and [3]). Afterwards, the latter was generalized by R.C. Gunn-
ing ([11]) and H. Kerner ([16]), and the former by W. Kaup ({14]), to complex
spaces. The purpose of this paper is to generalize these results to the case
of complex spaces with weaker conditions. For brevity, we restrict our-
selves to the study of g-compact irreducible complex spaces only.

The main results are the followings.

TueoreM A. Let X be a s-compact irreductble complex space such that X — K
is BK-complete for a compact set K in X (see Definition 5. 1 of §5).  Then,
endowed with the compact open topology, Aut(X) is locally compact (Theorem 5. 3).

According to Bochner-Montgomery [2], it then follows that Aut(X) has
a structure of a Lie group. For the examples of such spaces, see Example
5.4 of §5.

TueOREM B. If a g-compact wrreducible complex space X is s-strongly pseudo-
concave (see Definition 8. 1 of §8), then Aut(X) is locally compact and so a Lie
group (Theorem 8. 3).

For example, if ¥ is a compact, connected N-dimensional complex
manifold and M is an analytic set of embedding dimension <N —2, the
space X: =Y — M is #strongly pseudo-concave.
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We study first normal families of holomorphic mappings with images in
K-complete spaces (§2). And we give some fundamental properties of
sequences of nowhere degenerate holomorphic mappings for later uses,
generalizing the results of C. Carathéodory ([5]) to the case of complex
spaces (§3).

Next we show that, for an arbitrary s-compact X, Aut(X), with the
compact open topology, is a topological group which is complete with
respect to the canonical uniform structure® (Theorem 4.1). Each o€
Aut (X) induces canonically the automorphism of X,, where X, denotes the
manifold of all regularities of X. We shall prove that Aut(X) can be
topologically identified with a closed subgroup of Aut(X,) if X is K-complete
(Theorem 4. 3).

In §5, we give the precise formulation of Theorem A and study some
related problem. Theorem A is completely proved in the end of §6. We
give a convergence theorem of holomorphic mappings of a s-strongly
pseudo-concave open set in §7 and, using this, prove Theorem B in §8.

§2. Normal families of holomorphic mappings.

Let X and Y be (reduced) complex spaces. We consider the space
Hol (X, Y) of all holomorphic mappings of X into Y endowed with the
compact open topology, namely, the weakest topology such that for each
compact K< X and open U C Y the set W(K, U): = { ¢ € Hol (X, Y); o(K) C
U} is open. For complex spaces X and Y with countable topology, Hol
(X, Y) has also a countable topology. In this case, the topology of Y is
given by a metric p. The topology of Hol(X, Y) is equal to that of com-
pact convergence, namely, the topology such that lim,¢, = ¢ (9., ¢ € Hol
(X, Y)) is defined as lim,sup p(p,(2), ¢(z)) =0 for any compact Kc X.
Sometimes, we consider thexcsgace Hol (X, Y) with the topology of compact
convergence referred to an arbitrarily pre-assigned metric p on Y.

As is well known, if a family & of holomorphic functions on a
complex space is uniformly bounded on each compact K in X, & is
normal, namely, any sequence in & has a convergent subsequence. We
generalize this to the case of holomorphic mappings.

TueoreM 2. 1.  Let X and Y be o-compact complex spaces and assume that

1) This means the uniform structure defined by the family of the sets ﬁ={(¢, ¢) € Aut(X)
XAut (X); ¢ €U and ¢~'¢ €U} for neighborhoods 11 of the identity in Aut (X).
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Y s K-complete. A family @ in Hol (X, Y) is relatively compact in Hol (X, Y) if
and only if, for any compact K in Y, O(K): ={¢(x); x € K, p € @} s relatively
compact in Y.

For the proof, we recall the following well-known theorem (e.g. Bourbaki
[4], §2).

TueOREM.  For a locally compact space X and a metric space Y let C(X,Y)
be the space of all continuous mappings of X into Y endowed with the topology of
compact convergence. A family @ in C(X,Y) is relatively compact in C(X, Y) if and
only if for any x e X (1) @(x) is relatively compact and (i) @ is equicontinuous
at 2.

Proof of theorem 2. 1. The canonical mapping F(p, z): = ¢(x) of Hol (X,Y)
x X into Y is continuous in ¢ and x simultaneously. For any relatively
compact @ c Hol(X,Y) and compact K< X, @#(K) is relatively compact
in Y as the F-image of a relatively compact set @ x K.

As is easily shown, Hol(X, Y) is closed in C(X,Y). To see the con-
verse assertion, it suffices to show that @ is relatively compact in C(X, Y).
Now, we assume that @ is not equicontinuous at some z, X. Let {U,}
be a countable base of relatively compact, connected neighborhoods of zx,.
By the assumption, we can take a real §>0 such that for each » there
exist a point %, € U, and ¢, @ with p(p,(2,), .(20)) = a. Since any
¢a(%,) 1s contained in a relatively compact @(U,), we may assume { ¢,(x,)}
converges to a point y,€Y. By the definition of K-completeness, there
exist holomorphic functions f,, - -+, fx on Y such that for some neighbor-
hood Vof yo VO{f,=---=fi=0}=1{v,}, where we assume

Vc [ Y p¥o ¥) < g]

for later uses. Then each sequence { fi¢,; n=1,2,-+-} 1=<i=<k) is uni-
formly bounded on U, because

sup {1 fi(@alx))|; 2 € Uy} =sup {| fi(y)]; ¥ € OU,)} < + oo,

Hence it has a subsequence which converges on U,.  Without loss of
generality, we may assume that each { f;¢,} itself converges to a holomor-
phic function g; on U,. Since lim ,¢,(x,) = y,, we have

g:i(2o) = Hm ,(f;0,)(x0) = im . fi(@4(20)) = fi(yo) =0
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and there exists some n, such that ¢,(x,) eV for any n=wn, Then it

follows

0(@alaa)y Uo) Z 0(Pal@n), Pal@e)) — p(0al@r), va) Z 8 — - =-2-

for any #n = #n,, which shows ¢,(x,) € V. Accordingly, ¢,(U,) NV ¢ and,
at the same time, ¢,(U, —V ¢ for each n=n,, Thus the connected
¢,(U,) (n=n,) has to intersect the boundary aV of V. We take a sequence
{x,} such that z;, € U, and ¢,(z)) € dV. Obviously, lim,x; = x, and so
lim,(f,0,)(xs) = g;(x,). On the other hand, by the compactness of 3V,
{ ¢.(ws)} has a subsequence ¢, (x ) converging to a point y’ € dV. Then,

we have

fi(y’) = lim kfi(ank(x?,)k)) = lim k(fiS’wk)(xf'»k) =gz, =0

for any i(1<i=<k). This contradicts the assumption VN { f; =0} = { ¥, }.
In conclusion, @ is equicontinuous at any z € X. By the above theorem,
@ is relatively compact in C(X, Y) because the condition (i) is obviously

satisfied. The proof is completed.

§3. Some properties of nowhere degenerate holomorphic map-
pings.

For brevity, we restrict ourselves to the study of holomorphic mappings
between ¢-compact complex spaces of the same dimension. In the following
sections, complex spaces are always assumed to be g-compact and of pure-
dimension N.

By definition, a holomorphic mapping ¢ of a complex space X into
another Y is non-degenerate at x € X if and only if dim ,¢o7'¢(x) =0. A
non-degenerate mapping means a mapping which is non-degenerate at some
x € X and a nowhere degenerate mapping means a mapping which is non-
degenerate at any z € X,

For complex spaces X and Y we denote their normalizations by X*
and Y* respectively. With each nowhere degenerate holomorphic mapping
o we can associate the uniquely determined holomorphic mapping p*(¢p) of
X* into Y* with ¢-p = p,-p*(p), where p, and p, are the projection
mappings.

LemMa 3. 1. Let ¢ and ¢,(n=1) be nowhere degenerate holomorphic map-
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pings of X into Y.  The sequence { ¢, } converges to ¢ in Hol(X, Y) if and only
if {p*(on)} converges to p*(@) tn Hol (X*, Y¥).

Proof. For brevity, we put ¢}: = p*(¢,) and ¢*: = u*(p). Assume that
lim ,¢% = ¢* and take an arbitrary compact K< X and an open U C Y with
o W(K, U). Then, o*(pi(K)) C p#33(U). Since p7*(K) is compact, it fol-
lows o#(u7Y(K)) C p32(U) for almost all #n.  For these n, we have

PulK) = 0alp(p7(K))) = p29%(7(K)) © popez'(U)) = UL

This shows lim ¢, = o.

Conversely, let lim ¢, = o. For any x e X we choose relatively
compact neighborhoods U of » and V of ¢(x) such that ¢(U) cV eW with
some K-complete open subset W of Y. By the assumption, ¢,(U) cV and
so 9i(pi'(U)) < pz*(V) for almost all n.  Since p3'(V) € p7'(W) and p3'(W)
is K-complete, { ¢} } has a subsequence converging on y;*(U) by Theorem
2. 1. By the usual diagonal argument, we can choose a subsequence of
{ 0%} which converges to ¢ in Hol(X* Y*. The limit ¢ satisfies p,¢
= ¢ u = pp* because ¢} = ¢,p.  Since g, is injective on a everywhere
dense open subset of Y*, we conclude ¢ = ¢*, which is determined indepen-
dently of any choice of the convergent subsequence of { ¢}}. Thus, { ¢}}
itself converges to ¢* in Hol (X*, Y*).

LemMa 3. 2. Let {9o,} be a sequence of nowhere degenerate holomorphic
mappings of X wnto Y which converges to a mapping ¢ in Hol(X, Y). If ¢ s
nowhere degenerate on X, for any open sets G, G, and G, with G, e G, € Gy, i
holds

pm(él) c 9’(62) c SD (Gz) e Son(G:i)
Jor almost all m and n.

Proof. At first, we assume that X and Y are normal. By the assump-
tion, any x € G, has a relatively compact neighborhood U with o~ (e(x)) N U
={2}. Since ¢(@U) ® ¢(z) and compact, we can take a connected neigh-
borhood W of ¢(z) with ¢GU) N W =¢. We put V=9 (W)NnU. Asis
easily seen, the restriction ¢|V of ¢ to V is a proper nowhere degenerate
mapping into W. Then, it holds ¢(V) = W by the normality of Y. While,
since lim,¢, = ¢, 0,GU) N W =¢ and ¢,(x)c W for almost all n. For
these n, putting U/ : = ¢;'(W) N U, we see o(V) =W = ¢,(U}) C ¢,(G,). Thus,
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with each z € G, we can associate a neighborhood V, of x such that o(V,)
C 9.(G,) for any n = n(z) with a suitable integer n(x). By the compactness
of G,, we can select finitely many V, such that G, < Uj.,V,. Obviously,
?.(G3) D 9(G,) for any n=max{n,; 1<i=<r}.

Now, we suppose éo,,,(@l) @ ¢(G,) for infinitely many n, There exist a
subsequence { ¢, .} of { ¢,} and points z,< G, such that ¢, (z.) & ¢(G,).
Since G, is compact, we may assume that {x,} converges to a point z, in
G,. While, ¢(G,) is open in Y by the result of R. Remmert [19], p. 358.
We see o(x,) = lim 49, (2:) & ¢(G,). This is a contradiction. In conclusion,
?.(G,) C 9(G,) for almost all n. This completes the proof of Lemma 3. 2
for normal complex spaces X and Y.

To prove Lemma 3. 2 for arbitrary X and Y, we consider the normali-
zations X* and Y* of X and Y with projection mappings p, and p, respec-
tively and use the same notations as in the proof of Lemma 3.1, The
mappings ¢*, ¢f € Hol (X*, Y*) and open sets G¥: = p7'(G;) (i =1,2,3) in X*
satisfy all assumptions in Lemma 3.2 in view of Lemma 3.1. By the
above proof, we have

Ph(GY) C 9*(G3) C ¢*(GY) < X(GE)
for almost all m and »#. Immediately, we conclude

SDm(Gl) c SD(Gz) c 90(62) C 90,(Gy)

because ,0%5G%) = ¢0,(G,) and p,0%(GY) = ¢,(G,;) etc.. Lemma 3.2 is com-
pletely proved.

ProposiTioN 3. 3. Let {9, be a sequence of biholomorphic mappings of a
complex space X onto open subsets (depending on each ¢,) of a fixed complex space
Y. If { ¢.} converges to a nowhere degenerate ¢ in Hol (X, Y), then it holds the
Jollowings :

(1) The tmage o(X) is open and ¢ is a biholomorphic mapping of X onto
o(X).

(ii) The sequence { ©3'} of the inverses of ¢, converges to ¢~ on ¢(X).

Remark. According to Lemma 3.2, any open set D e o(X) satisfies
that, for almost all #n, ¢,(X) o D and so ¢;'|D is well-defined. In Proposi-
tion 3. 3, lim ,9;' = ¢7* on ¢(X) means that for any D e ¢(X) lim ,¢;'|D
= ¢7'|D.
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Proof of Proposition 3. 3. To see the injectivity of ¢, take arbitrary
points z, and z, (z,% 2,) in X and neighborhoods U, of x, and U, of &,
with U, NU,=¢. By Lemma 3.2 o(x;) € 0,U,) (i =1, 2) for almost all x.
So, we can take points y, € U; such that ¢(x;) = ¢,(y;) for a suitable #.
By the assumption, y,+ y, concludes ¢,(y,)* ¢.(y,) and so ¢(x,) = ¢(x,).
This shows that ¢ is injective.

Now, take an arbitrary open set D in X. For any x € D we assign a
relatively compact neighborhood U of z with U c D. Applying Lemma
3. 2 again, we see o¢(x) € ¢,(U) C o(D) for almost all ». This shows that
o(D) is open. Therefore, ¢ is open and, in particular, ¢(X) is open.
Moreover, this shows also the continuity of the mapping ¢! of ¢(X) onto
X. To see the holomorphy of ¢!, it suffices to prove the assertion (ii)
because the limit of ¢! is holomorphic.

Let K be a compact subset of ¢(X) and U be an open set in X such
that ¢o™'e W(K, U), i.e. K< oU). Since oK) is compact, by Lemma
3.2 we have K= o(pY(K)) C ¢,(U), i.e. ¢;' e W(K, U) for almost all n.
This concludes lim ,9;' = ¢7! on ¢(X).

§4. The automorphism group of a complex space.

Let X be a complex space. By Aut(X), we denote the group of all
automorphisms of X. With the topology induced from Hol (X, X), Aut(X)
is a Hausdorff space with a countable topology because X is assumed to be
o-compact. The composite mapping H(p, ¢) = ¢-¢ is a continuous mapping
of the product space Aut(X) x Aut(X) into Aut(X). Moreover, in Propo-
sition 3. 3 considering the case that X=7Y and ¢, and ¢ are surjective, we
see Aut (X) is a topological group.

In addition, we can prove

THEOREM 4, 1.  For any a-compact purely dimensional complex space X
Aut(X) is a topological group which is complete with respect to the canonical
uniform structure.

Progf. Take a Cauchy sequence {¢,} in Aut(X). We shall prove
first { ¢, } has a convergent subsequence as a sequence in Hol (X, X). To

2) Added in Proof. This can be proved by the only property that X is locally compact
and locally connected, in view of the following paper: R. Arens, Topologies for homeomorphism
groups, Amer. J. Math., 68 (1946), 593-610.
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this end, for any x € X we take neighborhoods U and V of x such that
UcVeW with some K-complete open subset W of X. The set W(U, V)
is a neighborhood of the identity automorphism e in Aut(X). By the
definition of a Cauchy sequence we can find a positive integer #, such that
onl9,(0)cV for any m, n=mn, Putting m=n, we have ¢,{U)cC ¢, (V)
€ ¢,,(W), where ¢, (W) is K-complete because ¢, is an automorphism of
X. By Theorem 2.1 we can select a subsequence of { ¢,|U} which con-
verges in Hol (U, X). Covering X by at most countably many such U’s,
we can choose a subsequence of {¢,} which converges in Hol (X, X) by
the usual diagonal argument.

On the other hand, { ¢;'} is also a Cauchy sequence. Applying the
same argument as above to { ¢;'}, we get a subsequence {¢, } of {¢,}
such that lim.p, = ¢ and lim,p;! = ¢ for some ¢, ¢ € Hol (X, X). Obvi-
ously, o+ ¢ = ¢-9=c on X. Therefore, we conclude lim ¢, = ¢ € Aut(X).
In general, if a Cauchy sequence has a subsequence with the limit o, it
converges to the same limit ¢. The given {¢,} itself converges to ¢ in
Aut (X). This completes the proof.

Let X be a complex space and X* be its normalization with projection
mapping gz  Each ¢ e Aut(X) gives an automorphism g*(p) € Aut(X*)
with ¢+ g = p-p*(@). Thus we obtain a mapping p*: Aut(X)— Aut(X*),
which is obviously injective.

ProrosiTION 4. 2. By the mapping p*, Aut(X) is topologically isomorphic
with a closed subgroup of Aut (X*).

Progf. By Lemma 3.1, the group homomorphism p* is uniformly
bicontinuous of Aut(X) onto a topological subgroup g*(Aut (X)) of Aut(X*)
with respect to the canonical uniform structure. In view of Theorem 4. 1,
#*(Aut(X)) is complete and therefore closed in Aut (X*).

An automorphism ¢ of X maps a regular point to a regular point of
X. We denote the set of all regularities of X by X,. Each ¢ € Aut(X)
induces the automorphism of X,. We get the injective group homomor-
phism p: Aut (X)— Aut (X,).

THEOREM 4. 3. If X is K-complete, Aut(X) is identified with a closed
subgroup of Aut(X,) by the mapping p.
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For the proof, we need

LemMA 4, 4, Take a sequence { ¢,} of automorphisms of a K-complete
complex space X. For a thin analytic subset M of X, if { ¢,} converges to a
nowhere degenerate ¢ in Hol(X— M, X), { ¢, } converges on the total X to a
mapping ¢ € Hol (X, X).

Proof. Firstly, we note that under the assumption of K-completeness of
X any z € X has a fundamental system of neighborhoods each of which is
X-convex. By definition, we can take finitely many holomorphic functions
fi, +++, fron Xsuch that { fi=+-.=f,=0}nNV={2} for a sufficiently
small relatively compact neighborhood V of xz. For any i< yiélafv max

{Ifiw)]; 1<i<Fk}, the set

Ui={lfil <8, «+«, |l <8} NV

is X-convex. Because, any compact K c U satisfies

KnU:={xzeU; |f(x)| <sup|f(y)] for any holomorphic f on X}
ye K

Cla; | file)| 20/, 1<i<k}NU

with & : =sup{|fi(¥)]; y€ K, 1 <i <k} <35, which is compact.

Now, for any z € M we take a relatively compact X-convex neighbor-
hood U of . We shall prove that there exist a compact set K and a
connected compact set L such that KN M=¢, Kc Lc KcU and L con-
tains 2 as an interior point (c.f. H. Grauert and R. Remmert [10], Hilfssatz
4, p. 292). As is well known, there exists a neighborhood V(< U) such that
a suitable proper nowhere degenerate holomorphic mapping = = (z,, + « -, ny)
maps V onto a polydisc P:={]z,]<1,-.-,|2y] <1} in C¥ (N =dim X)
and satisfies V Nz 'z(x) = {x}. Furthermore, we can choose these V, =
and P so that they satisfy

a(M) c {la] <s, 2] <1,---, |2y <1}
for some s<1. We put

K=7Z‘—1({S§IZII§7’, ]z2!§7’ t lleér})a

L=a'{lal =7, |2l =7y ¢+, l2n] 7)),

where s<r<1. Obviously, L is connected compact and contains x as an
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interior point. Moreover, it is easy to prove every holomorphic function
on a neighborhood of L attains its maximum value at a point in K.  This
shows L c K and hence these K and L satisfy the desired conditions.

Take an open set G such that GeU, GNM=¢ and K< G. Then,
since ¢ is nowhere degenerate on X — M, according to Lemma 3. 2 we have

?.(K) C 9(G) C 9,(U — M) < ¢,(U)
for any m, n=n, with a suitable n,, Since U is X-convex and ¢, is an
automorphism of X, ¢, (U) is also X-convex. Therefore, ¢,(K) N ¢,,(U) is

compact and ¢,(L) (C ¢,(K)) is a compact connected subset of ga/,,(\K). For
any 7 =n,, 9,(K) C ¢,,(U) implies ¢,(L) C m) N ¢,,(U). Because, if not,
the connected ¢,(L) is represented as the disjoint union of non-empty com-
pact sets 9,(L) N ¢,,U) and ¢,(L) — ¢,,U). In conclusion, there exists a
neighborhood W(c L) of « such that ¢,(W)c ¢,,(U) € X for almost all «.
In virtue of Theorem 2.1, we can find a subsequence { ¢, } which con-
verges on W to ¢w< Hol(W, X) with ¢y =¢ on W —M. Since M is
thin, any convergent subsequence of { ¢,|W } has the same limit ¢ on W
and so {¢,} itself converges to ¢ on W. Moreover, by the same reason,
¢w = ¢wr on W N W’ for any choice of the above x and W if W N W’ + 4.

Putting ¢ = ¢ on each W, we define ¢ € Hol (X, X). The sequence { ¢, }
converges to ¢ in Hol (X, X).

Proof of Theorem 4.3. Obviously, p is continuous. Our aim is to
show that for a sequence {¢,} in Aut(X), if lim,p, = ¢ in Aut(X,), it
converges also on X to an automorphism of X. Since ¢ is injective, we
may apply Lemma 4. 4 to the thin analytic set of all singularities of X.
There exists a holomorphic mapping ¢ € Hol (X, X) with lim ,¢, = ¢ on X,
While, in virtue of Proposition 3. 3, we see lim ,¢;'|X, = ¢! on X,. Using
Lemma 4. 4 again, we obtain ¢’ € Hol (X, X) such that lim ,¢;' = ¢’ on X.
Obviously, ¢+¢’ =¢’-¢=¢ on X and so ¢ € Aut (X). This completes the
proof.

§5. The automorphism groups of complex spaces of some bounded
types.

For convenience’ sake, we give the following
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DerintTioN 5. 1. We shall call a complex space X to be BK-complete
if for any 2 € X there exist finitely many bounded holomorphic functions
fi, ., fson XQ<i<k) such that {f,= ... = f, =0} contains x iso-
latedly.

ProPOSITION 5. 2. It is a necessary and sufficient condition for the BK-
completeness of a complex space X that X can be considered as a bounded Riemann
domain, namely, there exists a nowhere degenerate holomorphic mapping = of X info
a bounded set in CY(N = dim X).

Proof. The sufficiency is evident. To see the necessity, we have only
to show that for some /(= N) there exist ! bounded holomorphic functions
fis =+, fr on X which give a nowhere degenerate mapping f=(fy, * * *, )
of X into C' (see H. Grauert [9], Satz 11, p. 252 and its proof). We con-
sider the set B(X) of all bounded holomorphic functions on X. Endowed
with the uniform topology, B(X) is a Banach space. By mathematical
induction on k, we shall show that for any k-dimensional analytic set M in
X there exists a mapping f: X— C'(f € B(X)") which is nowhere degenerate
on M, where B(X)" is the [-fold direct sum of B(X). If dimM =0, the
proof is evident. Assume this for the case of dimM=<k—1. Let M be
of dimension k.  For each irreducible component M, of M, the set

Bi={f=(f1, -+ -, fu) € B(X)*; f is non-degenerate on M;}

is obviously non-empty and open in B(X)* (c.f. [9], Hilfssatz 3, p. 245). For
any f € B(X), putting h;, = f; + c,9, with g = (¢;) € F,, we get a mapping
h=(hy -+, i) B, if sufficiently small ¢, are suitably chosen. This
shows &, is dense in B(X). While, B(X)* is a Baire space. There is a
mapping f: X—C* such that fe n; %, which is non-degenerate on any
M,. Then, the set E: = {x € M; dim, f~'f(x) >0} is a thin analytic subset
of M and so dimE<Fk—1. By the induction hypothesis, a suitable
9= (g, * -+, g) € B(X)" is nowhere degenerate on E. Then, the mapping
h=(fi ***y foo 9» =5 9): X—C*"' is nowhere degenerate on M. Our
purpose is accomplished. In particular, if k= N = dim X, we may consider
X itself as the above M. This completes the proof of Proposition 5. 2.

Now, we give the following theorem, which is a generalization of the
H. Cartan’s theorem ([7], Theorem 13, p. 50).
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TueoreM 5. 3.  Let X be an irreducible complex space such that X — K is
BK-complete for some compact K in X.  Then the automorphism group Aut(X) is
locally compact and so a Lie group.

For an irreducible complex space X, Aut(X) is an effective analytic
transformation group of the connected complex manifold X,. The last
assertion in Theorem 5. 3 is due to the following well-known theorem.

TuEOREM. Let G be an effective tmmj’ormation group of class C' which acts
on a connected differentiable manifold of class C'. If G 1is locally compact, G is a
Lie group (Bochner [2], Kuranishi [17] and Montgomery-Zippin [18]).

Before the accomplishment of the proof of Theorem 5. 3, we give some
examples of complex spaces satisfying the condition in Theorem 5. 3 and
study some related problem.

ExampLE 5. 4. (i) A bounded Riemann domain satisfies obviously the
condition in Theorem 5.3. For the case of a bounded Riemann domain
without singularities, Theorem 5. 3 was proved by H. Cartan in [6] and [7].
Recently, W. Kaup proved this for an arbitrary BK-complete space X in
[14].

(ii) Let Y be a compact complex space and L be a compact set in
Y such that Y — L is irreducible. If L is included in some K-complete open
subset U of Y, the space X: =Y — L satisfies also the condition in Theorem
5. 3. Indeed, if we put K= X—V for another open V with LcV eU,
X— K=V —L is BK-complete. In the case that L = ¢, namely, X is com-
pact, Theorem 5.3 was firstly proved by Bochner-Montgomery [2] for
complex manifolds and afterwards generalized by R.C. Gunning [11] and
H. Kerner [16] to arbitrary compact complex spaces.

Related to Example 5. 4 (ii), we have

ProrosiTiON 5. 5.  Let 'Y be a normal compact complex space of dimension
=2 and L be a compact set in Y. If L has a fundamental system of neighborhoods
(U} such that one of them is Stein and each U, — L is connected, then for the
space X: =Y — L Aut(X) is nothing but the closed subgroup of Aut(Y) consisting
of all ¢ € Aut(Y) with o(L) = L.

Progf. We put G = {p € Aut(Y); o(L) = L}. The canonical restriction
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mapping p: G— Aut(X) is obviously injective continuous homomorphism.
Both G and Aut(X) are complete topological groups with countable to-
pology. If p is surjective, p is a topological isomorphism by the open
mapping theorem (e.g. see T. Husain [12], p. 99). To see the surjectivity
of p, we shall show that each ¢ € Aut(X) can be continued to ¢ € Aut(Y).

Take a Stein neighborhood U of L. For a given ¢ € Aut(X), we can
choose easily an open set U’ in Y such that Lc U’ e U, o{U'—L)cU — L,
o (U'—L)cU—L and U’ — L is connected by the assumption, The holo-
morphic mapping ¢|U’ — L has the image in a Stein space U. According
to H. Kerner [15], Satz 2, p. 46, ¢ is continuable to U’ (c.f. [13] and [8]).
Thus we obtain a mapping ¢ € Hol (Y,Y) with ¢|U’— L = ¢. By the same
argument, there exists ¢’< Hol(Y,Y) with ¢'|Y — L = ¢!, which satisfies
¢’ ' =¢'-¢=¢ on Y. This shows ¢ € Aut(Y). Thus, Proposition 5.5 is
proved.

§6. The proof of the generalized H. Cartan’s theorem.
The purpose of this section is to prove Theorem 5.3 in the previous
section. We shall show first

ProposiTION 6. 1. Let X be an irreducible complex space such that X — K is
BK-complete for a compact K in X. If a sequence {¢,} in Aut(X) converges to a
nowhere degenerate holomorphic mapping ¢ on an non-empty open set D including K
such that Kc (D) and ¢o(K)< D, then {¢,} converges to a mapping & 1in
Hol(X, X).

For the proof, we consider the set

G = {x € X; {¢,(x)} has an accumulation point in X}.

Obviously, G includes D.

LeEmmA 6. 2. Under the assumption in Proposition 6.1, if for a sequence
{x,} in X lim,x, = 2, and {9,(x,)} has an accumulation point in X, then a suitable
subsequence of {¢,} converges on a neighborhood of x,.

Proof. If x,€ D, the proof is trivial. Let x,¢ D. Without loss of
generality, we may assume {¢,(x,)} itself converges to a point y, € X. Then,
we see y, &« K. Indeed, if y, € K, we have z, = lim,0;'¢,(x,) = 0" (y,) € D
because lim,9;' = ¢! on ¢(D) (DK) (c.f. Proposition 3. 3).

By Proposition 5.2, there exists a nowhere degenerate holomorphic
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mapping = of U:= X— K onto z(U) € CY(N = dim X). Taking an open D’
such that K< D' e D, we see Kc ¢,(D') and ¢,(K)c D’ for almost all =
by the assumption and Lemma 3. 2. For these #, the mappings ¢,:=rp,
and 2,: = r¢;' are well-defined on U’: = X— D' (U’ 2 X— D). Since ¢,{U")
and x,({U’) are included in =(U) € C¥, after a suitable replacement of the
indices, we may assume that both {¢,} and {x,} converge to ¢ and z on
U’ respectively in virtue of Theorem 2. 1. Now, we take arbitrarily small
neighborhoods W, of y, and W, of z,: = =(y,) such that z|W,: W, =W, is
proper, where we assume W, € W with some K-complete open subset W of
X for later uses. Moreover, we take a connected relatively compact neigh-
borhood V of z, such that ¢(V) c W,. Then ¢,(V) =z¢,(V) € W,, namely,
¢, (V) C ="' (W,) for almost all ». We know that W, is open and closed in
'(W,). While, since lim,o,(x,) = ¥s, @.(V) N W, ¢ for almost all x.
From these fact, we conclude ¢,(V) € W, for almost all ». Apply Theorem
2.1 to the mappings ¢,|V. A suitable subsequence of {¢,} converges on
V.

LemMa 6. 3.  The set G is open and there exists a subsequence of {9,} which
converges on G fo an injective mapping n Hol (G, X).

Proof. Each =z, € G satisfies the condition in Lemma 6. 2 for a sequence
{z,:=x,}. So, G is obviously open. While, the existence of a convergent
subsequence of {¢,} is easily shown by the usual diagonal argument. To
see the injectivity of the limit ¢, we use the mapping 2 = lim,zp;'. By
definition, = = 2,9, on X—D and so = =2 on (X—D)N G. The mapping
@ is nowhere degenerate on D by the assumption and on (X — D) N G because

= 1s nowhere degenerate. Therefore, ¢ is nowhere degenerate and hence

injective by Proposition 3.-3 on the total G.
LemMa 6. 4. The set G coincides with the total X.

Proof. The given sequence {¢,} may be assumed to have the properties
as in the proof of Lemma 6.2 and converge to an injective holomorphic
mapping ¢ of G into X in view of Lemma 6.3. Suppose that G is a
proper subset of X, We can choose a point z,¢ G which can be joined
with a point in G by a continuous curve 7(¢) (0= ¢ =1) such that 7(0) = z,
and 7({)€ G for any ¢>0. Indeed, joining a point z, € G with some
%, € G by a continuous curve 7(f) (7(0) ==, 7(1) ==x,), we take a point
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z,=7(t,) for t: =inf{z;7(¢) € G for any ¢ ><}. After a suitable change
of the parameter of the curve, the point has the desired property for r(¢).
Then the curve @(r(¢)) (0<¢=<1) in X approaches to the boundary of X
as ¢t —0, namely, for any compact C in X there is a positive § such that
pr@) e Cif 0<t=<s. In fact, if a compact C in X contains @(r(¢,)) for
a suitable {¢,} with lim,t, =0, we can find easily a sequence {z,} in X
with lim,z, =2, such that {¢,(x,)} has an accumulation point in X.
Lemma 6. 2 implies z, € G, which is a contradiction.

Now, for each #n we define a curve 7,(t) = ¢;'¢(r(¢)) (0<¢=1), which
approaches to the boundary of X as ¢—0 because ¢, is a homeomorphism
of X. By the assumption of Proposition 6. 1, we can take open sets D', D"’
such that Kc D" €« D' € D and ¢(D)c D. Then, in virtue of Lemma 3. 2,
there exists a positive integer n, such that ¢, (K)c o(D"”) C ¢,(D) < D for
any m, n=n, For a neighborhood U’:=X— D" of X— D, we have
03 0, (U") € X— K for these m and » and so the mappings =o;'¢,: U —>CV
are well-defined. The images of these mappings are included in
X —K)eC¥  We may apply Theorem 2.1 to the sequence {z¢;'¢,;
m=mny, ny+1, +--} for each n=n,  After a suitable replacement of
indices, we may assume each {z9¢;'¢,; m=1,2, -} converges on U’ to a
mapping 2, which is equal to =¢;'¢ on G. Moreover, {1,} may be
assumed to converge on U’ to a mapping A. Then 1= lim,z¢;'¢ =7 on
G — D and therefore on any connected component of U’ intersecting G.
Now, we take relatively compact neighborhoods V of z, and W of =(x,)
such that z|V: V- W is proper. For any connected neighborhood V' of z,
with V' eV, V') ==z(V')c W implies that

2.0V NG =ne5'a(V' N G)C W

for almost all . For a sufﬁciently small § >0, {7(t); 0<t=d}lcV'NG.
So, 1,7(t)) =ar,(t) € W for any #(0< ¢ <4) and almost all ». While, we
have

lim,7,(¢) = lim, 07" ¢(r(2)) = r(#)

for an arbitrarily fixed ¢ because lim,9;' = ¢~ by Proposition 3. 3. There-
fore, ¢7'¢(V' N G) NV ¢ for a sufficiently large n. Since V is open and
closed in =~Y(W), we conclude {r,(f); 0<t=4d}cV. Hence, 7,(¢) cannot
approach to the boundary of X. This is a contradiction. In conclusion,
we see G = X,
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Proof of Proposition 6. 1.  According to Lemma 6. 3 and Lemma 6. 4 a
given {¢,} has a subsequence which converges to a mapping ¢ € Hol (X, X).
On the other hand, since lim,p,=¢ on D(#¢), any convergent sub-
sequence of {¢,} has the same limit ¢ in Hol(X,X) by the theorem of
identity. Moreover, any subsequence of {¢,} has a convergent subsequence
by.the same reason as above. In conclusion, {¢,} itself converges to ¢ in
Hol (X, X).

CoRroLLARY 6.5. Let X be a BK-complete complex space and {9,} be a
sequence tn Aut(X). If for a point x, {9.(x,)} has an accumlation point in X,
then {@,} has a convergent subsequence in Hol (X, X).

Proof. As in the proof of Lemma 6. 3, we consider the set

G = {x; {¢,(x)} has an accumulation point in X},

which contains x, as an interior point in view of Lemma 6. 2. Moreover,
by the same argument as in the proof of Lemma 6. 4, we see G = X. And,
in view of the proof of Lemma 6. 3, we can easily prove Corollary 6. 5.

Proof of Theorem 5.3. Suppose that X has a compact subset K such
that X~ K is BK-complete, where we may assume K+ ¢. With each
z € K we associate neighborhoods U,, V,, U; and V., of z such that
U,eV,eU,eV;eW with some K-complete open set W. Among these
Ujs, we can select finitely many U,(1<i<r) with KcD:= u,L,U,.

Taking an open set D’ with K< D’ € D, we consider the set
W= UL WU,,V.) n WU, Vi)™ N WK, D),

where for any U ¢ Aut(X) U™' denotes the set {¢7!; p=U}. Obviously,
1, is a neighborhood of ¢ in Aut(X). We shall prove that the neighbor-
hood U: =1, N U;! of ¢ is relatively compact in Aut(X).

Take an arbitrary sequence {¢,} in U. For each i, ¢,U,)CV,.
According to Theorem 2.1, each {¢,|U,} has a convergent subsequence.
Choosing subsequences repeatedly, we obtain a subsequence {¢, } of {,}
which converges to a mapping ¢ on D. By the definition of U, we see
o(K)c D' D and ¢(D)c U,L,V, € D":= U,5,U,. By the same argument,

after a suitable replacement of indices, we may assume that for the above
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n4s{psl} converges also to a mapping ¢ on D, which satisfies ¢(K)cD’cD.
The mappings ¢¢ and ¢¢ are well-defined and equal to ¢ on K and on D
respectively. Therefore, ¢ is injective on D and ¢(K)c D means K C ¢(D).
The sequence {9, } satisfies all conditions in Proposition 6. 1 for the above
D. So, the sequence {¢,} has a convergent subsequence {¢, } with the
limit ¢ in Hol(X,X). On the other hand, U is symmetry. We can
apply the same argument to the sequence {¢;'}.  Thus, by the usual
method, we conclude ¢ € Aut(X). This shows that U is relatively compact
and hence Aut(X) is locally compact.

§7. A convergence theorem of injective holomorphic mappings.

In the previous paper [8], we introduce the notion of #-strongly s-
convexity. By definition, a real-valued function v on X is s-strongly s-
convex at z € X if and only if there exist a nowhere degenerate holomorphic
mapping = of a neighborhood V of z into a domain D c C* and a strongly
s-convex function # on D such that v = ¢z on V([8], Definition 2. 5, p. 55).
An open set D in X is called to be s-strongly s-concave at x € X if it holds
DnV={v>v(x)} with a suitable v on a neighborhood V of z which is
s-strongly s-convex at x ([8], Definition 2. 8, p. 56).

For example, we see

(7. 1) Let M be an analytic subset of a complex space X. If dim,M = s—1,
X — M is s~strongly s-concave at x.

Indeed, for a suitable neighborhood U of z in X, M is represented as

MnU={fi="++=fi=0}

with holomorphic functions f,(1=<i=<%) in U. We define the function
v=|f12+ -+ ]fe]? on U, which satisfies {v >0} NU=U—(MnU).
Considering the mapping == (f, « -+, fi) of U into C* and #: = 2,2+ - -
+ |2]? on C* we see easily that v = 9r, dimz'z(z) = dim,M=s—1 and

7 is strongly l-convex at z(z). In view of Example 2. 6, (iii) in [8], p. 55,
v is s-strongly s-convex at z.

LemMAa 7.2. Let D be an open set in a normal X which is «-strongly
(N — 1)-concave at x € X(N = dim X).  Then there exists a connected neighborhood
U of x such that any (N — 1)-dimensional analytic subset of U intersects D and,
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moreover, for an open set G with G € D and G C U, every holomorphic function on
G s unmiquely continuable to U.

For the proof, see [8], Corollary 5.4, p. 69 and Proposition 4.3, p.
64. In view of the proof of these assertions, we can conclude easily Lem-
ma 7. 2 with a little modification.

LemMmA 7. 3.  Assume that for normal complex spaces X and 'Y, a sequence
{9} converges to ¢ in Hol (X,Y). If each ¢, ts injective and E={x ;dim o ¢(x) >0}
s of codimension =2, then ¢ is also injective.

Proof. Under the assumption codim E=2, take two distinct points
%5, 2, in X and Stein neighborhoods U, of x, and U, of =, such that
U,NU,=¢. In view of (7. 1), X— E is s-strongly (N — 1)-concave at any
z€ E(N=dimX). By Lemma 7.2, for each i=1, 2, there exists an
open set G; such that G, e U,;, G, N E= ¢ and every holomorphic function
on G; is continuable to a neighborhood V; of x,. Taking an arbitrary G}
with G;c GieU,—E(i =1, 2), we see 0,(G;) C o(G;) < ¢,(U,) for almost
all m and # by Lemma 3. 2. For a sufficiently large n,, ¢,(G;)(n=mn,)
are included in a Stein space ¢, (U;). By H. Kerner’s theorem ([15] and
[81), ¢.lG; is continuable to a mapping @,: V;— ¢,,(U;), which is the
original ¢, on V,;. This means ¢,(V,)C¢,,(U;) and particularly ¢,(x;)€ ¢4, (U).
As n—>o0, we see ¢(x;) € ¢n,U;) (i=1,2). While, U, NU,=¢ implies
0n(Uy) N 0 (Uy) = ¢ whence o¢(x,) # ¢(x;). This shows that ¢ is injective
on X.

Remark. In Lemma 7.2, if X is a complex manifold, we can assert
E=¢ or E=X without the assumption codim E =2, considering the ja-
cobians of mappings (C. Carathéodory [5], Satz 6, p. 719).

After these preparations, we can prove

PropostTioN 7. 4. Let D be an open set in a normal complex space X which
15 w=strongly (N — V)-concave at x € X(N =dim X) and {¢,} be a sequence of
injective holomorphic mappings of X into another normal Y. If {p,} converges on
D to a nowhere degenerate ¢ € Hol (D,Y), {¢,} converges also on a neighborhood
U of « to an injective mapping .

Progf. Take a Stein neighborhood V of x which is relatively compact
in some K-complete open subset of X. By Lemma 7. 2 there exists a con-
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nected neighborhood U of «(U cV) such that any (N — 1)-dimensional
analytic subset of U intersects D and every holomorphic function on G is
uniquely continuable to U for some G €V n D. As in the proof of Lemma
7. 3, taking an arbitrary G’ with G e G'eDNV, we see ¢,(G) < o(G") < 2,(V)
for any n=w#n, with a suitable », by Lemma 3. 2. While, since ¢, maps
X biholomorphically onto an open subset of Y, ¢,,(V) is Stein and relatively
compact in some K-complete set. As in the proof of Lemma 7.3, we see
0,U) < ¢,,(V). Then, we can select a subsequence of {¢,} which converges
on U by Theorem 2. 1. Since lim,¢,=¢ on DNU, any convergent sub-
sequence of {¢,} has the same limit ¢ on U by the theorem of identity.
This concludes lim,¢,= ¢ in Hol(U,Y). To see the injectivity of &, we
consider the set E = {z € U; dim, ¢'¢(x) >0}, which is analytic in U. By
the assumption, E N D= ¢ and so codim E =2 because of the property of
U. Then ¢ is injective in virtue of Lemma 7. 3.

We have also the following convergence theorem of injective holomorphic
mappings.

TuEOREM 7. 5. Let X and Y be connected normal complex spaces of dimension
N and v be a s-strongly (N — 1)-convex function on X with v > c, (= — oo) such that

fre X, c<viz)s=c¢}eX

if co<<c<c, for a fixed c;,. If a sequence {9,} of injective mappings in Hol(X,Y)
converges to a nowhere degenerate mapping on the set {x € X; v(x) >c,}, then {¢,}

“converges on the total X to an injective ¢ & Hol (X,Y).

Proof. As usual, we consider the set I" of all real numbers ¢ such that
{0,} converges on X,:={x € X; v(x)>c} to an injective ¢, € Hol (X,,Y).
Our aim is to show minlI'=¢, Assume ¢,:=infl"’=minl">¢,. By
Theorem 7. 4, each x € L: = {v = ¢,} has a neighborhood U, such that {¢,}
converges to an injective § € Hol(U,,Y) on U,. Covering L by finitely
many such U,(1<i<r), we get an open set G:= U,.,U, DL such that
{¢,] converges on G to an injective mapping. Then, ¢;: = sup {v(x) ;
2&€GU X, <c, and ¢;e . This is a contradiction. We conclude {¢,}
converges on X = X,, to an injective ¢ € Hol (X,Y).
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§8. The automorphism group of a :-strongly pseudo-concave com-
plex space.
Firstly, we give

DeriniTiON 8. 1. We shall call a purely N-dimensional complex space
X to be s-strongly pseudo-concave if there exists a continuous function » with
v >y (= — o) on X such that v is »-strongly (N — 1)-convex at any point in
X — K for a compact subset K of X and satisfies the condition

[reX; va)>cleX

for any ¢ >¢, (c.f. Andreotti-Grauert [1], p. 236).

An important example of a x-strongly pseudo-concave space is given as

follows.

Exampii 8. 2. Let X be an N-dimensional connected compact com-
plex manifold and M be an analytic set in X, If M is of embedding
dimension <N — 2, namely, dimgm, /mz =N —1 for the maximal ideal m,
of the local ring of all germs of holomorphic functions on M at each
z € M, then X~ M is sstrongly pseudo-concave.

Indeed, for each 2 € M M can be represented as

MnU={fi=" -+ =fi=0}

with holomorphic functions f;(1<i=k%) on a neighborhood U of z. By
the assumption, we may assume that they satisfy

rank U 2t ) >,
Ugy * =, Uy)

on U, where {u,, ---, uy} is a system of local coordinates in U. As is
easily seen, the function v, = |f;[2+ - -+ + [fx]* on U is strongly (N —1)-
convex at 2z and satisfies U - (M N U) = {v, >0}. In this situation, by the
same argument as in the proof of Proposition 15 in [1], p. 234, we can
construct a strongly (N — 1)-convex function v on a neighborhood D of M
such that D— M= {v >0}, because M is compact. Let ¢=min {v(x);
z € dD’'} (>0) for some D' with Mc D' € D. Putting v' = ¢ on K:=(X—D')
Ufv=c} and =v on {v<<c} N D', we see easily the function v’ satisfies the
conditions in Definition 8. 1 for the space X — M.
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Now, we give the following main theorem.

TueoreM 8. 3. Let X be an irreductble s-strongly pseudo-concave complex space.
Then Aut(X) is locally compact and so a Lie group.

Proof. We have only to prove the local compactness of Aut(X) as
stated in §5. Moreover, X may be assumed to be normal in virtue of
Proposition 4. 2 and connected by the assumption. Let v be a continuous
function on X with the property in Definition 8.1. We take a real ¢,
such that ¢y <¢;<inf{v(x); x € K}. The set L = {x; v(x)=c,} is compact
and includes K. With each x € L we associate neighborhoods U,, V,, U;
and V; of « such that U, eV, e U; eV, e W with some K-complete open
set W. Covering L by finitely many U, (1<i<7) and putting D:=U,.,U,,

we consider the set
U= n,.,wW,, V,) n W(U;, Vi)™ n W(L,D)™,

which is a neighborhood of ¢ in Aut(X). We shall prove that U is relat-
ively compact in Aut(X). As in the proof of Theorem 5.3, any sequence
{o,} in U has a subsequence {¢, } which converges on D to a mapping
¢ € Hol(D,X). Moreover, we may assume that {¢;!} converges also on
D=y, Uj, to ¢ € Hol(D’,X). By the definition of U, ¢(D)c u,V, c D'
The composite ¢-¢ is well-defined and equal to ¢ on D, whence ¢ is in-
jective on D, Moreover, since D> X, :={z; v(z) >c,}, the mappings
¢, € Aut (X) c Hol (X, X) satisfy all assumptions in Theorem 7. 5. The
sequence {¢, } converges to a mapping ¢ € Hol(X,X). While, limyp;!=¢
is injective on ¢(D).  Since ¢(D) o X, with a suitable ¢, we can apply
the same argument to the mappings ¢;!. We obtain the limit JeHol(X, X)
of ¢;!, which satisfies ¢¢ = g¢p =¢ on X, Therefore, § € Aut(X) and so

U is relatively compact.

According to Example 8. 2, we have

CoroLLARY 8. 4. Let X be an N-dimensional connected compact complex
manifold and M be an analytic set of embedding dimension <N —2 in X.  Then
Aut(X) has a structure of a Lie group.

Remark. 1If emdim M= N —1, Corollary 8. 4 is false. Let P¥ be the
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N-dimensional projective space with homogeneous coordinates z,, 2, -+ -, zx.
The space PY¥ — {z, =0} is biholomorphically isomorphic with C¥  As is
well known, Aut(C") is not locally compact with the compact open topology
if N=2.
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